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We further deconstruct Heraclitean Quantum Systems giving a model for a universe
using pregeometric notions in which the end-game problem is overcome by means
of self-referential noise. The model displays self-organisation with the emergence of
3-space and time. The time phenomenon is richer than the present geometric modelling.

1 Heraclitean Quantum Systems

From the beginning of theoretical physics in the 6th and 5th
centuries BC there has been competition between two classes
of modelling of reality: one class has reality explained in
terms of things, and the other has reality explained purely in
terms of relationships (information).∗ While in conventional
physics a mix of these which strongly favours the “things”
approach is currently and very efficaciously used, here we
address the problem of the “ultimate” modelling of reality.
This we term the end-game problem: at higher levels in
the phenomenology of reality one chooses economical and
effective models — which usually have to be accompanied by
meta-rules for interpretation, but at the lower levels we are
confronted by the problem of the source of “things” and their
rules or “laws”. At one extreme we could have an infinite
regress of ever different “things”, another is the notion of
a Platonic world where mathematical things and their rules
reside [1]. In both instances we still have the fundamental
problem of why the universe “ticks” — that is, why it is more
than a mathematical construct; why is it experienced?

This “end-game” problem is often thought of as the unifi-
cation of our most successful and deepest, but incompatible,
phenomenologies: General Relativity and Quantum Theory.
We believe that the failure to find a common underpinning
of these models is that it is apparently often thought it would
be some amalgamation of the two, and not something vastly
different. Another difficulty is that the lesson from these
models is often confused; for instance from the success of the
geometrical modelling of space and time it is often argued
that the universe “is a 4-dimensional manifold”. However
the geometrical modelling of time is actually deficient: it

∗This is the original 1997 version of the paper which introduced
the notion that reality has an information-theoretic intrinsic randomness.
Since this pioneering paper the model of reality known as Process
Physics has advanced enormously, and has been confirmed in
numerous experiments. The book Cahill, R. T. Process Physics: From
Information Theory to Quantum Space and Matter, Nova Science
Pub. NY 2005, reviews subsequent developments. Numerous papers
are available at http://www.mountainman.com.au/process_physics/ and
http://www.scieng.flinders.edu.au/cpes/people/cahill_r/processphysics.html

lacks much of the experienced nature of time — for it fails
to model both the directionality of time and the phenomenon
of the (local) “present moment”. Indeed the geometrical
model might better be thought of as a “historical model” of
time, because in histories the notion of direction and present
moment are absent — they must be provided by external
meta-rules. General relativity then is about possible histories
of the universe, and in this it is both useful and successful.
Similarly quantum field theories have fields built upon a
possible (historical) spacetime, and subjected to quantisation.
But such quantum theories have difficulties with classicali-
sation and the individuality of events — as in the “measure-
ment problem”. At best the theory invokes ensemble mea-
surement postulates as external meta-rules. So our present-
day quantum theories are also historical models.

The problem of unifying general relativity and quantum
theories then comes down to going beyond historical mod-
elling, which in simple terms means finding a better model
of time. The historical or being model of reality has been
with us since Parmenides and Zeno, and is known as the
Eleatic model. The becoming or processing model of reality
dates back further to Heraclitus of Ephesus (540– 480 BC)
who argued that common sense is mistaken in thinking
that the world consists of stable things; rather the world
is in a state of flux. The appearances of “things” depend
upon this flux for their continuity and identity. What needs
to be explained, Heraclitus argued, is not change, but the
appearance of stability.

Although “process” modelling can be traced through to
the present time it has always been a speculative notion
because it has never been implemented in a mathematical
form and subjected to comparison with reality. Various pro-
posals of a pregeometric nature have been considered [2, 3,
4]. Here we propose a mathematical pregeometric process
model of reality — which in [5] was called a Heraclitean
Quantum System (HQS). There we arrived at a HQS by deco-
nstruction of the functional integral formulation of quantum
field theories retaining only those structures which we felt
would not be emergent. In this we still started with “things”,
namely a Grassmann algebra, and ended with the need to de-
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compose the mathematical structures into possible histories
— each corresponding to a different possible decoherent
classical sequencing. However at that level of the HQS
we cannot expect anything other than the usual historical
modelling of time along with its deficiencies. The problem
there was that the deconstruction began with ensembled
quantum field theory, and we can never recover individuality
and actuality from ensembles — that has been the problem
with quantum theory since its inception.

Here we carry the deconstruction one step further by
exploiting the fact that functional integrals can be thought
of as arising as ensemble averages of Wiener processes.
These are normally associated with Brownian-type motions
in which random processes are used in modelling many-body
dynamical systems. We argue that random processes are a
fundamental and necessary aspect of reality — that they arise
in the resolution presented here to the end-game problem
of modelling reality. In sect. 2 we argue that this “noise”
arises as a necessary feature of the self-referential nature of
the universe. In sect. 3 we discuss the nature of the self-
organised space and time phenomena that arise, and argue
that the time modelling is richer and more “realistic” than
the geometrical model. In sect. 4 we show how the ensemble
averaging of possible universe behaviour is expressible as a
functional integral.

2 Self-Referential Noise

Our proposed solution to the end-game problem is to avoid
the notion of things and their rules; rather to use a boot-
strapped self-referential system. Put simply, this models the
universe as a self-organising and self-referential information
system — “information” denoting relationships as distinct
from “things”. In such a system there is no bottom level and
we must consider the system as having an iterative character
and attempt to pick up the structure by some mathematical
modelling.

Chaitin [6] developed some insights into the nature of
complex self-referential information systems: combining
Shannon’s information theory and Turing’s computability
theory resulted in the development of Algorithmic Informa-
tion Theory (AIT). This shows that number systems contain
randomness and unpredictability, and extends Gödel’s dis-
covery, which resulted from self-referenc-ing problems, of
the incompleteness of such systems (see [7] for various
discussions of the physics of information; here we are con-
sidering information as physics).

Hence if we are to model the universe as a closed system,
and thus self-referential, then the mathematical model must
necessarily contain randomness. Here we consider one very
simple such model and proceed to show that it produces a
dynamical 3-space and a theory for time that is richer than
the historical/geometrical model.

We model the self-referencing by means of an iter-

ative map

Bij → Bij − (B +B−1)ij η + wij ,

i, j = 1, 2, . . . ,M →∞.
(1)

We think of Bij as relational information shared by two
monads i and j. The monads concept was introduced by
Leibniz, who espoused the relational mode of thinking in
response to and in contrast to Newton’s absolute space and
time. Leibniz’s ideas were very much in the process mould
of thinking: in this the monad’s view of available information
and the commonality of this information is intended to lead to
the emergence of space. The monad i acquires its meaning
entirely by means of the information Bi1, Bi2, . . ., where
Bij =−Bji to avoid self-information, and real number
valued. The map in (1) has the form of a Wiener process,
and the wij =−wji are independent random variables for
each ij and for each iteration, and with variance 2η for later
convenience. The wij model the self-referential noise. The
beginning of a universe is modelled by starting the iterative
map with Bij ≈ 0, representing the absence of information
or order. Clearly due to the B−1 term iterations will rapidly
move the Bij away from such starting conditions.

The non-noise part of the map involves B and B−1.
Without the non-linear inverse term the map would produce
independent and trivial random walks for each Bij — the
inverse introduces a linking of all information. We have
chosen B−1 because of its indirect connection with quantum
field theory (see sec. 4) and because of its self-organising
property. It is the conjunction of the noise and non-noise
terms which leads to the emergence of self-organisation:
without the noise the map converges (and this determines the
signs in formula 1), in a deterministic manner to a degenerate
condensate type structure, discussed in [5], corresponding to
a pairing of linear combinations of monads. Hence the map
models a non-local and noisy information system from which
we extract spatial and time-like behaviour, but we expect
residual non-local and random processes characteristic of
quantum phenomena including EPR/Aspect type effects.
While the map already models some time-like behaviour, it is
in the nature of a bootstrap system that we start with process.
In this system the noise corresponds to the Heraclitean flux
which he also called the “cosmic fire”, and from which
the emergence of stable structures should be understood. To
Heraclitus the flame represented one of the earliest examples
of the interplay of order and disorder. The contingency and
self-ordering of the process clearly suggested a model for
reality.

3 Emergent Space and Time

Here we show that the HQS iterative map naturally results
in dynamical 3-dimensional spatial structures. Under the
mapping the noise term will produce rare large value Bij .
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Because the order term is generally much smaller, for small
η, than the disorder term these values will persist under
the mapping through more iterations than smaller valued
Bij . Hence the larger Bij correspond to some temporary
background structure which we now identify.

Consider this relational information from the point of
view of one monad, call it monad i. Monad i is connected via
these large Bij to a number of other monads, and the whole
set forms a tree-graph relationship. This is because the large
links are very improbable, and a tree-graph relationship is
much more probable than a similar graph with additional
links. The simplest distance measure for any two nodes
within a graph is the smallest number of links connecting
them. Let D1, D2, . . . , DL be the number of nodes of dis-
tance 1, 2, . . . , L from node i (define D0=1 for conve-
nience), where L is the largest distance from i in a particular
tree-graph, and let N be the total number of nodes in the
tree. Then

∑L
k=0Dk = N . See fig.1 for an example.

i D0 ≡ 1

D1 = 2

D2 = 4

D3 = 1

Fig. 1: An N = 8, L = 3 tree, with indicated distance distributions
from monad i.

Now consider the number of different N -node trees,
with the same distance distribution {Dk}, to which i can
belong. By counting the different linkage patterns, together
with permutations of the monads we obtain

N (D,N) =
(M − 1)!DD2

1 DD3
2 . . . DDL

L−1

(M −N − 2)!D1!D2! . . . DL!
, (2)

here DDk+1

k is the number of different possible linkage pat-
terns between levels k and k+1, and (M−1)!/(M−N−2)! is
the number of different possible choices for the monads, with
i fixed. The denominator accounts for those permutations
which have already been accounted for by theDDk+1

k factors.
Nagels [8] analysed N (D,N), and the results imply that the
most likely tree-graph structure to which a monad can belong
has the distance distribution

Dk ≈
L2 lnL

2π2
sin2

(
πk

L

)

k = 1, 2, . . . , L. (3)

for a given arbitrary L value. The remarkable property of this
most probable distribution is that the sin2 indicates that the
tree-graph is embeddable in a 3-dimensional hypersphere,
S3. Most importantly, monad i “sees” its surroundings as
being 3-dimensional, since Dk∼ k2 for small πk/L. We call
these 3-spaces gebits (geometrical bits). We note that the
lnL factor indicates that larger gebits have a larger number
density of points.

Now the monads for which the Bij are large thus form
disconnected gebits. These gebits however are in turn linked
by smaller and more transient Bkl, and so on, until at some
low level the remaining Bmn are noise only; that is they
will not survive an iteration. Under iterations of the map this
spatial network undergoes growth and decay at all levels, but
with the higher levels (larger {Bij} gebits) showing most
persistence. By a similarity transformation we can arrange
the gebits into block diagonal matrices b1, b2, . . ., within B,
and embedded amongst the smaller and more common noise
entries. Now each gebit matrix has det (b) = 0, since a tree-
graph connectivity matrix is degenerate. Hence under the
mapping the B−1 order term has an interesting dynamical
effect upon the gebits since, in the absence of the noise, B−1

would be singular. The outcome from the iterations is that
the gebits are seen to compete and to undergo mutations,
for example by adding extra monads to the gebit. Numerical
studies reveal gebits competing and “consuming” noise, in a
Darwinian process.

Hence in combination the order and disorder terms syn-
thesise an evolving dynamical 3-space with hierarchical stru-
ctures, possibly even being fractal. This emergent 3-space
is entirely relational; it does not arise within any a priori
geometrical background structure. By construction it is the
most robust structure, — however other softer emergent
modes of behaviour will be seen as attached to or embedded
in this flickering 3-space. The possible fractal character could
be exploited by taking a higher level view: identifying each
gebit → I as a higher level monad, with appropriate inform-
ational connections BIJ , we could obtain a higher level itera-
tive map of the form (1), with new order/disorder terms. This
would serve to emphasise the notion that in self-referential
systems there are no “things”, but rather a complex network
of iterative relations.

In the model the iterations of the map have the appearance
of a cosmic time. However the analysis to reveal the internal
experiential time phenomenon is non-trivial, and one would
certainly hope to recover the local nature of experiential time
as confirmed by special and general relativity experiments.
However it is important to notice that the modelling of
the time phenomenon here is much richer than that of the
historical/geometric model. First the map is clearly uni-
directional (there is an “arrow of time”) as there is no way
to even define an inverse mapping because of the role of
the noise term, and this is very unlike the conventional
differential equations of traditional physics. In the analysis
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of the gebits we noted that they show strong persistence, and
in that sense the mapping shows a natural partial-memory
phenomenon, but the far “future” detailed structure of even
this spatial network is completely unknowable without per-
forming the iterations. Furthermore the sequencing of the
spatial and other structures is individualistic in that a re-
run of the model will always produce a different outcome.
Most important of all is that we also obtain a modelling of
the “present moment” effect, for the outcome of the next
iteration is contingent on the noise. So the system shows
overall a sense of a recordable past, an unknowable future
and a contingent present moment.

The HQS process model is expected to be capable of a
better modelling of our experienced reality, and the key to
this is the noisy processing the model requires. As well we
need the “internal view”, rather than the “external view” of
conventional modelling in physics. Nevertheless we would
expect that the internally recordable history could be indexed
by the usual real-number/geometrical time coordinate.

This new self-referential process modelling requires a
new mode of analysis since one cannot use externally im-
posed meta-rules or interpretations, rather, the internal ex-
periential phenomena and the characterisation of the simpler
ones by emergent “laws” of physics must be carefully det-
ermined. There has indeed been an ongoing study of how
(unspecified) closed self-referential noisy information sys-
tems acquire self-knowledge and how the emergent hierarch-
ical structures can “recognise” the same “individuals” [9].
These Combinatoric Hierarchy (CH) studies use the fact that
only recursive constructions are possible in Heraclitean/Leib-
nizian systems. We believe that our HQS process model may
provide an explicit representation for the CH studies.

4 Possible-Histories Ensemble

While the actual history of the noisy map can only be found
in a particular “run”, we can nevertheless show that averages
over an ensemble of possible histories can be determined, and
these have the form of functional integrals. The notion of an
ensemble average for any function f of the B, at iteration
c = 1, 2, 3, . . ., is expressed by

< f [B]>c=

∫
DBf [B] Φc[B] , (4)

where Φc[B] is the ensemble distribution. By the usual con-
struction for Wiener processes we obtain the Fokker-Planck
equation

Φc+1[B] = Φc[B]−

−
∑

ij

η

{
∂

∂Bij

[
(B+B−1)ijΦc[B]

]
−

∂2

∂B2ij
Φc[B]

}

.
(5)

For simplicity, in the quasi-stationary regime, we find

Φ[B] ∼ exp (−S[B]) , (6)

where the action is

S[B] =
∑

i>j

B2ij − TrLn(B) . (7)

Then the ensemble average is

1

Z

∫
DBf [B] exp (−S[B]) , (8)

where Z ensures the correct normalisation for the averages.
The connection between (1) and (7) is given by

(B−1)ij =
∂

∂Bji
TrLn(B) =

∂

∂Bji
ln
∏

α

λα[B] . (9)

which probes the sensitivity of the invariant ensemble in-
formation to changes in Bji, where the information is in
the eigenvalues λα[B] of B. A further transformation is
possible [5]:

< f [B]>=
1

Z

∫
DmDmDBf [B]×

× exp

[

−
∑

i>j

B2ij +
∑

i,j

Bij(mimj −mjmi)

]

=

=
1

Z
f

[
∂

∂J

]∫
DmDm exp

[

−
∑

i>j

mimjmjmi+

+
∑

ij Jij(mimj −mjmi

]

.

(10)

This expresses the ensemble average in terms of an anti-
commuting Grassmannian algebraic computation [5]. This
suggests how the noisy information map may lead to fermi-
onic modes. While functional integrals of the above forms
are common in quantum field theory, it is significant that in
forming the ensemble average we have lost the contingency
or present-moment effect. This always happens — ensemble
averages do not tell us about individuals — and then the
meta-rules and “interpretations” must be supplied in order to
generate some notion of what an individual might have been
doing.

The Wiener iterative map can be thought of as a resolut-
ion of the functional integrals into different possible histories.
However this does not imply the notion that in some sense all
these histories must be realised, rather only one is required.
Indeed the basic idea of the process modelling is that of
individuality. Not unexpectedly we note that the modelling
in (1) must be done from within that one closed system.

In conventional quantum theory it has been discovered
that the individuality of the measurement process — the
“click” of the detector — can be modelled by adding a noise
term to the Schrödinger equation [10]. Then by performing an
ensemble average over many individual runs of this modified
Schrödinger equation one can derive the ensemble mea-
surement postulate — namely <A>=(ψ,Aψ) for the “ex-
pectation value of the operator A”. This individualising of

R. T. Cahill and C. M. Klinger. Bootstrap Universe from Self-Referential Noise 111



Volume 2 PROGRESS IN PHYSICS July, 2005

the ensemble average has been shown to also relate to the
decoherence functional formalism [11]. There are a number
of other proposals considering noise in spacetime model-
ling [12, 13].

5 Conclusion

We have addressed here the unique end-game problem which
arises when we attempt to model and comprehend the uni-
verse as a closed system. The outcome is the suggestion
that the peculiarities of this end-game problem are directly
relevant to our everyday experience of time and space; part-
icularly the phenomena of the contingent present moment
and the three-dimensionality of space. This analysis is based
upon the basic insight that a closed self-referential system is
necessarily noisy. This follows from Algorithmic Information
Theory. To explore the implications we have considered a
simple pregeometric non-linear noisy iterative map. In this
way we construct a process bootstrap system with minimal
structure. The analysis shows that the first self-organised
structure to arise is a dynamical 3-space formed from com-
peting pieces of 3-geometry — the gebits. The analysis of
experiential time is more difficult, but it will clearly be a
contingent and process phenomenon which is more complex
than the current geometric/historic modelling of time. To
extract emergent properties of self-referential systems re-
quires that an internal view be considered, and this itself
must be a recursive process. We suggest that the non-local
self-referential noise has been a major missing component
of our modelling of reality. Two particular applications are
an understanding of why quantum detectors “click” and of
the physics of consciousness [1], since both clearly have
an essential involvement with the modelling of the present-
moment effect, and cannot be understood using the geo-
metric/historic modelling of time.

We thank Susan Gunner and Khristos Nizamis for useful
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Flinders University.
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