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According to the standard viewpoint the speed of gravitation is the speed of weak
waves of the metrics. This study proposes a new approach, defining the speed as
the speed of travelling waves in the field of gravitational inertial force. D’Alembert’s
equations of the field show that this speed is equal to the velocity of light corrected
by gravitational potential. The approach leads to a new experiment to measure the
speed of gravitation, which, using “detectors” such as planets and their satellites, is not
linked to deviation of geodesic lines and quadrupole mass-detectors with their specific
technical problems.

1 Introduction

Herein we use a pseudo-Riemannian space with the signature
(+−−−), where time is real and spatial coordinates are imag-
inary, because the projection of a four-dimensional impulse
on the spatial section of any given observer is positive
in this case. We also denote space-time indices in Greek,
while spatial indices are Roman. Hence the time term in
d’Alembert’s operator = gαβ∇α∇β will be positive, while
the spatial part (Laplace’s operator) will be negative Δ=
=−gik∇i∇k.

By applying the d’Alembert operator to a tensor field,
we obtain the d’Alembert equations of the field. The non-
zero elements are the d’Alembert equations containing the
field-inducing sources. The zero elements are the equations
without the sources. If there are no sources the field is free,

giving a free wave. There is the time term 1
a2
∂2

∂t2
containing

the linear velocity a of the wave. For this reason, in the
case of gravitational fields, the d’Alembert equations give
rise to a possibility of calculating the speed of propagation
of gravitational attraction (the speed of gravitation). At the
same time the result may be different according to the way
we define the speed as the velocity of waves of the metric,
or something else.

The usual approach sets forth the speed of gravitation as
follows [1, 5]. One considers the space-time metric gαβ =
= g(0)αβ + ζαβ , composed of a Galilean metric g(0)αβ (wherein
g(0)00 =1, g

(0)

0i =0, g
(0)

ik =−δik) and tiny corrections ζαβ de-
fining a weak gravitational field. Because the ζαβ are tiny, we
can raise and lower indices with the Galilean metric tensor
g(0)αβ . The quantities ζαβ are defined by the main property

of the fundamental metric tensor gασgσβ = δ
β
α as follows:

(g(0)ασ + ζασ) g
σβ = δ

β
α. Besides this approach defines gαβ

and g= det ‖gαβ‖ to within higher order terms withheld as
gαβ = g(0)αβ− ζαβ and g= g(0)(1+ ζ), where ζ= ζσσ . Be-
cause ζαβ are tiny we can take Ricci’s tensor Rαβ =R...σασβ
(the Riemann-Christoffel curvature tensor Rαβγδ contracted
on two indices) to within higher order terms withheld. Then

the Ricci tensor for the metric gαβ = g
(0)

αβ + ζαβ is

Rαβ =
1

2
g(0)μν

∂2ζαβ
∂xμ∂xν

=
1

2
ζαβ ,

which simplifies Einstein’s field equations Rαβ − 1
2 gαβ R=

=−κTαβ +λgαβ , where in this case R= g(0)μνRμν . In the
absence of matter and λ-fields (Tαβ =0, λ=0), that is, in
emptiness, the Einstein equations for the metric gαβ = g

(0)

αβ +
+ ζαβ become

ζβα = 0 .

Actually, these are the d’Alembert equations of the cor-
rections ζαβ to the metric gαβ = g

(0)

αβ + ζαβ (weak waves of
the metric). Taking the flat wave travelling in the direction
x1=x, we see

(
1

c2
∂2

∂t2
−
∂2

∂x2

)

ζβα = 0 ,

so weak waves of the metric travel at the velocity of light in
empty space.

This approach leads to an experiment, based on the prin-
ciple that geodesic lines of two infinitesimally close test-
particles will deviate in a field of waves of the metric. A
system of two real particles connected by a spring (a quadru-
pole mass-detector) should react to the waves. Most of these
experiments have since 1968 been linked to Weber’s detector.
The experiments have not been technically decisive until
now, because of problems with precision of measurement
and other technical problems [3] and some purely theoretical
problems [4, 5].

Is the approach given above the best? Really, the result-
ing d’Alembert equations are derived from that form of the
Ricci tensor obtained under the substantial simplifications of
higher order terms withheld (i .e. to first order). Eddington
[1] wrote that a source of this approximation is a specific
reference frame which differs from Galilean reference frames
by the tiny corrections ζαβ , the origin of which could be very
different from gravitation. This argument leads, as Eddington
remarked, to a “vicious circle”. So the standard approach has
inherent drawbacks, as follows:
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(1) The approach gives the Ricci tensor and hence the
d’Alembert equations of the metric to within higher
order terms withheld, so the velocity of waves of the
metric calculated from the equations is not an exact
theoretical result;

(2) A source of this approximation are the tiny corrections
ζαβ to a Galilean metric, the origin of which may be
very different: not only gravitation;

(3) Two bodies attract one another because of the transfer
of gravitational force. A wave travelling in the field
of gravitational force is not the same as a wave of
the metric — these are different tensor fields. When a
quadrupole mass-detector registers a signal, the detec-
tor reacts to a wave of the metric in accordance with
this theory. Therefore it is concluded that quadrupole
mass detectors would be the means by to discovery
of waves of the metric. However, the experiment is
only incidental to the measurement of the speed of
gravitation.

For these reasons we are lead to consider gravitational
waves as waves travelling in the field of gravitational force,
which provides two important advantages:

(1) The mathematical apparatus of chronometric invariants
(physical observable quantities in the General Theory
of Relativity) defines gravitational inertial force Fi
without the Riemann-Christoffel curvature tensor
[1, 2]. Using this method, we can deduce the exact
d’Alembert equations for the force field, giving an
exact formula for the velocity of waves of the force;

(2) Experiments to register waves of the force field, using
“detectors” such as planets or their satellites, does not
involve a quadrupole mass-detector and its specific
technical problems.

2 The new approach

The basis here is the mathematical apparatus of chronometric
invariants, created by Zelmanov in the 1940’s [1, 2]. Its
essence is that if an observer accompanies his reference body,
his observable quantities (chronometric invariants) are pro-
jections of four-dimensional quantities on his time line and

the spatial section, made by projecting operators bα= dx
α

ds
and hαβ=−gαβ+bαbβ , which fully define his real reference
space. Thus, chr.inv.-projections of a world-vector Qα are

bαQ
α=

Q0√
g00

and hiαQ
α=Qi, while chr.inv.-projections of

a world-tensor of the 2nd rank Qαβ are bαbβQαβ =
Q00
g00 ,

hiαbβQαβ =
Qi0√
g00

, hiαh
k
βQ

αβ =Qik. Physical observable

properties of the space are derived from the fact that the chr.

inv.-differential operators
∗∂
∂t
= 1√

g00
∂
∂t

and
∗∂
∂xi

= ∂
∂xi

+

+ 1
c2
vi
∗∂
∂t

are non-commutative. They are the chr.inv.-vector

of gravitational inertial force Fi, the chr.inv.-tensor of angular
velocities of the space rotation Aik, and the chr.inv.-tensor
of rates of the space deformations Dik, namely

Fi=
1

√
g00

(
∂w

∂xi
−
∂vi
∂t

)

,

Aik=
1

2

(
∂vk
∂xi

−
∂vi
∂xk

)

+
1

2c2
(Fivk−Fkvi) ,

vi=−c
g0i
√
g00

,
√
g00=1−

w

c2
,

Dik=
1

2

∗∂hik
∂t

, Dik=−
1

2

∗∂hik

∂t
, D=Dk

k=
∗∂ ln

√
h

∂t
,

where w is gravitational potential, vi is the linear velocity
of the space rotation, hik=−gik+ 1

c2
vivk is the chr.inv.-

metric tensor, and also h=det ‖hik‖,
√
−g=

√
h
√
g00 ,

g=det ‖gαβ‖. Observable non-uniformity of the space is
set up by the chr.inv.-Christoffel symbols Δijk=h

imΔjk,m,
which are built just like Christoffel’s usual symbols Γαμν =
= gασΓμν,σ , using hik instead of gαβ .

The four-dimensional generalization of the chr.inv.-quan-
tities Fi, Aik, and Dik had been obtained by Zelmanov [8]
as Fα=−2c2bβaβα, Aαβ = ch

μ
αhνβaμν , Dαβ = ch

μ
αhνβdμν ,

where aαβ = 1
2 (∇α bβ −∇β bα), dαβ =

1
2 (∇α bβ +∇β bα).

Following the study [9], we consider a field of the grav-
itational inertial force Fα=−2c2bβaβα, the chr.inv.-spatial
projection of which is F i, so that Fi=hikF k. The d’Alem-
bert equations of the vector field Fα=−2c2bβa∙αβ∙ in the
absence of sources are

Fα = 0 .

Their chr.inv.-projections (referred to as the chr.inv.-
d’Alembert equations) can be deduced as follows

bσ g
αβ∇α∇βF

σ = 0 , hiσ g
αβ∇α∇βF

σ = 0 .

After some algebra we obtain the chr.inv.-d’Alembert
equations for the field of the gravitational inertial force
Fα=−2c2bβa∙αβ∙ in their final form. They are

1

c2

∗∂

∂t

(
FkF

k
)
+
1

c2
Fi

∗∂F i

∂t
+Dk

m

∗∂Fm

∂xk
+

+hik
∗∂

∂xi
[(Dkn + Akn)F

n]−
2

c2
AikF

iF k+

+
1

c2
FmF

mD +ΔmknD
k
mF

n−

−hikΔmik (Dmn + Amn)F
n = 0 ,
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1

c2

∗∂2F i

∂t2
− hkm

∗∂2F i

∂xk∂xm
+
1

c2
(
Di
k + A

∙i
k∙

) ∗∂F k

∂t
+

+
1

c2

∗∂

∂t

[(
Di
k + A

∙i
k∙

)
F k
]
+
1

c2
D
∗∂F i

∂t
+
1

c2
F k

∗∂F i

∂xk
+

+
1

c2
(
Di
n+A

∙i
n∙

)
FnD+

1

c4
FkF

kF i+
1

c2
ΔikmF

kFm−

−hkm
{ ∗∂

∂xk
(
ΔimnF

n
)
+
(
ΔiknΔ

n
mp −Δ

n
kmΔ

i
np

)
F p+

+Δikn

∗∂Fn

∂xm
−Δnkm

∗∂F i

∂xn

}

= 0 .

Calling upon the formulae for chr.inv.-derivatives, we
transform the first term in the chr.inv.-d’Alembert vector
equations into the form

1

c2

∗∂2F i

∂t2
=

1

c2g00

∂2F i

∂t2
+

1

c4
√
g00

∗∂w

∂t

∗∂F i

∂t
,

so waves of gravitational inertial force travel at a velocity
uk, the square of which is ukuk= c2g00 and the modulus

u =
√
ukuk = c

(
1−

w

c2

)
.

Because waves of the field of gravitational inertial force
transfer gravitational interaction, this wave speed is the speed
of gravitation as well. The speed depends on the scalar
potential w of the field itself, which leads us to the following
conclusions:

(1) In a weak gravitational field, the potential w of which
is negligible but its gradient Fi is non-zero, the speed
of gravitation equals the velocity of light;

(2) According to this formula, the speed of gravitation will
be less than the velocity of light near bulky bodies
like stars or planets, where gravitational potential is
perceptible. On the Earth’s surface slowing gravitation
will be slower than light by 21 cm/sec. Gravitation
near the Sun will be about 6.3×104 cm/sec slower than
light;

(3) Under gravitational collapse (w= c2) the speed of
gravitation becomes zero.

Let us turn now from theory to experiment. An idea as
to how to measure the speed of gravitation as the speed
to transfer of the attracting force between space bodies had
been proposed by the mathematician Dombrowski [10] in
conversation with me more than a decade ago. But in the
absence of theory the idea had not developed to experiment
in that time. Now we have an exact formula for the speed
of waves travelling in the field of gravitational inertial force,
so we can propose an experiment to measure the speed (a
Weber detector reacts to weak waves of the metric, so it does
not apply to this experiment).

The Moon attracts the Earth’s surface, causing the flow
“hump” in the ocean surface that follows the moving Moon,

producing ebbs and flows. An analogous “hump” follows
the Sun: its magnitude is more less. A satellite in an Earth
orbit has the same ebb and flow oscillations — its orbit rises
and falls a little, following the Moon and the Sun as well.
A satellite in space experiences no friction, contrary of the
viscous waters of the oceans. A satellite is a perfect system,
which reacts instantly to the flow. If the speed of gravitation
is limited, the moment of the satellite’s maximum flow rise
should be later than the lunar/solar upper transit by the
amount of time taken by waves of the gravitational force
field to travel from the Moon/Sun to the satellite.

The Earth’s gravitational field is not absolutely symmet-
ric, because of the imperfect form of the terrestrial globe.
A real satellite reacts to the field defects during its orbital
flight around the Earth — the height of its orbit oscillates in
decimetres, giving rise to substantial noise in the experiment.
For this reason a geostationary satellite would be best. Such
a satellite, having an equatorial orbit, requires an angular ve-
locity the same as that of the Earth. As a result, the height of
a geostationary satellite above the Earth does not depend on
non-uniformities of the Earth’s gravitational field. The height
could be measured with high precision by a laser range-
finder, almost without interruption, providing a possibility
of registering the moment of the maximum flow rise of the
satellite, perfectly.

In accordance with our formula the speed of gravita-
tion near the Earth is 21 cm/sec less than the velocity of
light. In this case the maximum of the lunar flow wave in a
satellite orbit will be about 1 sec later than the lunar upper
culmination. The lateness of the flow wave of the Sun will be
about 500 sec after the upper transit of the Sun. The question
is how precisely could the moment of the maximum flow
rise of a satellite in its orbit be determined, because the real
maximum can be “fuzzy” in time.

3 Effect of the curvature

If a space is homogeneous (Δikm=0) and it is free of rotation
and deformation (Aik=0, Dik=0), then the chr.inv.-
d’Alembert equations for the field of gravitational inertial
force take the form

1

c2

∗∂

∂t

(
FkF

k
)
+
1

c2
Fi

∗∂F i

∂t
= 0 ,

1

c2

∗∂2F i

∂t2
−hkm

∗∂2F i

∂xk∂xm
+
1

c2
F k

∗∂F i

∂xk
+
1

c4
FkF

kF i = 0 ,

so waves of gravitational inertial force are permitted even in
this very simple case.

Are waves of the metric possible in this case or not?
As it is known, waves of the metric are linked to the

space-time curvature derived from the Riemann-Christoffel
curvature tensor. If the first derivatives of the metric (the
space deformations) are zero, then its second derivatives
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(the curvature) are zero too. Therefore waves of the metric
have no place in a non-deforming space, while waves of
gravitational inertial force are possible there.

In connection with this fact, following the study [9],
another question arises. By how much does the curvature
affect waves of gravitational inertial force?

To answer the question let us recall that Zelmanov, follo-
wing the same procedure by which the Riemann-Christoffel
tensor was introduced, after considering non-commutativity
of the chr.inv.-second derivatives of a vector ∗∇i∗∇kQl−

− ∗∇k∗∇iQl=
2Aik
c2

∗∂Ql
∂t

+H
...j
lkiQj , had obtained the chr.

inv.-tensor H ...j
lki like Schouten’s tensor [11]. Its generaliza-

tion gives the chr.inv.-curvature tensor Clkij = 1
4

(
Hlkij −

−Hjkil+Hklji−Hiljk
)
, which has all the properties of the

Riemann-Christoffel tensor in the observer’s spatial section.
So the chr.inv.-spatial projection Ziklj =−c2Riklj of the
Riemann-Christoffel tensor Rαβγδ , after contraction twice by
hik, is Z =hilZil=DikDik−D2−AikAik− c2C, where
C =C

j
j =h

ljClj and Ckj =C ...ikij∙=h
imCkimj [1].

At the same time, as Synge’s well-known book [12]
shows, in a space of constant four-dimensional curvature,
K = const, we have Rαβγδ =K (gαγ gβδ − gαδgβγ), Rαβ =
=−3Kgαβ ,R=−12K. With these formulae as a basis, after
calculation of the chr.inv.-spatial projection of the Riemann-
Christoffel tensor, we deduce that in a constant curvature
space Z =6c2K. Equating this to the same quantity in an
arbitrary curvature space, we obtain a correlation between
the four-dimensional curvature K and the observable three-
dimensional curvature in the constant curvature space

6c2K = DikD
ik −D2 − AikA

ik − c2C .

If the four-dimensional curvature is zero (K =0), and
the space does no deformations (Dik=0 — its metric is
stationary, hik= const), then no waves of the metric are
possible. In such a space the observable three-dimensional
curvature is

C = −
1

c2
AikA

ik,

which is non-zero (C 6=0), only if the space rotates (Aik 6=0).
If aside of these factors, the space does not rotate, then its
observable curvature also becomes zero; C =0. Even in this
case the chr.inv.- d’Alembert equations show the presence of
waves of gravitational inertial force.

What does this imply? As a matter of fact, gravitational
attraction is an everyday reality in our world, so waves of
gravitational inertial force transferring the attraction shall be
incontrovertible. Therefore we adduce the alternatives:

(1) Waves of gravitational inertial force depend on a cur-
vature of space — then the real space-time is not a
space of constant curvature, or,

(2) Waves of gravitational inertial force do not depend on
the curvature.
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