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In the theory of scale relativity, space-time is considered to be a continuum that is not
only curved, but also non-differentiable, and, as a consequence, fractal. The equation
of geodesics in such a space-time can be integrated in terms of quantum mechanical
equations. We show in this paper that the quantum potential is a manifestation of such
a fractality of space-time (in analogy with Newton’s potential being a manifestation of
curvature in the framework of general relativity).

1 Introduction

The theory of scale relativity aims at describing a non-
differentiable continuous manifold by the building of new
tools that implement Einstein’s general relativity concepts
in the new context (in particular, covariant derivative and
geodesics equations). We refer the reader to Refs. [1, 2, 3, 4]
for a detailed description of the construction of these tools.
In the present short research note, we want to address a
specific point of the theory, namely, the emergence of an
additional potential energy which manifests the fractal and
nondifferentiable geometry.

2 Non relativistic quantum mechanics

2.1 Quantum potential

In the scale relativity approach, one decomposes the velocity
field on the geodesics bundle of a nondifferentiable space-
time in terms of a classical, differentiable part, V , and of
a fractal, divergent, nondifferentiable part W of zero mean.
Both velocity fields are complex due to a fundamental two-
valuedness of the classical (differentiable) velocity issued
from the nondifferentiability [1]. Then one builds a complex
covariant total derivative that reads in the simplest case
(spinless particle, nonrelativistic velocities and no external
field) [1, 2, 3]

d

dt
=

∂

∂t
+ V∙∇ − iDΔ . (1)

The constant 2D=<dξ2>/dt (= ~/m in standard quan-
tum mechanics) measures the amplitude of the fractal fluc-
tuations. Note that it is possible to have a more complete
construction in which the full velocity field V +W intervenes
in the covariant derivative [6]. In the same way as in general
relativity, the geodesics equation can therefore be written,
using this covariant derivative, in terms of a free, inertial
motion-like equation,

dV
dt
= 0 . (2)

Let us explicitly introduce the real and imaginary parts
of the complex velocity V =V − iU ,

dV
dt
=

({
∂

∂t
+V ∙∇

}

−i {U ∙∇+DΔ}

)

(V −iU) = 0 .

(3)
We see in this expression that the real part of the covar-

iant derivative, dR/dt= ∂/∂t+V ∙∇, is the standard total
derivative expressed in terms of partial derivatives, while
the new terms are included in the imaginary part, dI/dt=
=−(U ∙∇+DΔ). The field will find its origin in the conse-
quences of these additional terms on the imaginary part of the
velocity −U . Indeed, by separating the real and imaginary
parts, equation (3) reads:

{(
∂

∂t
+ V ∙∇

)

V − (U ∙∇+DΔ)U

}

−

− i

{

(U ∙∇+DΔ)V +

(
∂

∂t
+ V ∙∇

)

U

}

= 0 .

(4)

Therefore the real part of this equation takes the form of
an Euler-Newton equation of dynamics

(
∂

∂t
+ V ∙∇

)

V = (U ∙∇+DΔ)U , (5)

i. e.,
dV

dt
=
F

m
, (6)

where the total derivative of the velocity field V takes its
standard form dV/dt=(∂/∂t+V∇)V and where the force
F is given by F =m(U ∙∇U +DΔU).

Recall that, after one has introduced the wave function
ψ from the complex action S =SR+ iSI , namely, ψ= exp
(iS/2mD)=

√
P exp(iSR/2mD), equation (2) and its gen-

eralization including a scalar field, mdV/dt=−∇φ can be
integrated under the form of a Schrödinger equation [1]

D2Δψ + iD
∂ψ

∂t
−

φ

2m
ψ = 0 . (7)
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Let us now show that the additional force derives from a
potential. Indeed, the imaginary part of the complex velocity
field is given, in terms of the modulus of ψ, by the expression:

U = D∇ lnP . (8)

The force becomes

F = mD2 [(∇ lnP ∙∇)(∇ lnP ) + Δ(∇ lnP )] . (9)

Now, by introducing
√
P in this expression, one makes

explicitly appear the remarkable identity that is already at the
heart of the proof of the Schrödinger equation ([1], p. 151),
namely,

F = 2mD2
[
2(∇ ln

√
P ∙∇)(∇ ln

√
P )+

+Δ(∇ ln
√
P )
]
= 2mD2∇

(
Δ
√
P

√
P

)

.
(10)

Therefore the force F derives from a potential energy

Q = −2mD2
Δ
√
P

√
P

, (11)

which is nothing but the standard “quantum potential”, but
here established as a mere manifestation of the nondifferen-
tiable and fractal geometry instead of being deduced from a
postulated Schrödinger equation.

The real part of the motion equation finally takes the
standard form of the equation of dynamics in presence of a
scalar potential,

dV

dt
=

(
∂

∂t
+ V ∙∇

)

V = −
∇Q
m

, (12)

while the imaginary part is the equation of continuity ∂P/∂t+
+div(PV )= 0. The fact that the field equation is derived
from the same remarkable identity that gives rise to the
Schrödinger equation is also manifest in the similarity of its
form with the free stationary Schrödinger equation, namely,

D2Δ
√
P +

Q

2m

√
P = 0 ←→ D2Δψ+

E

2m
ψ = 0 . (13)

Now, the form (11) of the field equation means that the
field can be known only after having solved the Schrödinger
equation for the wave function. This is a situation somewhat
different from that of general relativity, where, at least for
test-particles, the description is reversed: given the energy-
momentum tensor, one solves the Einstein field (i. e. space-
time geometry) equations for the metric potentials, then one
writes the geodesics equation in the space-time so determined
and solve it for the motion of the particle. However, even in
general relativity this case is an ideally simplified situation,
since already in the two-body problem the motion of the

bodies should be injected in the energy-momentum tensor,
so that this is a looped system which has no exact analytical
solution.

In the case of a quantum mechanical particle considered
in scale relativity, the loop between the motion (geodesics)
equation and the field equation is even more tight. Indeed,
here the concept of test-particle loses its meaning. Even in
the case of only one “particle”, the space-time geometry is
determined by the particle itself and by its motion, so that the
field equation and the geodesics equation now participate of
the same level of description. This explains why the motion/
geodesics equation, in its Hamilton-Jacobi form that takes the
form of the Schrödinger equation, is obtained without having
first written the field equation in an explicit way. Actually,
the potential Q is implicitly contained in the Schrödinger
form of the equations, and it is made explicit only when
coming back to a fluid-like Euler-Newton representation.
In the end, the particle is described by a wave function
(which is constructed, in the scale relativity theory, from
the geodesics), of which only the square of the modulus P
is observable. Therefore one expects the “field” to be given
by a function of P , which is exactly what is found.

2.2 Invariants and energy balance

Let us now make explicit the energy balance by accounting
for this additional potential energy. This question has already
been discussed in [7, 8] and in [9], but we propose here a
different presentation. We shall express the energy equation
in terms of the various equivalent variables which we use in
scale relativity, namely, the wave function ψ, the complex
velocity V or its real and imaginary parts V and −U .

The first and main form of the energy equation is the
Schrödinger equation itself, that we have derived as a prime
integral of the geodesics equation. The Schrödinger equation
is therefore the quantum equivalent of the metric form (i. e.,
of the equation of conservation of the energy). It may be
written in the free case under the form

D2
Δψ

ψ
= −iD

∂ lnψ

∂t
. (14)

In the stationary case with given energy E, it becomes:

E = −2mD2
Δψ

ψ
. (15)

Now we can use the fundamental remarkable identity
Δψ/ψ=(∇ lnψ)2+Δ lnψ. Re-introducing the complex
velocity field V =−2iD∇ lnψ in this expression we finally
obtain the correspondence:

E = −2mD2
Δψ

ψ
=
1

2
m
(
V2 − 2iD∇∙V

)
. (16)

Note that when a potential term is present, all these
relations remain true by replacing E by E−φ.
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This is the non-relativistic equivalent of Pissondes’ rela-
tion [8] in the relativistic case, VμVμ+ iλ∂μVμ=1 (see also
hereafter). Therefore the form of the energy E=(1/2)mV 2

is not conserved: this is precisely due to the existence of the
additional potential energy of geometric origin. Let us prove
this statement.

From equation (16) we know that the imaginary part of
(V2− 2iD∇∙V) is zero. By writing its real part in terms of
the real velocities U and V , we find:

E =
1

2
m
(
V2 − 2iD∇∙V

)
=

=
1

2
m (V 2 − U2 − 2D∇∙U) .

(17)

Now we can express the potential energy Q given in
equation (11) in terms of the velocity field U :

Q = −
1

2
m (U2 − 2D∇∙U) , (18)

so that we finally write the energy balance under the three
equivalent forms:

E = −2mD2
Δψ

ψ
=

=
1

2
m
(
V2 − 2iD∇∙V

)
=
1

2
mV 2 + Q .

(19)

More generally, in presence of an external potential en-
ergy φ and in the non-stationary case, it reads:

−
∂SR
∂t

=
1

2
mV 2 +Q+ φ , (20)

where SR is the real part of the complex action (i. e.,
SR/2mD is the phase of the wave function).

3 Relativistic quantum mechanics

3.1 Quantum potential

All the above description can be directly generalized to
relativistic QM and the Klein-Gordon equation [10, 2, 3].
The geodesics equation still reads in this case:

dVα
ds

= 0 , (21)

where the total derivative is given by [10, 3]

d

ds
=

(

Vμ + i
λ

2
∂μ
)

∂μ . (22)

The complex velocity field Vα reads in terms of the wave
function

Vα = iλ ∂α lnψ . (23)

The relation between the non-relativistic fractal param-
eter D and the relativistic one λ is simply 2D=λc. In

particular, in the standard QM case, λ is the Compton length
of the particle, λ= ~/mc, and we recover D= ~/2m.

The calculations are similar to the non-relativistic case.
We decompose the complex velocity in terms of its real
and imaginary parts, Vα=Vα− i Uα, so that the geodesics
equation becomes

{

V μ − i

(

Uμ −
λ

2
∂μ
)}

∂μ (Vα − i Uα) = 0 , (24)

i. e.,
{

V μ∂μVα −

(

Uμ −
λ

2
∂μ
)

∂μUα

}

−

− i

{(

Uμ −
λ

2
∂μ
)

∂μVα + V
μ∂μUα

}

= 0 .

(25)

The real part of this equation takes the form of a relativ-
istic Euler-Newton equation of dynamics:

dVα
ds

= V μ∂μVα =

(

Uμ −
λ

2
∂μ
)

∂μUα . (26)

Therefore the relativistic case is similar to the non-relativ-
istic one, since a generalized force also appears in the right-
hand side of this equation. Let us now prove that it also
derives from a potential. Using the expression for Uα in
terms of the modulus

√
P of the wave function,

Uα = −λ ∂α ln
√
P , (27)

we may write the force under the form

Fα
m
= −λ ∂μ ln

√
P ∂μ(−λ ∂α ln

√
P )+

+
λ2

2
∂μ∂μ∂α ln

√
P =

= λ2
(

∂μ ln
√
P ∂μ∂α ln

√
P +

1

2
∂μ∂μ∂α ln

√
P

)

.

(28)

Since ∂μ∂μ∂α = ∂α∂
μ∂μ commutes and since

∂α(∂
μ ln f ∂μ ln f) = 2 ∂

μ ln f ∂α∂
μ ln f , we obtain

Fα
m
=
1

2
λ2 ∂α

(
∂μ ln

√
P ∂μ ln

√
P +∂μ∂μ ln

√
P
)
. (29)

We can now make use of the remarkable identity (that
generalizes to four dimensions the one which is also at the
heart of the non-relativistic case)

∂μ ln
√
P ∂μ ln

√
P + ∂μ∂μ ln

√
P =

∂μ∂μ
√
P

√
P

, (30)

and we finally obtain

dVα
ds

=
1

2
λ2 ∂α

(
∂μ∂μ

√
P

√
P

)

. (31)
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Therefore, as in the non-relativistic case, the force derives
from a potential energy

QR =
1

2
mc2 λ2

∂μ∂μ
√
P

√
P

, (32)

that can also be expressed in terms of the velocity field U as

QR =
1

2
mc2 (UμUμ − λ ∂

μUμ) . (33)

At the non-relativistic limit (c→∞), the Dalembertian
∂μ∂μ=(∂

2/c2∂t2−Δ) is reduced to −Δ, and since λ=
=2D/c, we recover the nonrelativistic potential energy Q=
=−2mD2Δ

√
P/
√
P . Note the correction to the potential

introduced by Pissondes [7] which is twice this potential and
therefore cannot agree with the nonrelativistic limit.

3.2 Invariants and energy balance

As shown by Pissondes [7, 8], the four-dimensional energy
equation uμuμ=1 is generalized in terms of the complex
velocity under the form VμVμ+ iλ∂μVμ=1. Let us show
that the additional term is a manifestation of the new scalar
field Q which takes its origin in the fractal and nondifferen-
tiable geometry. Start with the geodesics equation

dVα
ds

=

(

Vμ + i
λ

2
∂μ
)

∂μ Vα = 0 . (34)

Then, after introducing the wave function by using the
relation Vα= iλ ∂α lnψ, after calculations similar to the
above ones (now on the full function ψ instead of only its
modulus

√
P ), the geodesics equation becomes:

dVα
ds

= −
λ2

2
∂α (∂

μ lnψ ∂μ lnψ + ∂
μ∂μ lnψ) =

=
1

2
∂α

(

−λ2
∂μ∂μψ

ψ

)

= 0 .

(35)

Under its right-hand form, this equation is integrated in
terms of the Klein-Gordon equation,

λ2 ∂μ∂μψ + ψ = 0 . (36)

Under its left hand form, the integral writes

−λ2(∂μ lnψ ∂μ lnψ + ∂
μ∂μ lnψ) = 1 . (37)

It becomes in terms of the complex velocity [8]

VμVμ + iλ∂
μVμ = 1 , (38)

which is therefore but another form taken by the KG equation
(as expected from the fact that the KG equation is the
quantum equivalent of the Hamilton-Jacobi equation). Let
us now separate the real and imaginary parts of this equation.

One obtains:

V μVμ − (UμUμ − λ ∂μUμ) = 1 ,

2V μUμ − λ ∂μVμ = 0 .
(39)

Then the energy balance writes, in terms of the additional
potential energy QR

V μVμ = 1 + 2
QR
mc2

. (40)

Let us show that we actually expect such a relation for the
quadratic invariant in presence of an external potential φ. The
energy relation writes in this case (E−φ)2= p2c2+m2c4,
i. e. E2− p2c2=m2c4+2Eφ−φ2. Introducing the rest
frame energy by writing E=mc2+E′, we obtain

V μVμ =
E2 − p2c2

m2c4
=

= 1 + 2
φ

mc2
+

[

2
E′

mc2
φ

mc2
−

φ2

m2c4

]

.

(41)

This justifies the relativistic factor 2 in equation (40) and
supports the interpretation of QR in terms of a potential, at
least at the level of the leading terms.

Now, concerning the additional terms, it should remain
clear that this is only an approximate description in terms of
field theory of what are ultimately (in this framework) the
manifestations of the fractal and nondifferentiable geometry
of space-time. Therefore we expect the field theory descript-
ion to be a first order approximation in the same manner as,
in general relativity, the description in terms of Newtonian
potential.

In particular, in the non-relativistic limit c→∞ the last
two terms of equation (41) vanish and we recover the energy
equation (19) which is therefore exact in this case.

4 Conclusion

Placing ourselves in the framework of the scale-relativity
theory, we have shown in a detailed way that the quantum
potential, whose origin remained mysterious in standard
quantum mechanics, is a manifestation of the nondifferen-
tiability and fractality of space-time in the new approach.

This result is expected to have many applications, as
well in physics as in other sciences, including biology [4].
It has been used, in particular, to suggest a new solution to
the problem of “dark matter” in cosmology [11, 5], based
on the proposal that chaotic gravitational system can be
described on long time scales (longer than their horizon of
predictibility) by the scale-relativistic equations and therefore
by a macroscopic Schrödinger equation [12]. In this case
there would be no need for additional non baryonic dark
matter, since the various observed non-Newtonian dynamical
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effects (that the hypothesis of dark matter wants to explain
despite the check of all attempts of detection) would be
readily accounted for by the new scalar field that manifests
the fractality of space.
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