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Routinely, Einstein’s equations are be reduced to a wave form (linearly independent of
the second derivatives of the space metric) in the absence of gravitation, the space rota-
tion and Christoffel’s symbols. As shown herein, the origin of the problem is the use of
the general covariant theory of measurement. Herein the wave form of Einstein’s equa-
tions is obtained in terms of Zelmanov’s chronometric invariants (physically observable
projections on the observer’s time line and spatial section). The equations so obtained
depend solely upon the second derivatives, even for gravitation, the space rotation and
Christoffel’s symbols. The correct linearization proves that the Einstein equations are
completely compatible with weak waves of the metric.

1 Introduction

Gravitational waves are routinely considered as weak waves
of the space metric, whereby, one takes a Galilean metric
g(0)
�� , whose components are g(0)

00 = 1, g(0)
0i = 0, g(0)

ik =��ik,
and says: because gravitating matter is connected to the field
of the metric tensor g�� by Einstein’s equations�

R�� � 1
2
g��R = ��T�� + �g�� ; � = const> 0 ;

gravitational waves are weak perturbations ��� of the Gali-
lean metric. Thus the common metric, consisting of the ini-
tially undeformed and wave parts, is g�� = g(0)

�� + ��� .
According to the theory of partial differential equations,

a wave of a field is a Hadamard break [1] in the derivatives
of the field function along the hypersurface of the field equa-
tions (the wave front). The first derivative of a function at a
point determines a direction tangential to it, while the second
derivative determines a normal direction. Thus, if a surface in
a tensor field is the front of the field wave, the second deriva-
tives of this tensor have breaks there. It is possible to prove
in relation to this case in a Riemannian space with the metric
g�� , that d’Alembert’s operator = g��r�r� of this field
equals zeroy. For instance, the wave field of a tensor Q�� is
characterized by the d’Alembert equations Q�� = 0.

We can apply the d’Alembert operator to any tensor field
and equate it to be zero. For this reason any claims that waves
of the space metric cannot exist are wrong, even from the
purely mathematical viewpoint, independently of those de-
ductions that the authors of those claims adduced.

So, the front of weak wave perturbations ��� of a Galilean
metric g(0)

�� is determined by breaks in their second deriva-
tives, while the wave field ��� itself is characterized by the
d’Alembert equations

��� = 0 :

�We write the Einstein equations in the main form containing the �-term,
because our consideration is outside a discussion of the �-term.
yNote that the d’Alembert operator consists of the second derivatives.

If the left side of the Einstein equations for the common
metric g�� = g(0)

�� + ��� reduced to ��� ,z the equations
could be reduced to the form

a ��� = ��T�� + �g�� ; where a = const ;

which, in the absence of matter, become the wave equations
��� =0, meaning that the perturbations ��� are waves.

As one calculates the left side of the Einstein equations
for the common metric, he obtains a large number of terms
where only one is ��� with a numerical coefficient. Thus
one concludes: the Einstein equations are non-linear with re-
spect to the second derivatives of ��� .

In order to prove gravitational waves, theory should lead
to cancellation of all the non-linear terms, as argued by Ed-
dington [2], and Landau and Lifshitz [3]. This process is so-
called the linearization of the Einstein equations.

2 Problems with the linearization

There is much literature about why the non-linear terms can
be cancelled (see Lichnerowicz [4] or Zakharov [5] for de-
tails). All the reasons depend upon one initial factor: the
theory of measurements we use.

We know two theories of measurements in General Rela-
tivity: Einstein’s theory of measurements and Zelmanov’s
theory of physically observable quantities. The first one was
built by Einstein in the 1910’s. Following himx, we consider
the space-time volume of nearby events in order to find a par-
ticular reference frame satisfying the properties of our real
laboratory. We then express our general covariant equations
in terms of the chosen reference frame. Some terms drop
out, because of the properties of the chosen reference frame.
Briefly, as one calculates the Ricci tensor R�� = g��R����
by the contraction of the Riemann-Christoffel tensor

zActually, this problem is to reduce the Ricci tensor for the common
metric g�� = g(0)

�� + ��� to ��� .
xEinstein gave his theory of measurements partially in many papers. You

can see the complete theory in Synge’s book [6], for instance.
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R���� = ����� ���;� + ���� ���;� +

+
1
2

�
@2g��
@x�@x�

+
@2g��
@x�@x�

� @2g��
@x�@x�

� @2g��
@x�@x�

�
for g�� = g(0)

�� + ��� (see §105 in [3]), he can reduce it to

R�� =
1
2
g(0)�� @2���

@x�@x�
=

1
2

���

and the left side of the Einstein equations to ��� , only if:

1. The reference frame is free of forces of gravity;
2. The reference frame is free of rotation;
3. Christoffel’s symbols ���� , containing the inhomogene-

ity of space, are all zero.

Of course, we can find a reference frame where the gravi-
tational potential, the space rotation, and the Christoffel sym-
bols are zero at a given point�. However they cannot be redu-
ced to zero in an area. Moreover, a gravitational wave detec-
tor consists of two bodies located far away from each other.
In a Weber solid-body detector the distance is several metres,
while in a laser interferometer the distance can take even mil-
lions of kilometres, as LISA in a solar orbit. It is wrong to
interpret any of those as points. So, gravitational forces, the
space rotation or the Christoffel symbols cannot be obviated
in the equations. This is the main reason why:

By the methods of Einstein’s theory of measurements,
the Einstein equations cannot be mathematically cor-
rectly linearized with respect to the second derivatives
of the weak perturbations ��� of the space metric.

Some understand this incompatibility to mean that Gener-
al Relativity does not permit weak waves of the metric.

This is absolutely wrong, even from the purely mathem-
atical viewpoint: the d’Alembert operator = g��r�r�
may be applied to any tensor field, the field of the weak per-
turbations ��� of the metric included, and equated to zero.

This obvious incompatibility can arise for one or both of
the following reasons:

1. Einstein’s equations in their current form are insuffi-
cient to describe our real world;

2. Einstein’s theory of measurements is inadequate for the
four-dimensional pseudo-Riemannian space.

Einstein’s equations were born of his intuition, only the
left side thereof is derived from the geometry. However main
experimental tests of General Relativity, proceeding from the
equations, verify the theory. So, the equations are adequate
for describing our real world to within a first approximation.

At the same time, Einstein’s theory of measurements has
many deficiencies. There are no clear methods for recogni-
tion of physically observable components of a tensor field. It
set up so that the three-dimensional components of a world-
vector field compose its spatially observable part, while the
�See §7 Special Reference Frames in Petrov’s book [7].

time component is its scalar potential. However this problem
becomes confused for a tensor of higher rank, because it has
time, spatial, and mixed (space-time) components. There are
also other drawbacks (see [8], for instance).

The required mathematical methods have been found by
Zelmanov, who, in 1944, fused them into a complete theory
of physically observable quantities [9, 10, 11].

3 The theory of physically observable quantities

According to Zelmanov, each observer has his own spatial
section, set up by a coordinate net spanned over his real ref-
erence rest-body and extended far away with its gravitational
field. The net is replete with a system of synchronized clocksy.
Physically observed by him are projections of world-quan-
tities onto his time line and spatial section, made by the pro-
jection operators b�= dx�

ds and h��=�g��+b�b� . Chr.inv.-

projections of a world-vector Q� are b�Q� = Q0p
g00

and

hi�Q� =Qi, while those of a 2nd rank world-tensor Q��

are b�b�Q�� = Q00
g00

, hi�b�Q�� = Qi0p
g00

, hi�hk�Q�� =Qik.

Physically observable properties of the space are determined
by the non-commutativity of the chr.inv.-operators

�@
@t =

= 1p
g00

@
@t and

�@
@xi = @

@xi + 1
c2 vi

�@
@t , and the fact that the

chr.inv.-metric tensor hik =�gik + 1
c2 vivk may not be sta-

tionary. They are the chr.inv.-quantities: the gravitational in-
ertial force Fi, the space rotation tensor Aik, and the space
deformational rates Dik

Fi=
1pg00

�
@w
@xi
� @vi
@t

�
;

p
g00 = 1� w

c2
;

Aik=
1
2

�
@vk
@xi
� @vi
@xk

�
+

1
2c2

(Fivk�Fkvi) ; vi=� cg0ipg00
;

Dik=
1
2

�@hik
@t

; Dik=�1
2

�@hik
@t

; D=Dk
k=

�@ ln
p
h

@t
;

where w is gravitational potential, vi is the linear velocity
of the space rotation, h= det khikk, and

p�g=
p
h
p
g00 .

The chr.inv.-Christoffel symbols �i
jk =him�jk;m are built

like the usual ���� = g�����;� , using hik instead of g�� .
By analogy with the Riemann-Christoffel curvature ten-

sor, Zelmanov derived the chr.inv.-curvature tensorz

Clkij =
1
4

(Hlkij �Hjkil +Hklji �Hiljk) ;

from which the contraction Ckj=C ���ikij�=himCkimj gives the
chr.inv.-scalar observable curvature C =Cjj =hljClj .

yProjections onto such a spatial section are independent of trans-
formations of the time coordinate — they are chronometric invariants.

zHere H :::j
lki�=

�@�j
il

@xk
� �@�j

kl
@xi

+ �m
il �j

km��m
kl�

j
im.

4 D. Rabounski. Correct Linearization of Einstein’s Equations



April, 2006 PROGRESS IN PHYSICS Volume 2

4 Correct linearization of Einstein’s equations

We now show that Einstein’s equations expressed with phys-
ically observable quantities may be linearized without prob-
lems; proof that waves of weak perturbations of the space
metric are fully compatible with the Einstein equations.

Zelmanov already deduced [9] the Einstein equations in
chr.inv.-components (the chr.inv.-Einstein equations) in the
absence of matter: —

�@D
@t

+DjlDjl + AjlAlj +
�
�rj � 1

c2
Fj
�
F j = 0 ;

�rj �hijD �Dij � Aij�+
2
c2
FjAij = 0 ;

�@Dik
@t
� (Dij+Aij)

�
Dj
k+A�jk�

�
+DDik+ 3AijA

�j
k�+

+
1
2

(�riFk + �rkFi)� 1
c2
FiFk � c2Cik = 0 ;

where Zelmanov’s �rk denotes the chr.inv.-derivative�.
The components of the metric g�� = g(0)

�� + ��� , consist-
ing of a Galilean metric and its weak perturbations, arey

g00 = 1 + �00 ; g0i = �0i ; gik = ��ik + �ik ;
g00 = 1� �00; g0i = ��0i; gik = ��ik � �ik;
hik = �ik � �ik; hik = �ik ; hik = �ik+ �ik:

Because ��� are weak, the products of their components
or derivatives vanish. In such a case,

Fi =
c

1 + �00

�
@�0i
@t
� c

2
@�00

@xi

�
;

Aik =
cp

1 + �00

�
@�0i
@xk

� @�0k
@xi

�
;

Dik = � 1
2
p

1 + �00

@�ik
@t

; D = hikDik = �ikDik ;

Cimnk =
@2�mk
@xi@xn

+
@2�in
@xm@xk

� @2�mn
@xi@xk

� @2�ik
@xm@xn

:

After some algebra, we obtain the chr.inv.-Einstein equa-
tions for the metric g�� = g(0)

�� + ��� :

1
c2 (1 + �00)

@2�
@t2

+
�km

(1 + �00)

�
@2�00

@xk@xm
� 2
c
@2�0m
@xk@t

�
= 0 ;

�So �rkQi =
�@Qi
@xk

+ �i
mkQ

m and �rkQi =
�@Qi
@xk

��m
ikQm are

the chr.inv.-derivatives of a chr.inv.-vector Qi.
yThe contravariant tensor g�� , determined by the main property

g��g�� = ��� of the fundamental metric tensor as (g(0)
��+ ���)g�� = ���,

is g�� = g(0)�� � ��� , while its determinant is g= g(0)(1+ �). This is
easy to check, taking into account that, because the values of the weak cor-
rections ��� are infinitesimal, their products vanish; while we may move
indices in ��� by the Galilean metric tensor g(0)

�� .

�ij

c2
p

1 + �00

@2�
@xj@t

� 1
c2
p

1 + �00

@2�ij

@xj@t
+

+
2�im�jn

c
p

1 + �00

�
@2�0m
@xj@xn

� @2�0n
@xj@xm

�
= 0 ;

1
c2 (1 + �00)

@2�ik
@t2

� 1
c (1 + �00)

�
@2�0k
@xi@t

� @2�0i
@xk@t

�
+

+ 2�mn
�
@2�mk
@xi@xn

+
@2�in
@xm@xk

� @2�mn
@xi@xk

� @2�ik
@xm@xn

�
= 0 :

Note that the obtained equations are functions of only the
second derivatives of the weak perturbations of the space met-
ric. So, the Einstein equations have been linearized, even in
the presence of gravitational inertial forces and the space ro-
tation. This implies: —

By the methods of Zelmanov’s mathematical theory of
chronometric invariants (physically observable quan-
tities), the Einstein equations are linearized in a
mathematically correct way, i. e. without the assum-
ption of a specific reference frame where there are no
gravitational forces or the space rotation.

This is the mathematical proof to the statement: —
Waves of the weak perturbations of the space metric
are fully compatible with the Einstein equations.
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