
Volume 3 PROGRESS IN PHYSICS October, 2005

Relations Between Physical Constants

Roberto Oros di Bartini∗

This article discusses the main analytic relationship between physical constants, and
applications thereof to cosmology. The mathematical bases herein are group theoretical
methods and topological methods. From this it is argued that the Universe was born
from an Inversion Explosion of the primordial particle (pre-particle) whose outer radius
was that of the classical electron, and inner radius was that of the gravitational radius
of the electron. All the mass was concentrated in the space between the radii, and was
inverted outside the particle through the pre-particle’s surface (the inversion classical
radius). This inversion process continues today, determining evolutionary changes in
the fundamental physical constants.

Roberto di Bartini, 1920’s

(in Italian Air Force uniform)

As is well known, group theor-
etical methods, and also topolog-
ical methods, can be effectively
employed in order to interpret
physical problems. We know of
studies setting up the discrete in-
terior of space-time, and also rel-
ationships between atomic quant-
ities and cosmological quantities.

However, no analytic relati-
onship between fundamental phy-
sical quantities has been found.
They are determined only by ex-
perimental means, because there
is no theory that could give a the-
oretical determination of them.

In this brief article we give the results of our own study,
which, employing group theoretical methods and topological
methods, gives an analytic relationship between physical
constants.

Let us consider a predicative unbounded and hence
unique specimen A. Establishing an identity between this
specimen A and itself

A ≡ A , A
1

A
= 1 ,

∗Brief contents of this paper was presented by Prof. Bruno Pontecorvo
to the Proceedings of the Academy of Sciences of the USSR (Doklady Acad.
Sci. USSR), where it was published in 1965 [19]. Roberto di Bartini (1897–
1974), the author, was an Italian mathematician and aircraft engineer who,
from 1923, worked in the USSR where he headed an aircraft project bureau.
Because di Bartini attached great importance to this article, he signed it
with his full name, including his titular prefix and baronial name Oros —
from Orosti, the patrimony near Fiume (now Rijeka, located in Croatian
territory near the border), although he regularly signed papers as Roberto
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Kyril Stanyukovich, who published this article in his bulletin, in Russian.
Pontecorvo and Stanyukovich regarded di Bartini’s paper highly. Decades
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(Translated by D. Rabounski and S. J. Crothers.) — Editor’s remark.

is the mapping which transfers images of A in accordance
with the pre-image of A.

The specimen A, by definition, can be associated only
with itself. For this reason it’s inner mapping can, accord-
ing to Stoilow’s theorem, be represented as the superposition
of a topological mapping and subsequently by an analytic
mapping.

The population of images of A is a point-containing
system, whose elements are equivalent points; an n-dimen-
sional affine spread, containing (n+1)-elements of the sys-
tem, transforms into itself in linear manner

x′i =

n+1∑

k=1

aikxk .

With all aik real numbers, the unitary transformation

∑

k

a∗ikalk =
∑

k

a∗kiakl , i, k = 1, 2, 3 . . . , n+ 1 ,

is orthogonal, because det aik=±1. Hence, this transform-
ation is rotational or, in other words, an inversion twist.

A projective space, containing a population of all images
of the object A, can be metrizable. The metric spread Rn

(coinciding completely with the projective spread) is closed,
according to Hamel’s theorem.

A coincidence group of points, drawing elements of the
set of images of the object A, is a finite symmetric system,
which can be considered as a topological spread mapped
into the spherical space Rn. The surface of an (n+1)-
dimensional sphere, being equivalent to the volume of an
n-dimensional torus, is completely and everywhere densely
filled by the n-dimensional excellent, closed and finite point-
containing system of images of the object A.

The dimension of the spread Rn, which consists only of
the set of elements of the system, can be any integer n inside
the interval (1−N ) to (N − 1) where N is the number of
entities in the ensemble.

We are going to consider sequences of stochastic transit-
ions between different dimension spreads as stochastic vector
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quantities, i. e. as fields. Then, given a distribution function
for frequencies of the stochastic transitions dependent on n,
we can find the most probable number of the dimension of
the ensemble in the following way.

Let the differential function of distribution of frequencies
ν in the spectra of the transitions be given by

ϕ(ν) = νn exp[−πν2] .

If n� 1, the mathematical expectation for the frequency
of a transition from a state n is equal to

m(ν) =

∫ ∞

0

νn exp[−πν2]dν

2

∫ ∞

0

exp[−πν2]dν

=
Γ
(n+ 1

2

)

2π
n+1
2

.

The statistical weight of the time duration for a given
state is a quantity inversely proportional to the probability of
this state to be changed. For this reason the most probable
dimension of the ensemble is that number n under which the
function m(ν) has its minimum.

The inverse function of m(ν), is

Φn =
1

m(ν)
= S(n+1) = TVn ,

where the function Φn is isomorphic to the function of the
surface’s value S(n+1) of a unit radius hypersphere located
in an (n+1)-dimensional space (this value is equal to the
volume of an n-dimensional hypertorus). This isomorphism
is adequate for the ergodic concept, according to which the
spatial and time spreads are equivalent aspects of a manifold.
So, this isomorphism shows that realization of the object A
as a configuration (a form of its real existence) proceeds from
the objective probability of the existence of this form.

The positive branch of the function Φn is unimodal;
for negative values of (n+1) this function becomes sign-
alternating (see the figure).

The formation takes its maximum length when n=±6,
hence the most probable and most unprobable extremal dis-
tributions of primary images of the object A are presented in
the 6-dimensional closed configuration: the existence of the
total specimen A we are considering is 6-dimensional.

Closure of this configuration is expressed by the finitude
of the volume of the states, and also the symmetry of distrib-
ution inside the volume.

Any even-dimensional space can be considered as the
product of two odd-dimensional spreads, which, having the
same odd-dimension and the opposite directions, are emb-
edded within each other. Any spherical formation of n di-
mensions is directed in spaces of (n+1) and higher dim-
ensions. Any odd-dimensional projective space, if immersed
in its own dimensions, becomes directed, while any even-
dimensional projective space is one-sided. Thus the form

of the real existence of the object A we are considering is a
(3+3)-dimensional complex formation, which is the product
of the 3-dimensional spatial-like and 3-dimensional time-like
spreads (each of them has its own direction in the (3+3)-
dimensional complex formation).

One of the main concepts in dimension theory and combi-
natorial topology is nerve. Using this term, we come to the
statement that any compact metric space of n dimensions
can be mapped homeomorphicly into a subset located in a
Euclidean space of (2n+1) dimensions. And conversely, any
compact metric space of (2n+1) dimensions can be mapped
homeomorphicly way into a subset of n dimensions. There
is a unique correspondence between the mapping 7 → 3
and the mapping 3 → 7, which consists of the geometrical
realization of the abstract complex A.

The geometry of the aforementioned manifolds is determ-
ined by their own metrics, which, being set up inside them,
determines the quadratic interval

Δs2 = Φ2n

n∑

ik

gikΔx
iΔxk, i, k = 1, 2, . . . , n ,

which depends not only on the function gik of coordinates i
and k, but also on the function of the number of independent
parameters Φn.

The total length of a manifold is finite and constant,
hence the sum of the lengths of all formations, realized in the
manifold, is a quantity invariant with respect to orthogonal
transformations. Invariance of the total length of the form-
ation is expressed by the quadratic form

Nir
2
i = Nkr

2
k ,

where N is the number of entities, r is the radial equivalent
of the formation. From here we see, the ratio of the radii is
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Rρ

r2
= 1 ,

whereR is the largest radius; ρ is the smallest radius, realised
in the area of the transformation; r is the radius of spherical
inversion of the formation (this is the calibre of the area). The
transformation areas are included in each other, the inversion
twist inside them is cascaded

√
Rr

2π
= Re ,

√
Rρ = r,

√
rρ

2π
= ρe .

Negative-dimensional configurations are inversion im-
ages, corresponding to anti-states of the system. They have
mirror symmetry if n= l(2m− 1) and direct symmetry if
n=2(2m), where m=1, 2, 3. Odd-dimensional configurat-
ions have no anti-states. The volume of the anti-states is

V(−n) = 4
−1
Vn
.

Equations of physics take a simple form if we use the LT
kinematic system of units, whose units are two aspects l and
t of the radius through which areas of the space Rn undergo
inversion: l is the element of the spatial-like spread of the
subspace L, and t is the element of time-like spread of the
subspace T . Introducing homogeneous coordinates permits
reduction of projective geometry theorems to algebraic equi-
valents, and geometrical relations to kinematic relations.

The kinematic equivalent of the formation corresponds
the following model.

An elementary (3+3)-dimensional image of the object
A can be considered as a wave or a rotating oscillator,
which, in turn, becomes the sink and source, produced by
the singularity of the transformation. There in the oscillator
polarization of the background components occurs — the
transformation L→ T or T → L, depending on the direction
of the oscillator, which makes branching L and T spreads.
The transmutation L ↔ T corresponds the shift of the field
vector at π/2 in its parallel transfer along closed arcs of radii
R and r in the affine coherence space Rn.

The effective abundance of the pole is

e =
1

2

1

4π

∫

s

Eds .

A charge is an elementary oscillator, making a field
around itself and inside itself. There in the field a vector’s
length depends only on the distance ri or 1/ri from the
centre of the peculiarity. The inner field is the inversion map
of the outer field; the mutual correspondence between the
outer spatial-like and the inner time-like spreads leads to
torsion of the field.

The product of the space of the spherical surface and
the strength in the surface is independent of ri; this value
depends only on properties of the charge q

4πq = SV̇ = 4πr2
d2l

dt2
.

Because the charge manifests in the spread Rn only as
the strength of its field, and both parts of the equations are
equivalent, we can use the right side of the equation instead
of the left one.

The field vector takes its ultimate value

c =
l

t
=

√
SV̇

4πri
= 1

in the surface of the inversion sphere with the radius r. The
ultimate value of the field strength lt−2 takes a place in the
same surface; ν= t−1 is the fundamental frequency of the
oscillator. The effective (half) product of the sphere surface
space and the oscillation acceleration equals the value of the
pulsating charge, hence

4πq =
1

2
4πνr2i

l

t
= 2πric

2.

In LT kinematic system of units the dimension of a
charge (both gravitational and electric) is

dimm = dim e = L3T−2.

In the kinematic system LT , exponents in structural
formulae of dimensions of all physical quantities, including
electromagnetic quantities, are integers.

Denoting the fundamental ratio l/t as C, in the kinematic
system LT we obtain the generalized structural formula for
physical quantities

DΣn = cγTn−γ ,

where DΣn is the dimensional volume of a given physical
quantity, Σn is the sum of exponents in the formula of
dimensions (see above), T is the radical of dimensions, n
and γ are integers.

Thus we calculate dimensions of physical quantities in
the kinematic LT system of units (see Table 1).

Physical constants are expressed by some relations in
the geometry of the ensemble, reduced to kinematic struc-
tures. The kinematic structures are aspects of the probability
and configuration realization of the abstract complex A. The
most stable form of a kinematic state corresponds to the most
probable form of the stochastic existence of the formation.

The value of any physical constant can be obtained in the
following way.

The maximum value of the probability of the state we
are considering is the same as the volume of a 6-dimensional
torus,

V6 =
16π3

15
r3 = 33.0733588 r6.

The extreme numerical values — the maximum of the
positive branch and the minimum of the negative branches
of the function Φn are collected in Table 2.
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Table 1

Quantity DΣn, taken under γ equal to:

Parameter Σn 5 4 3 2 1 0 −1 −2

C5T n−5 C4T n−4 C3T n−3 C2T n−2 C1T n−1 C0T n−0 C−1T n+1 C−2T n+2

Surface power L3T −5

Pressure L2T −4

Current density −2 L1T −3

Mass density, angular
acceleration

L0T −2

Volume charge density L−1T −1

Electromagnetic field
strength

L2T −3

Magnetic displacement,
acceleration

−1 L1T −2

Frequency L0T −1

Power L5T −5

Force L4T −4

Current, loss mass L3T −3

Potential difference 0 L2T −2

Velocity L1T −1

Dimensionless constants L0T 0

Conductivity L−1T 1

Magnetic permittivity L−2T 2

Force momentum, energy L5T −4

Motion quantity, impulse L4T −3

Mass, quantity of mag-
netism or electricity

+1 L3T −2

Two-dimensional
abundance

L2T −1

Length, capacity, self-
induction

L1T 0

Period, duration L0T 1

Angular momentum,
action

L5T −3

Magnetic momentum L4T −2

Loss volume +2 L3T −1

Surface L2T 0

L1T 1

L0T 2

Moment of inertia L5T −2

L4T −1

Volume of space +3 L3T 0

Volume of time L0T 3
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Table 2

n+ 1 +7.256946404 −4.99128410

Sn+1 +33.161194485 −0.1209542108

The ratio between the ultimate values of the function
Sn+1 is

Ē =

∣
∣+S(n+1)max

∣
∣

∣
∣−S(n+1)min

∣
∣ = 274.163208 r12.

On the other hand, a finite length of a spherical layer
of Rn, homogeneously and everywhere densely filled by
doublets of the elementary formations A, is equivalent to a
vortical torus, concentric with the spherical layer. The mirror
image of the layer is another concentric homogeneous double
layer, which, in turn, is equivalent to a vortical torus coaxial
with the first one. Such formations were studied by Lewis
and Larmore for the (3+1)-dimensional case.

Conditions of stationary vortical motion are realized if

V × rotV = gradϕ , 2vds = dΓ ,

where ϕ is the potential of the circulation, Γ is the main
kinematic invariant of the field. A vortical motion is stable
only if the current lines coincide with the trajectory of the
vortex core. For a (3+1)-dimensional vortical torus we have

Vx =
Γ

2πD

[

ln
4D

r
−
1

4

]

,

where r is the radius of the circulation, D is the torus
diameter.

The velocity at the centre of the formation is

V� =
uπD

2r
.

The condition Vx = V�, in the case we are considering,
is true if n = 7

ln
4D

r
= (2π + 0.25014803)

2n+ 1

2n
=

= 2π + 0.25014803+
n

2n+ 1
= 7 ,

D

r
= Ē =

1

4
e7 = 274.15836 .

In the field of a vortical torus, with Bohr radius of the
charge, r= 0.999 9028, the quantity π takes the numerical
value π∗= 0.999 9514π. So E= 1

4e
6.9996968=274.074996.

In the LT kinematic system of units, and introducing the
relation B=V6E/π= 2885.3453, we express values of all
constants by prime relations between E and B

K = δẼαB̃β ,

where δ is equal to a quantized turn, α and β are integers.

Table 3 gives numerical values of physical constants, ob-
tained analytically and experimentally. The appendix gives
experimental determinations in units of the CGS system (cm,
gramme, sec), because they are conventional quantities, not
physical constants.

The fact that the theoretically and experimentally obtain-
ed values of physical constants coincide permits us to suppo-
se that all metric properties of the considered total and unique
specimen A can be identified as properties of our observed
World, so the World is identical to the unique “particle” A.
In another paper it will be shown that a (3+3)-dimensional
structure of space-time can be proven in an experimental
way, and also that this 6-dimensional model is free of logical
difficulties derived from the (3+1)-dimensional concept of
the space-time background∗.

In the system of units we are using here the gravitational
constant is

κ =
1

4π

[
l0

t0

]

.

If we convert its dimensions back to the CGS system, so

that G=
[
l3

mt2

]
, appropriate numerical values of the physic-

al quantities will be determined in another form (Column 5 in
Table 3). Reduced physical quantities are given in Column 8.
Column 9 gives evolutionary changes of the physical quanti-
ties with time according to the theory, developed by Stanyu-
kovich [17]†.

The gravitational “constant”, according to his theory,
increases proportionally to the space radius (and also the
world-time) and the number of elementary entities, according
to Dirac [18], increases proportional to the square of the
space radius (and the square of world-time as well). There-

fore we obtain N = T 2m'B
24, hence B≈T

1
12
m .

Because Tm= t0ω0 ' 1040, where t0' 1017 sec is the
space age of our Universe and ω0 =

c
ρ = 1023 sec−1 is the

frequency of elementary interactions, we obtain B' 10
10
3 =

= 10
1
3 ×1000.

In this case we obtain m∼ e2∼ ~∼T−2m ∼B−24, which
is in good agreement with the evolution concept developed
by Stanyukovich.

Appendix

Here is a determination of the quantity 1 cm in the CGS
system of units. The analytic value of Rydberg constant is

∗Roberto di Bartini died before he prepared the second paper. He died
sitting at his desk, looking at papers with drawings of vortical tori and draft
formulae. According to Professor Stanyukovich, Bartini was not in the habit
of keeping many drafts, so unfortunately, we do not know anything about
the experimental statement that he planned to provide as the proof to his
concept of the (3+3)-dimensional space-time background. — D. R.

†Stanyukovich’s theory is given in Part II of his book [17]. Here T0m
is the world-time moment when a particle (electron, nucleon, etc.) was born,
Tm is the world-time moment when we observe the particle. — D. R.
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[R∞] = (1/4πE
3)l−1= 3.0922328×10−8l−1, the experime-

ntally obtained value of the constant is (R∞)=109737.311±
±0.012cm−1. Hence 1 cm is determined in the CGS system
as (R∞)/[R∞] = 3.5488041×1012l.

Here is a determination of the quantity 1 sec in the CGS
system of units. The analytic value of the fundamental ve-
locity is [c ] = l/t = 1, the experimentally obtained value
of the velocity of light in vacuum is (c) = 2.997930±
± 0.0000080×10−10cm×sec−1. Hence 1 sec is determined in
the CGS system as (c)/l [c ] = 1.0639066×1023t.

Here is a determination of the quantity 1 gramme in the
CGS system of units. The analytic value of the ratio e/mc is
[e/mc ] = B̃6 = 5.7701460×1020l−1t. This quantity, mea-
sured in experiments, is (e/mc)=1.758897±0.000032×107

(cm×gm−1)
1
2 . Hence 1 gramme is determined in the CGS

system as
(e/mc)2

l[e/mc ]2
= 3.297532510×10−15l3t−2, so CGS’

one gramme is 1 gm (CGS)=8.351217×10−7cm3sec−2 (CS).

References

1. Pauli W. Relativitätstheorie. Encyclopäedie der mathemati-
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