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We investigate the consequences of the Mach’s principle of inertia within the context
of the Dual Phase Space Relativity which is compatible with the Eddington-Dirac large
numbers coincidences and may provide with a physical reason behind the observed
anomalous Pioneer acceleration and a solution to the riddle of the cosmological
constant problem. The cosmological implications of Non-Archimedean Geometry by
assigning an upper impossible scale in Nature and the cosmological variations of
the fundamental constants are also discussed. We study the corrections to Newtonian
dynamics resulting from the Dual Phase Space Relativity by analyzing the behavior of a
test particle in a modified Schwarzschild geometry (due to the the effects of the maximal
acceleration) that leads in the weak-field approximation to essential modifications of
the Newtonian dynamics and to violations of the equivalence principle. Finally we
follow another avenue and find modified Newtonian dynamics induced by the Yang’s
Noncommutative Spacetime algebra involving a lower and upper scale in Nature.

1 Introduction

In recent years we have argued that the underlying funda-
mental physical principle behind string theory, not unlike the
principle of equivalence and general covariance in Einstein’s
general relativity, might well be related to the existence of
an invariant minimal length scale (Planck scale) attainable
in nature. A scale relativistic theory involving spacetime
resolutions was developed long ago by Nottale where the
Planck scale was postulated as the minimum observer in-
dependent invariant resolution in Nature [2]. Since “points”
cannot be observed physically with an ultimate resolution,
they are fuzzy and smeared out into fuzzy balls of Planck
radius of arbitrary dimension. For this reason one must con-
struct a theory that includes all dimensions (and signatures)
on the equal footing. Because the notion of dimension is a
topological invariant, and the concept of a fixed dimension
is lost due to the fuzzy nature of points, dimensions are
resolution-dependent, one must also include a theory with
all topologies as well. It turned out that Clifford algebras
contained the appropriate algebro-geometric features to im-
plement this principle of polydimensional transformations
that reshuffle a five-brane history for a membrane history, for
example. For an extensive review of this Extended Relativity
Theory in Clifford Spaces that encompasses the unified dy-
namics of all p-branes, for different values of the dimensions
of the extended objects, and numerous physical conse-
quences, see [1].

A Clifford-space dynamical derivation of the stringy-
minimal length uncertainty relations [11] was furnished in
[45]. The dynamical consequences of the minimal-length in
Newtonian dynamics have been recently reviewed by [44].

The idea of minimal length (the Planck scale LP ) can be
incorporated within the context of the maximal acceleration
Relativity principle [68] amax= c2/LP in Finsler Geom-
etries [56] and [14]. A different approach than the one based
on Finsler Geometries is the pseudo-complex Lorentz group
description by Schuller [61] related to the effects of maximal
acceleration in Born-Infeld models that also maintains Lo-
rentz invariance, in contrast to the approaches of Double
Special Relativity (DSR) [70] where the Lorentz symmetry
is deformed. Quantum group deformations of the Poincaré
symmetry and of Gravity have been analyzed by [69] where
the deformation parameter q could be interpreted in terms
of an upper and lower scale as q= eLP /R such that the
undeformed limit q=1 can be attained when LP → 0 and/or
whenR→∞ [68]. For a discussions on the open problems of
Double Special Relativity theories based on kappa-deformed
Poincaré symmetries [63] and motivated by the anomalous
Lorentz-violating dispersion relations in the ultra high energy
cosmic rays [71, 73], we refer to [70].

An upper limit on the maximal acceleration of particles
was proposed long ago by Caianiello [52]. This idea is a
direct consequence of a suggestion made years earlier by
Max Born on a Dual Relativity principle operating in Phase
Spaces [49], [74] where there is an upper bound on the
four-force (maximal string tension or tidal forces in strings)
acting on a particle as well as an upper bound in the particle’s
velocity given by the speed of light. For a recent status of the
geometries behind maximal-acceleration see [73]; its relation
to the Double Special Relativity programs was studied by
[55] and the possibility that Moyal deformations of Poincaré
algebras could be related to the kappa-deformed Poincaré
algebras was raised in [68]. A thorough study of Finsler
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geometry and Clifford algebras has been undertaken by Va-
caru [81] where Clifford/spinor structures were defined with
respect to Nonlinear connections associated with certain non-
holonomic modifications of Riemann-Cartan gravity. The
study of non-holonomic Clifford-Structures in the construc-
tion of a Noncommutative Riemann-Finsler Geometry has
recently been advanced by [81].

Other implications of the maximal acceleration principle
in Nature, like neutrino oscillations and other phenomena,
have been studied by [54], [67], [22]. Recently, the variations
of the fine structure constant α [64] with the cosmological
accelerated expansion of the Universe was recast as a re-
normalization group-like equation governing the cosmolo-
gical red shift (Universe scale) variations of α based on
this maximal acceleration principle in Nature [68]. The fine
structure constant was smaller in the past. Pushing the cutoff
scale to the minimum Planck scale led to the intriguing result
that the fine structure constant could have been extremely
small (zero) in the early Universe and that all matter in
the Universe could have emerged via the Unruh-Rindler-
Hawking effect (creation of radiation/matter) due to the ac-
celeration w. r. t the vacuum frame of reference. For reviews
on the alleged variations of the fundamental constants in
Nature see [65].

The outline of this work goes as follows. In section 2 we
review the Dual Phase Space Relativity and show why the
Planck areas are invariant under acceleration-boosts trans-
formations.

In 3.1 we investigate the consequences of the Mach’s
principle of inertia within the context of the Dual Phase Space
Relativity Principle which is compatible with the Eddington-
Dirac large numbers coincidence and may provide with a
very plausible physical reason behind the observed anoma-
lous Pioneer acceleration due to the fact that the universe
is in accelerated motion (a non-inertial frame of reference)
w. r. t the vacuum. Our proposal shares similarities with the
previous work of [6], [3]. To our knowledge, the first person
who predicted the Pioneer anomaly in 1978 was P. LaViolette
[5], from an entirely different approach based on the novel
theory of sub-quantum kinetics to explain the vacuum fluctu-
ations, two years prior to the Anderson et al observations [7].
The cosmological implications of Non-Archimedean Geom-
etry [94] by assigning an upper impassible scale in Nature [2]
and the cosmological variations of the fundamental constants
are also discussed.

In 3.2 the crucial modifications to Newtonian dynamics
resulting from the Dual Phase Space Relativity are analyzed
further. In particular, the physical consequences of an upper
and lower bounds in the acceleration and an upper and
lower bounds in the angular velocity. We study the particular
behavior of a test particle living in a modified Schwarzschild
geometry (due to the the effects of the principle of maximal
acceleration) that leads in the weak-field approximation to
essential modifications of the Newtonian dynamics and to

violations of the equivalence principle. For violations of the
equivalence principle in neutrino oscillations see [42], [54].

Finally, in 4 we study another interesting avenue for the
origins of modified Newtonian dynamics based on Yang’s
Noncommutative Spacetime algebra involving a lower and
upper scale [136] that has been revisited recently by us [134]
in the context of holography and area-quantization in C-
spaces (Clifford spaces); in the physics of D-branes and
covariant Matrix models by [137] and within the context of
Lie algebra stability by [48]. A different algebra with two
length scales has been studied by [43] in order to account for
modifications of Newtonian dynamics (that also violates the
equivalence principle).

2 Dual Phase-Space Relativity

In this section we will review in detail the Born’s Dual Phase
Space Relativity and the principle of Maximal-acceleration
Relativity [68] from the perspective of 8D Phase Spaces and
the role of the invariance U(1, 3) Group. We will focus for
simplicity on a flat 8D Phase Space. A curved case scenario
has been analyzed by Brandt [56] within the context of the
Finsler geometry of the 8D tangent bundle of spacetime
and written the generalized 8D gravitational equations that
reduce to the ordinary Einstein-Riemannian gravitational
equations in the infinite acceleration limit. Vacaru [81] has
constructed the Riemann-Finsler geometries endowed with
non-holonomic structures induced by nonlinear connections
and developed the formalism to build a Noncommutative
Riemann-Finsler Geometry by introducing suitable Clifford
structures. A curved momentum space geometry was studied
by [50]. Toller [73] has explored the different possible geom-
etries associated with the maximal acceleration principle and
the physical implications of the meaning of an “observer”,
“measuring device” in the cotangent space.

The U(1, 3)=SU(1, 3) ⊗ U(1) Group transformations,
which leave invariant the phase-space intervals under rota-
tions, velocity and acceleration boosts, were found by Low
[74] and can be simplified drastically when the velocity/ac-
celeration boosts are taken to lie in the z-direction, leaving
the transverse directions x, y, px, py intact; i. e., the U(1, 1)=
=SU(1, 1)⊗U(1) subgroup transformations that leave in-
variant the phase-space interval are given by (in units of
~= c=1)

(dω)2 = (dT )2 − (dX)2 +
(dE)2 − (dP )2

b2
=

= (dτ )2
[

1 +
(dE/dτ )2 − (dP/dτ )2

b2

]

=

= (dτ )2
[

1−
m2g2(τ )

m2
PA

2
max

]

,

(2.1)

where we have factored out the proper time infinitesimal
(dτ )2= dT 2 − dX2 in eq-(2.1) and the maximal proper-
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force is set to be b≡mPAmax. Here mP is the Planck mass
1/LP so that b=(1/LP )2, may also be interpreted as the
maximal string tension when LP is the Planck scale.

The quantity g(τ ) is the proper four-acceleration of a
particle of mass m in the z-direction which we take to be
defined by the X coordinate. The interval (dω)2 described
by Low [74] is U(1, 3)-invariant for the most general trans-
formations in the 8D phase-space. These transformations
are rather elaborate, so we refer to the references [74] for
details. The appearance of the U(1, 3) group in 8D Phase
Space is not too surprising since it could be seen as the
“complex doubling” version of the Lorentz group SO(1, 3).
Low discussed the irreducible unitary representations of such
U(1, 3) group and the relevance for the strong interactions
of quarks and hadrons since U(1, 3), with 16 generators,
contains the SU(3) group.

The analog of the Lorentz relativistic factor in eq-(2.1)
involves the ratios of two proper forces. One variable force is
given by mg(τ ) and the maximal proper force sustained by
an elementary particle of mass mP (a Planckton) is assumed
to be Fmax=mPlanckc

2/LP . When m=mP , the ratio-
squared of the forces appearing in the relativistic factor of
eq-(2.1) becomes then g2/A2max, and the phase space interval
coincides with the geometric interval discussed by [61], [54],
[67], [22].

The transformations laws of the coordinates in that leave
invariant the interval (2.1) were given by [74]:

T ′ = T cosh ξ +

(
ξvX

c2
+
ξaP

b2

)
sinh ξ

ξ
, (2.2a)

E′ = E cosh ξ + (−ξaX + ξvP )
sinh ξ

ξ
, (2.2b)

X ′ = X cosh ξ +

(

ξvT −
ξaE

b2

)
sinh ξ

ξ
, (2.2c)

P ′ = P cosh ξ +

(
ξvE

c2
+ ξaT

)
sinh ξ

ξ
. (2.2d)

The ξv is velocity-boost rapidity parameter and the ξa is
the force/acceleration-boost rapidity parameter of the
primed-reference frame. They are defined respectively:

tanh

(
ξv
c

)

=
v

c
, tanh

(
ξa
b

)

=
ma

mPAmax
. (2.3)

The effective boost parameter ξ of the U(1, 1) subgroup
transformations appearing in eqs-(2.2a, 2.2d) is defined in
terms of the velocity and acceleration boosts parameters
ξv, ξa respectively as:

ξ ≡

√
ξ2v
c2
+
ξ2a
b2
. (2.4)

Our definition of the rapidity parameters are different
than those in [74].

Straightforward algebra allows us to verify that these
transformations leave the interval of eq-(2.1) in classical
phase space invariant. They are are fully consistent with
Born’s duality Relativity symmetry principle [49] (Q,P )→
→ (P,−Q). By inspection we can see that under Born du-
ality, the transformations in eqs-(2.2a, 2.2d) are rotated into
each other, up to numerical b factors in order to match
units. When on sets ξa=0 in (2.2a, 2.2d) one recovers
automatically the standard Lorentz transformations for the
X,T and E,P variables separately, leaving invariant the
intervals dT 2− dX2=(dτ )2 and (dE2− dP 2)/b2 sepa-
rately.

When one sets ξv =0 we obtain the transformations rules
of the events in Phase space, from one reference-frame into
another uniformly-accelerated frame of reference, a= const,
whose acceleration-rapidity parameter is in this particular
case:

ξ ≡
ξa
b
, tanh(ξ) =

ma

mPAmax
. (2.5)

The transformations for pure acceleration-boosts in Phase
Space are:

T ′ = T cosh ξ +
P

b
sinh ξ , (2.6a)

E′ = E cosh ξ − bX sinh ξ , (2.6b)

X ′ = X cosh ξ −
E

b
sinh ξ , (2.6c)

P ′ = P cosh ξ + bT sinh ξ . (2.6d)

It is straightforward to verify that the transformations
(2.6a, 2.6c) leave invariant the fully phase space interval
(2.1) but does not leave invariant the proper time interval
(dτ )2= dT 2− dX2. Only the combination:

(dω)2 = (dτ )2
(

1−
m2g2

m2
PA

2
max

)

(2.7a)

is truly left invariant under pure acceleration-boosts in Phase
Space. Once again, can verify as well that these transforma-
tions satisfy Born’s duality symmetry principle:

(T,X)→ (E,P ), (E,P )→ (−T,−X) (2.7b)

and b→ 1
b . The latter Born duality transformation is nothing

but a manifestation of the large/small tension duality princi-
ple reminiscent of the T -duality symmetry in string theory;
i. e. namely, a small/large radius duality, a winding modes/
Kaluza-Klein modes duality symmetry in string compacti-
fications and the Ultraviolet/Infrared entanglement in Non-
commutative Field Theories. Hence, Born’s duality principle
in exchanging coordinates for momenta could be the under-
lying physical reason behind T -duality in string theory.

The composition of two successive pure acceleration-
boosts is another pure acceleration-boost with acceleration
rapidity given by ξ′′= ξ + ξ′. The addition of proper
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forces (accelerations) follows the usual relativistic compo-
sition rule:

tanh ξ′′ = tanh(ξ + ξ′) =

=
tanh ξ + tanh ξ′

1 + tanh ξ tanh ξ′
⇒

ma′′

mPA
=

ma
mPA

+ ma′

mPA

1 + m2aa′

m2
PA

2

(2.8)

and in this fashion the upper limiting proper acceleration is
never surpassed like it happens with the ordinary Special
Relativistic addition of velocities.

The group properties of the full combination of velocity
and acceleration boosts eqs-(2.2a, 2.2d) in Phase Space re-
quires much more algebra [68]. A careful study reveals that
the composition rule of two successive full transformations
is given by ξ′′= ξ+ ξ′ and the transformation laws are pre-
served if, and only if, the ξ; ξ′; ξ′′ . . . parameters obeyed the
suitable relations:

ξa
ξ
=
ξ′a
ξ′
=
ξ′′a
ξ′′
=

ξ′′a
ξ + ξ′

, (2.9a)

ξv
ξ
=
ξ′v
ξ′
=
ξ′′v
ξ′′
=

ξ′′v
ξ + ξ′

. (2.9b)

Finally we arrive at the composition law for the effective,
velocity and acceleration boosts parameters ξ′′; ξ′′v ; ξ′′a re-
spectively:

ξ′′v = ξv + ξ
′
v , (2.10a)

ξ′′a = ξa + ξ
′
a , (2.10b)

ξ′′ = ξ + ξ′. (2.10c)

The above relations among the parameters are required
in order to prove the U(1, 1) group composition law of the
transformations in order to have a truly Maximal-Acceleration
Phase Space Relativity theory resulting from a Phase-Space
change of coordinates in the cotangent bundle of spacetime.

2.1 Planck-scale Areas are invariant under acceleration
boosts

Having displayed explicitly the Group transformations rules
of the coordinates in Phase space we will show why infinite
acceleration-boosts (which is not the same as infinite proper
acceleration) preserve Planck-scale Areas [68] as a result of
the fact that b=(1/L2P ) equals the maximal invariant force,
or string tension, if the units of ~= c=1 are used.

At Planck-scale LP intervals/increments in one reference
frame we have by definition (in units of ~= c=1): ΔX =
=ΔT =LP and ΔE=ΔP = 1

LP
where b≡ 1

L2P
is the max-

imal tension. From eqs-(2.6a, 2.6d) we get for the trans-
formation rules of the finite intervals ΔX , ΔT , ΔE, ΔP ,
from one reference frame into another frame, in the infinite
acceleration-boost limit ξ→∞,

ΔT ′ = LP (cosh ξ + sinh ξ)→∞

ΔE′ =
1

LP
(cosh ξ − sinh ξ)→ 0 (2.11b)

by a simple use of L’Hôpital’s rule or by noticing that both
cosh ξ; sinh ξ functions approach infinity at the same rate

ΔX ′ = LP (cosh ξ − sinh ξ)→ 0 , (2.11c)

ΔP ′ =
1

LP
(cosh ξ + sinh ξ)→∞ , (2.11d)

where the discrete displacements of two events in Phase Spa-
ce are defined: ΔX =X2−X1=LP , ΔE=E2−E1= 1

LP
,

ΔT =T2−T1=LP and ΔP =P2−P1= 1
LP
.

Due to the identity:

(cosh ξ + sinh ξ)(cosh ξ − sinh ξ) =

= cosh2 ξ − sinh2 ξ = 1
(2.12)

one can see from eqs-(2.11a, 2.11d) that the Planck-scale
Areas are truly invariant under infinite acceleration-boosts
ξ=∞:

ΔX ′ΔP ′ = 0×∞ =

=ΔXΔP (cosh2 ξ− sinh2 ξ)=ΔXΔP=
LP
LP
=1 ,

(2.13a)

ΔT ′ΔE′ =∞× 0 =

=ΔTΔE (cosh2 ξ− sinh2 ξ)=ΔTΔE=
LP
LP
=1 ,

(2.13b)

ΔX ′ΔT ′ = 0×∞ =

=ΔXΔT (cosh2 ξ− sinh2 ξ)=ΔXΔT=(LP )2 ,
(2.13c)

ΔP ′ΔE′ =∞× 0 =

= ΔPΔE (cosh2 ξ − sinh2 ξ) = ΔPΔE = 1
L2P
.
(2.13d)

It is important to emphasize that the invariance property
of the minimal Planck-scale Areas (maximal Tension) is not
an exclusive property of infinite acceleration boosts ξ=∞,
but, as a result of the identity cosh2 ξ− sinh2 ξ=1, for
all values of ξ, the minimal Planck-scale Areas are always
invariant under any acceleration-boosts transformations.
Meaning physically, in units of ~= c=1, that the Maximal
Tension (or maximal Force) b= 1

L2P
is a true physical invar-

iant universal quantity. Also we notice that the Phase-space
areas, or cells, in units of ~, are also invariant! The pure-
acceleration boosts transformations are “symplectic”. It can
be shown also that areas greater (smaller) than the Planck-
area remain greater (smaller) than the invariant Planck-area
under acceleration-boosts transformations.

The infinite acceleration-boosts are closely related to the
infinite red-shift effects when light signals barely escape
Black hole Horizons reaching an asymptotic observer with an
infinite red shift factor. The important fact is that the Planck-
scale Areas are truly maintained invariant under acceleration-
boosts. This could reveal very important information about
Black-holes Entropy and Holography.
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3 Modified Newtonian Dynamics from Phase Space
Relativity

3.1 The Machian Principle and Eddington-Dirac Large
Numbers Coincidence

A natural action associated with the invariant interval in
Phase-Space given by eq-(2.1) is:

S = m

∫
dτ

√

1 +
m2

m2
Pa

2
(d2xμ/dτ 2)(d2xμ/dτ 2) . (3.1)

The proper-acceleration is orthogonal to the proper-
velocity and this can be easily verified by differentiating
the time-like proper-velocity squared:

V 2 =
dxμ

dτ

dxμ
dτ

= V μVμ = 1 > 0⇒

⇒
dV μ

dτ
Vμ =

d2xμ

dτ 2
Vμ = 0 ,

(3.2)

which implies that the proper-acceleration is space-like:

−g2(τ ) =
d2xμ

dτ 2
d2xμ
dτ 2

< 0⇒

⇒ S = m

∫
dτ

√

1−
m2g2

m2
Pa

2
= m

∫
dω ,

(3.3)

where the analog of the Lorentz time-dilation factor in Phase-
space is now given by

dω = dτ

√

1−
m2g2(τ )

m2
Pa

2
, (3.4a)

namely,

(dω)2 = Ω2dτ 2 =

[

1−
m2g2(τ )

m2
Pa

2

]

gμνdx
μdxν . (3.4b)

The invariant proper interval is no longer the standard
proper-time τ but is given by the quantity ω(τ ). The deep
connection between the physics of maximal acceleration and
Finsler geometry has been analyzed by [56]. The action is
real-valued if, and only if,m2g2<m2

Pa
2 in the same fashion

that the action in Minkowski spacetime is real-valued if, and
only if, v2 < c2. This is the physical reason why there is an
upper bound in the proper-four force acting on a fundamental
particle given by (mg)bound=mP (c

2/LP )=m
2
P in natural

units of ~= c=1.
The Eddington-Dirac large numbers coincidence (and an

ultraviolet/infrared entanglement) can be easily implemented
if one equates the upper bound on the proper-four force sus-
tained by a fundamental particle, (mg)bound=mP (c

2/LP ),
with the proper-four force associated with the mass of the
(observed) universe MU , and whose minimal acceleration

c2/R is given in terms of an infrared-cutoff R (the Hubble
horizon radius). Equating these proper-four forces gives

mP c
2

LP
=
MUc

2

R
⇒
MU

mP
=
R

LP
∼ 1061 , (3.5)

from this equality of proper-four forces associated with a
maximal/minimal acceleration one infersMU∼1061mPlanck

∼10611019mproton=10
80mproton which is indeed consis-

tent with observations and agrees with the Eddington-Dirac
number 1080:

N = 1080 = (1040)2 ∼

(
Fe
FG

)2
∼

(
R

re

)2
, (3.6)

where Fe= e2/r2 is the electrostatic force between an elec-
tron and a proton; FG=Gmemproton/r

2 is the correspond-
ing gravitational force and re= e2/me ∼ 10−13cm is the
classical electron radius (in units ~= c=1).

One may notice that the above equation (3.5) is also
consistent with the Machian postulate that the rest mass of a
particle is determined via the gravitational potential energy
due to the other masses in the universe. In particular, by
equating:

mic
2=Gmi

∑

j

mj

|ri−rj |
=
GmiMU

R
⇒
c2

G
=
MU

R
. (3.7)

Due to the negative binding energy, the composite mass
m12 of a system of two objects of mass m1, m2 is not
equal to the sum m1+m2>m12. We can now arrive at
the conclusion that the minimal acceleration c2/R is also
the same acceleration induced on a test particle of mass
m by a spherical mass distribution MU inside a radius R.
The acceleration felt by a test particle of mass m sitting at
the edge of the observable Universe (at the Hubble horizon
radius R) is:

GMU

R2
= a . (3.8)

From the last two equations (3.7, 3.8) one gets the same
expression for the minimal acceleration:

a = amin =
c2

R
, (3.9)

which is of the same order of magnitude as the anomalous
acceleration of the Pioneer and Galileo spacecrafts a∼ 10−8

cm/s2. A very plausible physical reason behind the observed
anomalous Pioneer acceleration could be due to the fact that
the universe is in accelerated expansion and motion (a non-
inertial frame of reference) w. r. t the vacuum. Our proposal
shares some similarities with the previous work of [6]. To
our knowledge, the first person who predicted the Pioneer
anomaly in 1978 was P. LaViolette [5], from an entirely
different approach based on the novel theory of sub-quantum
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kinetics to explain the vacuum fluctuations, two years prior
to the Anderson et al observations [7]. Nottale has invoked
the Machian principle of inertia [3] adopting a local and
global inertial coordinate system at the scale of the solar
system in order to explain the origins of this Pioneer-Galileo
anomalous constant acceleration. The Dirac-Eddington large
number coincidences from vacuum fluctuations was studied
by [8].

Let us examine closer the equality between the proper-
four forces

mP c
2

LP
=
MUc

2

R
⇒
mP

LP
=
MU

R
=
c2

G
. (3.10)

The last term in eq-(3.10) is directly obtained after im-
plementing the Machian principle in eq-(3.7). Thus, one
concludes from eq-(3.10) that as the universe evolves in
time one must have the conserved ratio of the quantities
MU/R= c

2/G=mP /LP . This interesting possibility, ad-
vocated by Dirac long ago, for the fundamental constants ~,
c, G, . . . to vary over cosmological time is a plausible idea
with the provision that the above ratios satisfy the relations
in eq-(3.10) at any given moment of cosmological time. If
the fundamental constants do not vary over time then the
ratioMU/R= c

2/G must refer then to the asymptotic values
of the Hubble horizon radius R=Rasymptotic. A related
approach to the idea of an impassible upper asymptotic
length R has been advocated by Scale Relativity [2] and in
Khare [94] where a Cosmology based on non-Archimedean
geometry was proposed by recurring to p-adic numbers. For
example, a Non-Archimedean number addition law of two
masses m1, m2 does not follow the naive addition rule
m1+m2 but instead:

m1 • m2 =
m1 +m2

1 + (m1m2/M
2
U )
,

which is similar to the composition law of velocities in
ordinary Relativity in terms of the speed of light. When
the masses m1, m2 are much smaller than the universe
mass MU one recovers the ordinary addition law. Similar
considerations follow in the Non-Archimedean composition
law of lengths such that the upper length Rasym is never
surpassed. For further references on p-adic numbers and
Physics were refer to [40]. A Mersenne prime,Mp=2

p−1=
= prime, for p= prime, p-adic hierarchy of scales in Particle
physics and Cosmology has been discussed by Pitkannen and
Noyes where many of the the fundamental energy scales,
masses and couplings in Physics has been obtained [41],
[42]. For example, the Mersenne prime M127=2

127− 1 ∼
1038∼ (mPlanck/mproton)

2 . The derivation of the Standard
Model parameters from first principle has obtained by Smith
[43] and Beck [47].

In [68] we proposed a plausible explanation of the vari-
able fine structure constant phenomenon based on the

maximal-acceleration relativity principle in phase-space by
modifying the Robertson-Friedmann-Walker metric by a
similar (acceleration-dependent) conformal factor as in eqs-
(3.4). It led us to the conclusion that the universe could have
emerged from the vacuum as a quantum bubble (or “brane-
world”) of Planck mass and Planck radius that expanded
(w. r. t to the vacuum) at the speed of light with a maximal
acceleration a= c2/Lp. Afterwards the acceleration began to
slow down as matter was being created from the vacuum, via
an Unruh-Rindler-Hawking effect, from this initial maximal
value c2/Lp to the value of c2/R∼ 10−8cm/s2 (of the same
order of magnitude as the Pioneer anomalous acceleration).
Namely, as the universe expanded, matter was being created
from the vacuum via the Unruh-Rindler-Hawking effect
(which must not to be confused with Hoyle’s Steady State
Cosmolgy) such that the observable mass of the universe
enclosed within the observed Hubble horizon radius obeys
(at any time) the relation MU ∼R. Such latter relationship is
very similar (up to a factor of 2) to the Schwarzschild black-
hole horizon-radius relation rs=2M (in units of ~= c=
=G=1). As matter is being created out of the vacuum, the
Hubble horizon radius grows accordingly such thatMU/R=
= c2/G. Note that the Hubble horizon radius is one-half the
Schwarzchild horizon radius (1/2)(2GMU/c

2)= (1/2)RS .
Lemaı̂tre’s idea of the Universe as a “primordial atom”

(like a brane-world) of Planck size has been also analyzed by
[30] from a very different perspective than Born’s Dual Phase
Space Relativity. These authors have argued that one can
have a compatible picture of the expansion of the Universe
with the Eddington-Dirac large number coincidences if one
invokes a variation of the fundamental constants with the
cosmological evolution time as Dirac advocated long ago.

One of the most salient features of this section is that
it agrees with the findings of [4] where a geometric mean
relationship was found from first principles among the cos-
mological constant ρvacuum, the Planck area λ2 and the
AdS4 throat size squared R2 given by (ρv)−1=(λ)2(R2).
Since the throat size of de Sitter space is the same as that
of Anti de Sitter space, by setting the infrared scale R
equal to the Hubble radius horizon observed today RH and
λ equal to the Planck scale one reproduces precisely the
observed value of the vacuum energy density! [25]: ρ ∼
L−2PlanckR

−2
H =L−4P (LPlanck/RH)

2 ∼ 10−122M4
Planck.

Nottale’s proposal [2] for the resolution to the cosmolo-
gical constant problem is based on taking the Hubble scale
R as an upper impassible scale and implementing the Scale
Relativity principle so that in order to compare the vacuum
energies of the Universe at the Planck scale ρ(LP ) with the
vacuum energy measured at the Hubble scale ρ(R) one needs
to include the Scale Relativistic correction factors which
account for such apparent huge discrepancy: ρ(LP )/ρ(R)=
= (R/LP )

2∼ 10122. In contrast, the results of this work are
based on Born’s Dual Phase-Space Relativity principle. In
the next sections we will review the dynamical consequences
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of the Yang’s Noncommutative spacetime algebra comprised
of two scales, the minimal Planck scale Lp (related to a
minimum distance) and an upper infrared scale R related to a
minimum momentum p= ~/R. Another interesting approach
to dark matter, dark energy and the cosmological constant
based on a vacuum condensate has been undertaken by [25].

We finalize this subsection by pointing out that the
maximal/minimal angular velocity correspond to c/LP and
c/R respectively. A maximum angular velocity has important
consequences in future Thomas-precession experiments [61],
[73] whereas a minimal angular velocity has important con-
sequences in galactic rotation measurements. The role of
the Machian principle in constructing quantum cosmologies,
models of dark energy, etc. . . has been studied in [52] and
its relationship to modified Newtonian dynamics and fractals
by [54], [3].

3.2 Modified Newtonian Dynamics from Phase-Space
Relativity

Having displayed the cosmological features behind the
proper-four forces equality (3.10) that relates the maximal/
minimal acceleration in terms of the minimal/large scales and
which is compatible with Eddington-Dirac’s large number
coincidences we shall derive next the modified Newtonian
dynamics of a test particle which emerges from the Born’s
Dual Phase Space Relativity principle.

The modified Schwarzschild metric is defined in terms
of the non-covariant acceleration as:

(dω)2 = Ω2(dτ )2 =

=

[

1+
m2gμν(d

2xμ/dτ 2)(d2xν/dτ 2)

m2
Pa

2

]

gμνdx
μdxν ,

−g2(τ ) ≡ gμν(d
2xμ/dτ 2)(d2xν/dτ 2) < 0 . (3.11a)

A covariant acceleration in curved space-times is
given by:

Dvμ

dτ
=
d2xμ

dτ 2
+ Γμνρ

dxν

dτ

dxρ

dτ
.

A particle in free fall follows a geodesic with zero co-
variant acceleration. Hence, we shall use the non-covariant
acceleration in order to compute the effects of the maximal
acceleration of a test particle in Schwarzschild spacetimes.

The components of the non-covariant four-acceleration
d2xμ/dτ 2 of a test particle of mass m moving in a Schwarz-
schild spacetime background can be obtained in a straight-
forward fashion after using the on-shell condition
gμνP

μP ν =m2 in spherical coordinates (by solving the rela-
tivistic Hamilton-Jacobi equations). The explict components
of the (space-like) proper-four acceleration can be found in
[22], [36] in terms of two integration constants, the energy
E and angular momentum L. The latter components yields

the final expression for the conformal factor Ω2 in the case
of pure radial motion [22]:

Ω2(m,a,M,E, r) =

= 1−

(
m

mP

)2(
1

a2

){

(1− 2M/r)−1
(
M

r2

)2
−

−
[
4M2(E/m)2r−4(1− 2M/r)−3

]
×

×
[
(E/m)2 − (1− 2M/r)

]
}

.

(3.12)

In the Newtonian limit, to a first order approximation,
we can set 1− 2M/r∼ 1 in eq-(3.12) since we shall be con-
centrating in distances larger than the Schwarzschild radius
r > rs=2M , the conformal factor Ω2 in eq-(3.12) simplifies:

Ω2 ∼ 1−

(
m

mP

)2(
1

a2

){(
M

r2

)2
−

−
[
4M2(E/m)2r−4

] [
(E/m)2 − 1

]
}

,

(3.13)

the modified Schwarzschild metric component g′00=Ω
2g00=

=Ω2(1− 2M/r)= 1+2U ′ yields the modified gravitational
potential U ′ in the weak field approximation

g′00 = 1 + 2U
′ ∼

∼ 1−
2M

r
−

(
m

mP

)2(
1

a2

)(
2M

r2

)2
F (E/m)

(3.14)

with

F (E/m) =

(
E

m

)2
−

(
E

m

)4
+
1

4
, (3.15)

where F (E/m)> 0 in the Newtonian limit E<m. The
modified radial acceleration which encodes the modified
Newtonian dynamics and which violates the equivalence
principle (since the acceleration now depends on the mass of
the test particle m) is

a′ = −
∂U ′

∂r
= −

M

r2

[

1 + 8F

(
E

m

)(
m

mP

)2
×

×

(
M

mP

)
1

m3
P r

3

]

+O (r−6) ,

(3.16)

this result is valid for distances r � rs=2M . We have set
the maximal acceleration a= c2

LP
=mP in units of ~= c=

=G=1. This explains the presence of the mP factors in
the denominators. The first term in eq-(3.16) is the standard
Newtonian gravitational acceleration −M/r2 and the second
terms are the leading corrections of order 1/r5. The higher
order corrections O (r−6) appear when we do not set
1− 2M/r∼ 1 in the expression for the conformal factor Ω2

and when we include the extra term in the product of Ω2

with g00=(1− 2M/r).
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The conformal factor Ω2 when L 6=0 (rotational degrees
of freedom are switched on) such that the test particle moves
in the radial and transverse (angular) directions has been
given in [22]:

Ω2 = 1−
m2

m2
Pa

2

{
1

1− 2M/r
×

×

[

−
3ML2

m2r4
+

L2

m2r3
−
M

r2

]2}

+

+
m2

m2
Pa

2

[

−
4L2

m2r4
+

4E2M2

m2r4(1− 2M/r)3

]

×

×

[
E2

m2
− (1− 2M/r)

(

1 +
L2

m2r2

)]

.

(3.17)

Following the same weak field approximation procedure
g′00=Ω

2(E,L,m)g00=1+2U ′ yields the modified gravi-
tational potential U ′ and modified Newtonian dynamics
a′=−∂rU ′ that leads once again to a violation of the equiv-
alence principle due to the fact that the acceleration depends
on the values of the masses of the test particle.

4 Modified Newtonian Dynamics resulting from Yang’s
Noncommutative Spacetime Algebra

We end this work with some relevant remarks about the
impact of Yang’s Noncommutative spacetime algebra on
modified Newtonian dynamics. Such algebra involves two
length scales, the minimal Planck scale LP =λ and an upper
infrared cutoff scale R.

Recently in [134] an isomorphism between Yang’s Non-
commutative space-time algebra (involving two length sca-
les) [136] and the holographic area coordinates algebra of C-
spaces (Clifford spaces) was constructed via an AdS5 space-
time (embedded in 6D) which is instrumental in explaining
the origins of an extra (infrared) scale R in conjunction to
the (ultraviolet) Planck scale λ characteristic of C-spaces.
Yang’s Noncommutative space-time algebra allowed Tanaka
[137] to explain the origins behind the discrete nature of the
spectrum for the spatial coordinates and spatial momenta
which yields a minimum length-scale λ (ultraviolet cutoff)
and a minimum momentum p= ~/R (maximal length R,
infrared cutoff).

Related to the issue of area-quantization, the norm-
squared A2 of the holographic Area operator XABXAB

in Clifford-spaces has a correspondence with the quadratic
Casimir operator λ4ΣABΣAB of the conformal algebra
SO(4, 2) (SO(5, 1) in the Euclideanized AdS5 case). This
holographic area-Casimir relationship does not differ much
from the area-spin relation in Loop Quantum Gravity A2 ∼
λ4
∑
ji(ji+1) in terms of the SU(2) Casimir J2 with

eigenvalues j(j+1), where the sum is taken over the spin

network sites [111] and the minimal Planck scale emerges
from a regularization procedure.

The Yang’s algebra can be written in terms of the 6D
angular momentum operators and a 6D pseudo-Euclidean
metric ηMN :

M̂μν = ~Σμν , M̂56 = ~Σ56 , (4.1)

λΣμ5 = x̂μ,
~
R
Σμ6 = p̂μ , (4.2)

N =
λ

R
Σ56 , (4.3)

as follows:

[p̂μ,N ] = −iη66
~
R2

x̂μ , (4.4)

[x̂μ,N ] = iη55
L2P
~
p̂μ , (4.5)

[x̂μ, x̂ν ] = −iη55L2P Σ
μν , (4.6)

[p̂μ, p̂ν ] = −iη66
~2

R2
Σμν , (4.7)

[x̂μ, p̂μ] = i~ημν N , (4.8)

[x̂μ,Σνρ] = ημρxν − ημνxρ , (4.9)

[p̂μ,Σνρ] = ημρpν − ημνpρ , (4.10)

The dynamical consequences of the Yang’s Noncommu-
tative spacetime algebra can be derived from the quantum/
classical correspondence:

1

i~
[Â, B̂]↔ {A,B }PB , (4.11)

i. e. commutators correspond to Poisson brackets. More pre-
cisely, to Moyal brackets in Phase Space. In the classical limit
~→ 0 Moyal brackets reduce to Poisson brackets. Since the
coordinates and momenta are no longer commuting variables
the classical Newtonian dynamics is going to be modified
since the symplectic two-form ωμν in Phase Space will have
additional non-vanishing elements stemming from these non-
commuting coordinates and momenta.

In particular, the modified brackets read now:

{{A(x, p), B(x, p)}} = ∂μAω
μν∂νB =

= {A(x, p), B(x, p)}PB{x
μ, pν}+

+
∂A

∂xμ
∂B

∂xν
{xμ, xν}+

∂A

∂pμ
∂B

∂pν
{pμ, pν} .

(4.12)

If the coordinates and momenta were commuting vari-
ables the modified bracket will reduce to the first term only:

{{A(x, p), B(x, p)}} =

= {A(x, p), B(x, p)}PB{x
μ, pν} =

=

[
∂A

∂xμ
∂B

∂pν
−
∂A

∂pμ
∂B

∂xν

]

ημνN .

(4.13)
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The ordinary Heisenberg (canonical) algebra is recovered
when N → 1 in eq-(4.13).

In the nonrelativistic limit, the modified dynamical equa-
tions are:

dxi

dt
= {{xi, H}} =

∂H

∂pj
{xi, pj}+

∂H

∂xj
{xi, xj} , (4.14)

dpi

dt
= {{pi, H}} = −

∂H

∂xj
{xi, pj}+

∂H

∂pj
{pi, pj}. (4.15)

The non-relativistic Hamiltonian for a central potential
V (r) is:

H =
pip

i

2m
+ V (r) , r =

[∑

i

xix
i
]1/2

. (4.16)

Defining the magnitude of the central force by F =−∂V
∂r

and using ∂r
∂xi
= xi

r one has the modified dynamical equations
of motion (4.14, 4.15):

dxi

dt
= {{xi, H}} =

pj
m
δij − F

xj
r
L2PΣ

ij , (4.16a)

dpi

dt
= {{pi, H}} = F

xj
r
δij +

pj
m

Σij

R2
. (4.16b)

The angular momentum two-vector Σij can be written as
the dual of a vector ~J as follows Σij = εijkJk so that:

dxi

dt
= {{xi, H}} =

pi

m
− L2PF

xj
r
εijkJk , (4.17a)

dpi

dt
= {{pi, H}} = F

xi

r
+
pj
m

εijkJk
R2

. (4.17b)

For planar motion (central forces) the cross-product of ~J
with ~p and ~x is not zero since ~J points in the perpendicular
direction to the plane. Thus, one will have nontrivial correc-
tions to the ordinary Newtonian equations of motion induced
from Yang’s Noncommutative spacetime algebra in the non-
relativistic limit. When ~J =0, pure radial motion, there are
no corrections. This is not the case when we studied the
modified Newtonian dynamics in the previous section of the
modified Schwarzschild field due to the maximal-acceleration
relativistic effects. Therefore, the two routes to obtain modifi-
cations of Newtonian dynamics are very different.

Concluding, eqs-(4.16, 4.17) determine the modified
Newtonian dynamics of a test particle under the influence
of a central potential explicitly in terms of the two LP , R
minimal/maximal scales. When LP → 0 and R→∞ one
recovers the ordinary Newtonian dynamics vi=(pi/m) and
F (xi/r)=m(dvi/dt). The unit vector in the radial direction
has for components r̂=(~r/r)= (x1/r, x2/r, x3/r).

It is warranted to study the full relativistic dynamics
as well, in particular the modified relativistic dynamics of
the de-Sitter rigid top [135] due to the effects of Yang’s
Noncommutative spacetime algebra with a lower and an

upper scale. The de Sitter rigid Top can be generalized
further to Clifford spaces since a Clifford-polyparticle has
more degrees of freedom than a relativistic top in ordinary
spacetimes [46] and, naturally, to study the modified Nambu-
Poisson dynamics of p-branes [49] as well. A different phys-
ical approach to the theory of large distance physics based on
certain two-dim nonlinear sigma models has been advanced
by Friedan [51].

An Extended Relativity theory with both an upper and
lower scale can be formulated in the Clifford extension of
Phase Spaces along similar lines as [1], [68] by adding the
Clifford-valued polymomentum degrees of freedom to the
Clifford-valued holographic coordinates. The Planck scale
LP and the minimum momentum (~/R) are introduced to
match the dimensions in the Clifford-Phase Space interval in
D-dimensions as follows:

dΣ2 = <dX†dX> +
1

F2
<dP †dP> =

=

(
dσ

LD−1P

)2
+ dxμdx

μ +
dxμνdx

μν

L2P
+

+
dxμνρdx

μνρ

L4P
+ . . .+

1

F2

[(
dσ̃

(~/R)D−1

)2
+

+ dpμdp
μ +

dpμνdp
μν

(~/R)2
+
dpμνρdp

μνρ

(~/R)4
+ . . .

]

.

(4.18)

All the terms in eq-(4.18) have dimensions of length2

and the maximal force is:

F =
mP c

2

LP
=
MUc

2

R
=
c4

G
. (4.19)

The relevance of studying this extended Relativity in a
Clifford-extended Phase Space is that it is the proper arena
to construct a Quantum Cosmology compatible with Non-
Archimedean Geometry, Yang’s Noncommutative spacetime
algebra [136] and Scale Relativity [2] with an upper and
lower limiting scales, simultaneously. This clearly deserves
further investigation.
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