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In the present article, we argue that it is possible to generalize Schrodinger equation
to describe quantization of celestial systems. While this hypothesis has been described
by some authors, including Nottale, here we argue that such a macroquantization was
formed by topological superfluid vortice. We also provide derivation of Schrodinger
equation from Gross-Pitaevskii-Ginzburg equation, which supports this superfluid

dynamics interpretation.

1 Introduction

In the present article, we argue that it is possible to generalize
Schrodinger equation to describe quantization of celestial
systems, based on logarithmic nature of Schrédinger equa-
tion, and also its exact mapping to Navier-Stokes equa-
tions [1].

While this notion of macro-quantization is not widely ac-
cepted yet, as we will see the logarithmic nature of Schrédin-
ger equation could be viewed as a support of its applicability
to larger systems. After all, the use of Schrodinger equation
has proved itself to help in finding new objects known as
extrasolar planets [2, 3]. And we could be sure that new
extrasolar planets are to be found in the near future. As an
alternative, we will also discuss an outline for how to derive
Schrodinger equation from simplification of Ginzburg-
Landau equation. It is known that Ginzburg-Landau equation
exhibits fractal character, which implies that quantization
could happen at any scale, supporting topological interpret-
ation of quantized vortices [4].

First, let us rewrite Schrodinger equation in its common
form [5]
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Now, it is worth noting here that Englman and Yahalom
[5] argues that this equation exhibits logarithmic character

Iny(z,t) =In (\¢($,t)|) + iarg(gb(w,t)) . (3)

Schrédinger already knew this expression in 1926, which
then he used it to propose his equation called “eigentliche
Wellengleichung” [5]. Therefore equation (1) can be re-
written as follows

sz+2ﬁln Y| Varg[y] +VVarg[¢]=0. (4)

Interestingly, Nottale’s scale-relativistic method [2, 3]
was also based on generalization of Schrodinger equation
to describe quantization of celestial systems. It is known
that Nottale-Schumacher’s method [6] could predict new
exoplanets in good agreement with observed data. Nottale’s
scale-relativistic method is essentially based on the use of
first-order scale-differentiation method defined as follows [2]

v
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Now it seems clear that the natural-logarithmic derivat-
ion, which is essential in Nottale’s scale-relativity approach,
also has been described properly in Schrédinger’s original
equation [5]. In other words, its logarithmic form ensures
applicability of Schrodinger equation to describe macro-
quantization of celestial systems. [7, 8]
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2 Quantization of celestial systems and topological
quantized vortices

In order to emphasize this assertion of the possibility to de-
scribe quantization of celestial systems, let us quote Fischer’s
description [4] of relativistic momentum from superfluid
dynamics. Fischer [4] argues that the circulation is in the
relativistic dense superfluid, defined as the integral of the
momentum

Vs = ]{p# dz# = 27N, I, (6)

and is quantized into multiples of Planck’s quantum of action.
This equation is the covariant Bohr-Sommerfeld quantization
of 7s. And then Fischer [4] concludes that the Maxwell
equations of ordinary electromagnetism can be written in
the form of conservation equations of relativistic perfect fluid
hydrodynamics [9]. Furthermore, the topological character of
equation (6) corresponds to the notion of topological elect-
ronic liquid, where compressible electronic liquid represents
superfluidity [25]. For the plausible linkage between super-
fluid dynamics and cosmological phenomena, see [16-24].
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It is worth noting here, because vortices could be defined
as elementary objects in the form of stable topological exci-
tations [4], then equation (6) could be interpreted as Bohr-
Sommerfeld-type quantization from fopological quantized
vortices. Fischer [4] also remarks that equation (6) is quite
interesting for the study of superfluid rotation in the context
of gravitation. Interestingly, application of Bohr-Sommerfeld
quantization for celestial systems is known in literature [7, 8],
which here in the context of Fischer’s arguments it has
special meaning, i. e. it suggests that quantization of celestial
systems actually corresponds to superfluid-quantized vortices
at large-scale [4]. In our opinion, this result supports known
experiments suggesting neat correspondence between con-
densed matter physics and various cosmology phen-
omena [16-24].

To make the conclusion that quantization of celestial
systems actually corresponds to superfluid-quantized vortices
at large-scale a bit conceivable, let us consider the problem
of quantization of celestial orbits in solar system.

In order to obtain planetary orbit prediction from this
hypothesis we could begin with the Bohr-Sommerfeld’s con-
jecture of quantization of angular momentum. This con-
jecture may originate from the fact that according to BCS
theory, superconductivity can exhibit macroquantum phen-
omena [26, 27]. In principle, this hypothesis starts with
observation that in quantum fluid systems like superfluidity
[28]; it is known that such vortexes are subject to quantization
condition of integer multiples of 27, or 3? vsdl =27mnh/m.
As we know, for the wavefunction to be well defined and
unique, the momenta must satisfy Bohr-Sommerfeld’s quant-
ization condition [28]

% pdx = 2mnh
r

for any closed classical orbit I". For the free particle of unit
mass on the unit sphere the left-hand side is [28]

(6a)

T
/ v2d1 = WT = 27w, (7)
0
where T' =27 /w is the period of the orbit. Hence the quantiz-
ation rule amounts to quantization of the rotation frequency
(the angular momentum): w =nh. Then we can write the
force balance relation of Newton’s equation of motion [28]

GMm  muv?
= : (8)
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Using Bohr-Sommerfeld’s hypothesis of quantization of
angular momentum, a new constant g was introduced [28]
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Just like in the elementary Bohr theory (before Schrodin-
ger), this pair of equations yields a known simple solution

for the orbit radius for any quantum number of the form [28]
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which can be rewritten in the known form of gravitational
Bohr-type radius [2, 7, 8]

2GM
p=2=2 (11)
)

where r, n, G, M, vg represents orbit radii, quantum number
(n=1,2,3,...), Newton gravitation constant, and mass of
the nucleus of orbit, and specific velocity, respectively. In
this equation (11), we denote [28]
Up = n GMm. (12)
g

The value of m is an adjustable parameter (similar to g)
[7, 8]. In accordance with Nottale, we assert that the specific
velocity vg is 144 km/sec for planetary systems. By noting
that m is meant to be mass of celestial body in question, then
we could find g parameter (see also [28] and references cited
therein).

Using this equation (11), we could predict quantization of
celestial orbits in the solar system, where for Jovian planets
we use least-square method and use M in terms of reduced
mass [ = % From this viewpoint the result is shown
in Table 1 below [28].

For comparison purpose, we also include some recent
observation by Brown-Trujillo team from Caltech [29-32].
It is known that Brown et al. have reported not less than four
new planetoids in the outer side of Pluto orbit, including
2003EL61 (at 52 AU), 2005FY9 (at 52 AU), 2003VBI12 (at
76 AU, dubbed as Sedna). And recently Brown-Trujillo team
reported a new planetoid finding, called 2003UB31 (97 AU).
This is not to include their previous finding, Quaoar (42 AU),
which has orbit distance more or less near Pluto (39.5 AU),
therefore this object is excluded from our discussion. It is
interesting to remark here that all of those new “planetoids”
are within 8% bound from our prediction of celestial quant-
ization based on the above Bohr-Sommerfeld quantization
hypothesis (Table 1). While this prediction is not so precise
compared to the observed data, one could argue that the
8% bound limit also corresponds to the remaining planets,
including inner planets. Therefore this 8% uncertainty could
be attributed to macroquantum uncertainty and other local
factors.

While our previous prediction only limits new planet
finding until » =9 of Jovian planets (outer solar system),
it seems that there are sufficient reasons to suppose that
more planetoids in the Oort Cloud will be found in the near
future. Therefore it is recommended to extend further the
same quantization method to larger n values. For prediction
purpose, we include in Table 1 new expected orbits based
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- ‘ ‘ — ‘ ‘ ‘ ‘ ) At this point, it seems worth noting that some criticism
Object No. | Titius | Nottale| CSV_| Observ.| A, % g concerning the use of quantization method for de-
1 0.4 0.43 scribing the motion of celestial systems. These criticism
5 1.7 171 proponents usually argue that quantization method (wave
Mercury 3 2 3.9 3.85 387 052 mechanics) is oversimplifying the problem, and theref(?re
cannot explain other phenomena, for instance planetary mig-
Venus 4 6.8 6.84 7.32 650 ration etc. While we recognize that there are phenomena
Earth 5|0 10] 107 10.70 | 10.00 | —6.95  which do not correspond to quantum mechanical process, at
Mars 6 16 15.4 15.4 1524 | —1.05 least we can argue further as follows:
Hungarias | 7 21.0 20.96 | 20.99 0.14 1. Using quantization method like Nottale-Schumacher
Asteroid 8 27.4 2738 | 27.0 1.40 did, one can expect to predict new exoplanets (extra-
; solar planets) with remarkable result [2, 3];
Camilla | 9 347 | 346 | 315 | —10.00 . . . .
Jupiter ) 52 4552 | 5203 1251 2. ThF: conventional theo'rles explalplng pl.anetafy‘m.lg—
ration normally use fluid theory involving diffusion
Saturn 3 | 100 102.4 95.39 —7.38 .
process;
Uranus 4| 19 182.1 1919 >11 3. Alternatively, it has been shown by Gibson et al. [35]
Neptune 5 284.5 | 301 5.48 that these migration phenomena could be described via
Pluto 6 | 388 409.7 | 395 -3.72 Navier-Stokes approach;
2003EL61 | 7 557.7 | 520 —7.24 4. As we have shown above, Kiehn’s argument was based
Sedna g | 722 7284 | 760 4.16 on exact-mapping between Schrodinger equation and
2003UB31| 9 9218 | 970 4.96 Navier-Stokes equations [1];
Unobserv. | 10 1138.1 5. Based on K.iehn’s Vorfcic'ity interpretation one thege
Unch 0 3771 authors published prediction of some new planets in
NObServ. - 2004 [28]; which seems to be in good agreement with

Table 1: Comparison of prediction and observed orbit distance of
planets in Solar system (in 0.1AU unit) [28].

on the same quantization procedure we outlined before. For
Jovian planets corresponding to quantum number n = 10 and
n =11, our method suggests that it is likely to find new
orbits around 113.81 AU and 137.71 AU, respectively. It is
recommended therefore, to find new planetoids around these
predicted orbits.

As an interesting alternative method supporting this pro-
position of quantization from superfluid-quantized vortices
(6), it is worth noting here that Kiehn has argued in favor of
re-interpreting the square of the wavefunction of Schrodinger
equation as the vorticity distribution (including topological
vorticity defects) in the fluid [1]. From this viewpoint, Kiechn
suggests that there is exact mapping from Schrodinger equa-
tion to Navier-Stokes equation, using the notion of quantum
vorticity [1]. Interestingly, de Andrade and Sivaram [33] also
suggest that there exists formal analogy between Schrodinger
equation and the Navier-Stokes viscous dissipation equation:

ov

5 (13)
where v is the kinematic viscosity. Their argument was based
on propagation torsion model for quantized vortices [23].
While Kiehn’s argument was intended for ordinary fluid,
nonetheless the neat linkage between Navier-Stokes equation
and superfluid turbulence is known in literature [34, 24].

=vV?V,

Brown-Trujillo’s finding (March 2004, July 2005) of
planetoids in the Kuiper belt;

6. To conclude: while our method as described herein
may be interpreted as an oversimplification of the real
planetary migration process which took place some-
time in the past, at least it could provide us with useful
tool for prediction;

7. Now we also provide new prediction of other planet-
oids which are likely to be observed in the near future
(around 113.8 AU and 137.7 AU). It is recommended
to use this prediction as guide to finding new objects
(in the inner Oort Cloud);

8. There are of course other theories which have been
developed to explain planetoids and exoplanets [36].
Therefore quantization method could be seen as merely
a “plausible” theory between others.

All in all, what we would like to emphasize here is
that the quantization method does not have to be the true
description of reality with regards to celestial phenomena.
As always this method could explain some phenomena, while
perhaps lacks explanation for other phenomena. But at least
it can be used to predict something quantitatively, i. e. mea-
surable (exoplanets, and new planetoids in the outer solar
system etc.).

In the meantime, it seems also interesting here to consider
a plausible generalization of Schrodinger equation in partic-
ular in the context of viscous dissipation method [1]. First,
we could write Schrodinger equation for a charged particle
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interacting with an external electromagnetic field [1] in the
form of Ulrych’s unified wave equation [14]

[(—6hV — gA),(—ihV — qA) 9] =

0] 14
= {—i2m + 2mU(m)]1/) . (14)
ot
In the presence of electromagnetic potential, one could
include another term into the LHS of equation (14)

(=AY — gA),(—3hV — gA)* + eAq|y =

o2 o]y, O

This equation has the physical meaning of Schrodinger
equation for a charged particle interacting with an external el-
ectromagnetic field, which takes into consideration Aharonov
effect [37]. Topological phase shift becomes its immediate
implication, as already considered by Kiehn [1].

As described above, one could also derived equation
(11) from scale-relativistic Schrédinger equation [2, 3]. It
should be noted here, however, that Nottale’s method [2,
3] differs appreciably from the viscous dissipative Navier-
Stokes approach of Kiehn [1], because Nottale only considers
his equation in the Euler-Newton limit [3]. Nonetheless,
it shall be noted here that in his recent papers (2004 and
up), Nottale has managed to show that his scale relativistic
approach has linkage with Navier-Stokes equations.

3 Schrodinger equation derived from Ginzburg-
Landau equation

Alternatively, in the context of the aforementioned superfluid
dynamics interpretation [4], one could also derive Schrddin-
ger equation from simplification of Ginzburg-Landau equa-
tion. This method will be discussed subsequently. It is known
that Ginzburg-Landau equation can be used to explain vari-
ous aspects of superfluid dynamics [16, 17]. For alternative
approach to describe superfluid dynamics from Schrodinger-
type equation, see [38, 39].

According to Gross, Pitaevskii, Ginzburg, wavefunction
of N bosons of a reduced mass m* can be described as [40]

h? 2, . Oy
—(2m*)v2¢+n|¢| Y=ih_-.

(16)

For some conditions, it is possible to replace the potential
energy term in equation (16) with Hulthen potential. This
substitution yields

h? .. 0
- <2m* ) V2¢ + VHulthentZ/} = ?’h 71/} )

Bt (17)

where

§e 0"
=_Ze? —— 18
€1 e (18)

VHulthen

This equation (18) has a pair of exact solutions. It could
be shown that for small values of §, the Hulthen potential (18)
approximates the effective Coulomb potential, in particular
for large radius
it B e2+é(€+1)h2

r 2mr2 (19)

Coulomb ~—
By inserting (19), equation (17) could be rewritten as

2\, e (L4112 8y
_(2m*)v¢+[_r+ 2mr? ]w_mat'

(20)
For large radii, second term in the square bracket of LHS

of equation (20) reduces to zero [41],

L(L+1)h2

22 — 0, (21)

so we can write equation (20) as

R\ oo . 0y
where Coulomb potential can be written as
2
U(z) = _67 . (22a)

This equation (22) is nothing but Schrédinger equation
(1), except for the mass term now we get mass of Cooper
pairs. In other words, we conclude that it is possible to re-
derive Schrodinger equation from simplification of (Gross-
Pitaevskii) Ginzburg-Landau equation for superfluid dyn-
amics [40], in the limit of small screening parameter, §.
Calculation shows that introducing this Hulthen effect (18)
into equation (17) will yield essentially similar result to (1),
in particular for small screening parameter. Therefore, we
conclude that for most celestial quantization problems the
result of TDGL-Hulthen (20) is essentially the same with the
result derived from equation (1). Now, to derive gravitational
Bohr-type radius equation (11) from Schrodinger equation,
one could use Nottale’s scale-relativistic method [2, 3].

4 Concluding remarks

What we would emphasize here is that this derivation of
Schrodinger equation from (Gross-Pitaevskii) Ginzburg-
Landau equation is in good agreement with our previous con-
jecture that equation (6) implies macroquantization corres-
ponding to superfluid-quantized vortices. This conclusion is
the main result of this paper. Furthermore, because Ginzburg-
Landau equation represents superfluid dynamics at low-
temperature [40], the fact that we can derive quantization
of celestial systems from this equation seems to support
the idea of Bose-Einstein condensate cosmology [42, 43].
Nonetheless, this hypothesis of Bose-Einstein condensate
cosmology deserves discussion in another paper.

Above results are part of our book Multi-Valued Logic,
Neutrosophy, and Schrédinger Equation that is in print.
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