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A great deal of misunderstandings and mathematical errors are involved in the currently
accepted theory of the gravitational field generated by an isotropic spherical mass. The
purpose of the present paper is to provide a short account of the rigorous mathematical
theory and exhibit a new formulation of the problem. The solution of the corresponding
equations of gravitation points out several new and unusual features of the stationary
gravitational field which are related to the non-Euclidean structure of the space.
Moreover it precludes the black hole from being a mathematical and physical notion.

1 Introduction

If the structure of the spacetime is actually non-Euclidean as
is postulated by general relativity, then several non-Euclidean
features will manifest themselves in the neighbourhoods of
the sources of the gravitational field. So, a spherical distrib-
ution of matter will appear as a non-Euclidean ball and the
concentric with it spheres will possess the structure of non-
Euclidean spheres. Specifically, if this distribution of matter
is isotropic, such a sphere will be characterised completely
by its radius, say ρ, and its curvature radius which is a
function of ρ, say g (ρ), defining the area 4π(g (ρ))2 of the
sphere as well as the length of circumference 2πg (ρ) of
the corresponding great circles. It is then expected that the
function g (ρ) will play a significant part in the conception
of the metric tensor related to the gravitational field of the
spherical mass. Of course, in formulating the problem, we
must distinguish clearly the radius ρ, which is introduced as
a given length, from the curvature radius g (ρ), the determin-
ation of which depends on the equations of gravitation.
However the classical approach to the problem suppresses
this distinction and assumes that the radius af the sphere is the
unknown function g (ρ). This glaring mistake underlies the
pseudo-theorem of Birkhoff as well as the classical solutions,
which have distorted the theory of the gravitational field.

Another glaring mistake of the classical approach to the
problem is related to the topological space which underlies
the definition of the metric tensor. The spatial aspect of the
problem suggests to identify the centre of the spherical mass
with the origin of the vector space R3 which is moreover
considered with the product topology of three real lines. Re-
garding the time t , several assumptions suggest to consider
it (or rather ct) as a variable describing the real line R. It fol-
lows that the topological space pertaining to the considered
situation is the space R×R3 equipped with the product top-
ology of four real lines. This simple and clear algebraic and
topological situation has been altered from the beginnings of
general relativity by the introduction of the so-called polar
coordinates of R3 which destroy the topological structure of
R3 and replace it by the manifold with boundary

[
0,+∞

[
×S2.

The use of polar coordinates is allowed in the theory of
integration, because the open set ] 0,+∞ [×] 0, 2π [×] 0, π [ ,
described by the point (r, φ, θ), is transformed diffeomorph-
ically onto the open set

R3 −
{
(x1, x2, x3) ∈ R

3; x1 > 0, x2 = 0
}

and moreover the half-plane
{
(x1, x2, x3) ∈ R

3; x1 > 0, x2 = 0
}

is of zero measure in R3. But in general relativity this half-
plane cannot be omitted. Then by choosing two systems of
geographic coordinates covering all of S2, we define a C∞

mapping of
[
0,+∞

[
×S2 onto R3 transgressing the fund-

amental principle according to which only diffeomorphisms
are allowed. In fact, this mapping is not even one-to-one:
All of {0} × S2 is transformed into the origin of R3. This
situation gives rise to inconsistent assertions. So, although the
origin of R3 disappears in polar coordinates, the meaningless
term “the origin r=0” is commonly used. Of course, the
value r=0 does not define a point but the boundary {0}×S2

which is an abstract two-dimensional sphere without physical
meaning. In accordance with the idea that the value r=0
defines the origin, the relativists introduce transformations
of the form r =h (r), r> 0, in order to “change the origin”.
This extravagant idea goes back to Droste, who claims that
by setting r= r+2μ, μ= km

c2
, we define a “new radial co-

ordinate r ” such that the sphere r=2μ reduces to the “new
origin r=0”. Rosen [2] claims also that the transformation
r= r+2μ allows to consider a mass point placed at the ori-
gin r=0 ! The same extravagant ideas are introduced in the
definition of the so-called harmonic coordinates by Lanczos
(1922) who begins by the introduction of the transformation
r= r+μ in order to define the “new radial coordinate r”.

The introduction of the manifold with boundary[
0,+∞

[
×S2 instead of R3, hence also the introduction

of R ×
[
0,+∞

[
×S2 instead of R×R3, gives also rise to

misunderstandings and mistakes regarding the space metrics
and the spacetime metrics as well.

Given a C∞ Riemannian metric on R3 , its transform in
polar coordinates is a C∞ quadratic form on

[
0,+∞

[
×S2,
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positive definite on ] 0,+∞
[
×S2 and null on {0} ×S2.

(This is, in particular, true for the so-called metric of R3

in polar coordinates, namely ds2= dr2+ r2dω2 with dω2=
= sin2 θdφ2+ dθ2 in the domain of validity of (φ, θ).) But
the converse is not true. A C∞ form on

[
0,+∞

[
×S2

satisfying the above conditions is associated in general with
a form on R3 presenting discontinuities at the origin of R3.
So the C∞ form 2dr2+ r2dω2, conceived on

[
0,+∞

[
×S2,

results from a uniquely defined form on R3, namely

dx2 +
(xdx)

2

‖x‖2
,

(here dx2=dx21+dx
2
2+dx

2
3, xdx=x1dx1+x2dx2+x3dx3)

which is discontinuous at x=(0, 0, 0).
Now, given a C∞ spacetime metric on R×R3, its trans-

form in polar coordinates is a C∞ form degenerating on the
boundary R×{0}×S2. But the converse is not true. A C∞

spacetime form on R×
[
0,+∞

[
×S2 degenerating on the

boundary R× {0} × S2 results in general from a spacetime
form on R×R3 presenting discontinuities. For instance, the
so-called Bondi metric

ds2 = e2Adt2 + 2eA+Bdtdr − r2dω2

whereA=A(t, r),B=B(t, r), conceals singularities, because
it results from a uniquely defined form on R×R3, namely

ds2 = e2Adt2 + 2eA+B
(xdx)

‖x‖
dt− dx2 +

(xdx)
2

‖x‖

which is discontinuous at x=(0, 0, 0). It follows that the
current practice of formulating problems with respect to
R×

[
0,+∞

[
×S2, instead of R×R3, gives rise to mislead-

ing conclusions. The problems must be always conceived
with respect to R× R3.

2 SΘ(4)-invariant and Θ(4)-invariant tensor fields on
R× R3.

The metric tensor is conceived naturally as a tensor field
invariant by the action of the rotation group SO(3). However,
although SO(3) acts naturally on R3, it does not the same
on R×R3, and this is why we are led to introduce the group
SΘ(4) consisting of the matrices

(
1 OH
OV A

)

with OH =(0, 0, 0), OV =
(
0
0
0

)
and A∈SO (3). We intro-

duce also the group Θ(4) consisting of the matrices of the
same form for which A∈O(3). Obviously SΘ(4) is a sub-
group of Θ(4).

With these notations, the metric tensor related to the iso-
tropic distribution of matter is conceived as a SΘ(4)-invariant
tensor field on R×R3. SΘ(4)-invariant tensor fields appear
in several problems of relativity, so that it is convenient

to study them in detail. Their rigorous theory appears in a
previous paper [7] together with the theory of the pure SΘ(4)-
invariant tensor fields which are not used in the present paper.

It is easily seen that a function h(x0, x1, x2, x3) is SΘ(4)-
invariant (or Θ(4)-invariant) if and only if it is of the form
f(x0 , ‖x‖). Of course we confine ourselves to the case where
f(x0 , ‖x‖) is C∞ with respect to the coordinates x0, x1,
x2, x3 on R×R3.

Proposition 2.1 f(x0 , ‖x‖) is C∞ on R× R3 if and only
if the function f(x0 , u) with (x0 , u) ∈ R× [0,+∞ [ is C∞

on R × [0,+∞ [ and such that its derivatives of odd order
with respect to u at u = 0 vanish.

The functions satisfying these conditions constitute an
algebra which will be denoted by Γ0. As a corollary, we see
that f(x0 , ‖x‖) belongs to Γ0 if and only if the function
h(x0 , u) defined by setting

h(x0 , u) = h(x0 ,−u) = f(x0 , u) , u > 0

is C∞ on R×R. It follows in particular that, if the function
f(x0 , ‖x‖) belongs to Γ0 and is strictly positive, then the
functions 1

f(x0 ,‖x‖)
and

√
f(x0 ,‖x‖) belong also to Γ0. Now,

if T (x0 , x), x=(x1, x2, x3), is an SΘ(4)-invariant (or Θ(4)-
invariant) tensor field on R × R3, then, for every function
f ∈Γ0, the tensor field f(x0 , ‖x‖) T (x0 , x) is also SΘ(4)-
invariant (or Θ(4)-invariant). Consequently the set of SΘ(4)-
invariant (or Θ(4)-invariant) tensor fields constitutes a Γ0-
module. In particular, we are interesting in the sub-module
consisting of the covariant tensor fields of degree 2. The
proof of the following proposition is given in the paper [7].

Proposition 2.2 Let T (x0 , x) be an SΘ(4)-invariant C∞

covariant symmetric tensor field of degree 2 on R × R3.
Then there exist four functions q00 ∈Γ0 , q01 ∈Γ0 , q11 ∈Γ0 ,
q22 ∈Γ0 such that

T (x0 , x) = q00 (x0 , ‖x‖) (dx0 ⊗ dx0)+

+ q01 (x0 , ‖x‖)
(
dx0 ⊗ F (x) + F (x)⊗ dx0

)
+

+ q11 (x0 , ‖x‖)E(x) + q22 (x0 , ‖x‖)
(
F (x)⊗ F (x)

)
,

whereE(x)=
∑3

1 (dxi⊗dxi) and F (x)=
∑3

1 xidxi . More-
over T (x0 , x) is Θ(4)-invariant.

So, the components gαβ of T (x0 , x) are defined by
means of the four functions q00, q01, q11, q22 as follows

g00 = q00 , g0i = gi0 = xi q01 ,

gii = q11 + x
2
i q22 , gij = xixj q22 ,

where i, j=1, 2, 3; i 6= j. Suppose now that the tensor field
T (x0 , x) is a metric tensor, namely a symmetric tensor field
of signature (+1,−1,−1,−1). Then we write it usually as a
quadratic form

ds2 = q00dx
2
0 + 2q01 (xdx) dx0 + q11dx

2 + q22 (xdx)
2
.
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Since x0= t is the time coordinate, we have q00=
= q00 (x0 , ‖x‖) > 0 for all (x0 , x) ∈ R×R3, so the function
f = f(x0 , ‖x‖)=

√
q00 (x0 , ‖x‖) is strictly positive and C∞

on R × R3. Consequently the function f1=
q01
f

is also C∞

on R × R3, namely a function belonging to Γ0, and we can
write the metric into the form

ds2 =
(
fdt+ f1 (xdx)

)2
+ q11dx

2 +
(
q22 − f

2
1

)
(xdx)

2

which makes explicit the corresponding spatial (positive de-
finite) metric −q11dx2−

(
q22−f21

)
(xdx)

2 with −q11> 0
and−q11−

(
q22− f21

)
‖x‖2> 0 on R×R3. So we can intro-

duce the strictly positive C∞ functions

`1 = `1 (t, ‖x‖) =
√
−q11 (t, ‖x‖)

and
` = ` (t, ‖x‖) =

√
`21 − ‖x‖2

(
q22 − f21

)

which possess a clear geometrical meaning:

`1 serves to define the curvature radius g (t, ρ)=
= g (t, ‖x‖)= ‖x‖`1(t, ‖x‖) = ρ `1(t, ρ), (ρ = ‖x‖),
of the non-Euclidean spheres centered at the origin of
R3, whereas ` defines the element of length on the
spatial radial geodesics.

Consequently it is very convenient to put the metric into
a form exhibiting explicitly `1 and `. This is obtained by
remarking that the C∞ function q22− f21 can be written as

`21 − `
2

ρ2
.

Of course the last expression is C∞ everywhere on
account of the condition `1(t, 0)= `(t, 0) and the fact that
`1 ∈Γ0, `∈Γ0. It follows that

ds2 =
(
fdt+ f1 (xdx)

)2
− `21dx

2 −
`2 − `21
ρ2

(xdx)
2
(2.1)

or
ds2 = f2dt2 + 2ff1 (xdx) dt− `

2
1dx

2+

+

(
`21 − `

2

ρ2
+ f21

)

(xdx)
2 (2.2)

with the components

g00 = f
2, g0i = gi0 = xiff1 ,

gii = −`
2
1 + x

2
i

(
`21 − `

2

ρ2
+ f21

)

,

gij = xixj

(
`21 − `

2

ρ2
+ f21

)

, i, j = 1, 2, 3; i 6= j .

There are two significant functions which do not appear
in (2. 1) and are not C∞ on R×R3:

1. First the already considered curvature radius g (t, ρ)=
= ρ`1(t, ρ) of the non-Euclidean spheres centered at
the origin;

2. Secondly the function h(t, ρ)= ρf1(t, ρ) which ap-
pears in the equations defining the radial motions of

photons outside the matter, namely the equations

(fdt + f1ρ dρ)
2 = `2dρ2 or fdt + ρf1dρ =±`dρ

which imply necessarily |h|6 ` in order that both the
ingoing and outgoing motions be possible [4]. In any
case the condition |h|6 ` must also be valid inside
the matter in order that the nature of the variable t
as time coordinate be preserved. Moreover h vanishes
for ρ=0.

Of course g and h are C∞ with respect to (t, ρ) ∈
R×[0,+∞ [, but since ρ=‖x‖ is not differentiable at the ori-
gin, they are not differentiable on the subspace R×{(0, 0, 0)}
of R × R3. However, on account of their geometrical and
physical significance, we introduce them in the computations
remembering that, for any global solution on R × R3, the
functions `1 =

g
ρ and f1 = h

ρ appearing in (2.1) must be
elements of the algebra Γ0.

3 The Ricci tensor and the equations of gravitation

In order to obtain the equations of gravitation related to (2.1),
we have first to introduce the Christoffel symbols and then
compute the components of the Ricci tensor. At first sight
the computations seem to be extremely complicated, but the
Θ(4)-invariance of the metric allows to obtain a great deal of
simplification in accordance with the following proposition,
the proof of which is given in the paper [8].

Proposition 3.1 (a) The Christoffel symbols of the first kind
as well as those of the second kind related to (2.2) are the
components of a Θ(4)-invariant tensor field; (b) The curva-
ture tensor, the Ricci tensor, and the scalar curvature relat-
ed to (2.2) are Θ(4)-invariant; (c) If an energy-momentum
tensor satisfies the equations of gravitation related to (2.2),
it is Θ(4)-invariant.

Corollary 3.1. The Christoffel symbols of the second kind
related to (2.2) depend on ten C∞ functions Bα=Bα(t, ρ),
(α=0, 1, 2, . . . , 9), as follows:

Γ000 = B0 , Γ00i = Γ
0
i0 = B1xi , Γi00 = B2xi ,

Γ0ii = B3 +B4x
2
i , Γ0ij = Γ

0
ji = B4xixj ,

Γii0 = Γ
i
0i = B5 +B6x

2
i , Γij0 = Γ

i
0j = B6xixj ,

Γiii = B7x
3
i + (B8 + 2B9)xi ,

Γijj = B7xix
2
i +B8xi , Γ

j
ij = Γ

j
ji = B7xix

2
j +B9xi ,

Γijk = B7xixjxk , i, j, k = 1, 2, 3; j 6= k 6= i .

Regarding the Ricci tensor Rαβ , since it is symmetric
and Θ(4)-invariant, its components are defined, according to
proposition 2.2, by four functions Q00=Q00(t, ρ), Q01=
=Q01(t, ρ), Q11=Q11(t, ρ), Q22=Q22(t, ρ) as follows:

R00=Q00 , R0i=Ri0=Q01xi , Rii=Q11+x
2
iQ22 ,

Rij =xixjQ22 , i, j=1, 2, 3; i 6= j .
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In the same way, an energy-momentum tensorWαβ satis-
fying the equations of gravitation related to (2.2) is defined
by four functions of (t, ρ), say E00, E01, E11, E22:

W00 = E00 , W0i = xiE01 , Wii = E11 + x
2
iE22 ,

Wij = xixjE22 , i, j = 1, 2, 3; i 6= j .

Moreover, since the scalar curvature R=Q is Θ(4)-
invariant, it is a function of (t, ρ): R=Q=Q(t, ρ).

It follows that the equations of gravitation (with cosmo-
logical constant −3λ)

Rαβ −

(
Q

2
+ 3λ

)

gαβ +
8πk

c4
Wαβ = 0

can be written from the outset as a system of four equations
depending uniquely on (t, ρ):

Q00 −

(
Q

2
+ 3λ

)

f2 +
8πk

c4
E00 = 0 ,

Q01 −

(
Q

2
+ 3λ

)

ff1 +
8πk

c4
E01 = 0 ,

Q11 +

(
Q

2
+ 3λ

)

`21 +
8πk

c4
E11 = 0 ,

Q22 −

(
Q

2
+ 3λ

)(
`21 − `

2

ρ2
+ f21

)

+
8πk

c4
E22 = 0 .

Note that it is often convenient to replace the last equation
by the equation

Q11+ρ
2Q22−

(
Q

2
+3λ

)
(
ρ2f21−`

2
)
+
8πk

c4
(
E11+ρ

2E22
)
=0.

In order to apply these equations to special situations, it
is necessary to give the explicit expressions of Q00, Q01,
Q11, Q22 by means of the functions Bα, (α = 0, 1, 2, ..., 9),
appearing in the Christoffel symbols. We recall the results of
computation

Q00 =
∂

∂t

(
3B5 + ρ

2B6
)
− ρ

∂B2
∂ρ

−

−B2
(
3 + 4ρ2B9 − ρ

2B1 + ρ
2B8 + ρ

2B7
)
−

− 3B0B5 + 3B
2
5 + ρ

2B6
(
−B0 + 2B5 + ρ

2B6
)
,

Q01 =
∂

∂t

(
ρ2B7 +B8 + 4B9

)
−
1

ρ

∂B5
∂ρ

− ρ
∂B6
∂ρ

+

+B2
(
B3+ρ

2B4
)
− 2B6

(
2+ρ2B9

)
−B1

(
3B5+ρ

2B6
)
,

Q11 = −
∂B3
∂t

− ρ
∂B8
∂ρ

−
(
B0 +B5 + ρ

2B6
)
B3+

+
(
1− ρ2B8

)(
B1 + ρ

2B7 +B8 + 2B9
)
− 3B8 ,

Q22 = −
∂B4
∂t

+
1

ρ

∂

∂ρ
(B1 +B8 + 2B9) +B

2
1 +B

2
8 −

− 2B29 − 2B1B9 + 2B3B6 +
(
−B0 −B5 + ρ

2B6
)
B4+

+
(
−3 + ρ2 (−B1 +B8 − 2B9)

)
B7 .

4 Stationary vacuum solutions

The radial motion of the isotropic spherical distribution of
matter generates a non-stationary (dynamical) gravitational
field extending beyond the boundary in the exterior space.
This field is defined by non-stationaryΘ(4)-invariant vacuum
solutions of the equations of gravitation and exhibits essential
and unusual features related to the propagation of gravitation.
Several problems related to it are not yet clarified. But, in
any case, in order to establish and understand the dynamical
solutions, a previous knowledge of the stationary solutions
is necessary. This is why, in the sequel we confine ourselves
to the simple problems related to the stationary vacuum
solutions. So we suppose that we have a stationary metric

ds2 =
(
fdt+f1 (xdx)

)2
− `21dx

2−
`2 − `21
ρ2

(xdx)
2
, (4.1)

where f=f(ρ), f1=f1(ρ), `1=`1(ρ), `=`(ρ).
Of course, we have also to take into account the signif-

icant functions

h = h(ρ) = ρf1(ρ) , g = g(ρ) = ρ`1(ρ) ,

which are not differentiable at the origin (0, 0, 0). Every half-
line issuing from the origin, x1=α1ρ , x2=α2ρ , x3=α3ρ
(where 06 ρ<+∞ and α21+α

2
2+α

2
3=1) is a geodesic of

the spatial metric `21dx
2+

`2−`21
ρ2

(xdx)
2 so that the geodesic

distance δ of the origin from the point x=(x1, x2, x3) is
defined by the integral

δ =

∫ ρ

0

`(u)du, ρ = ‖x‖.

As already noticed, the function `(ρ), where 06 ρ<+∞,
is strictly positive, but it cannot be arbitrarily given. Suppose,
for instance, that

`(ρ) =
ε

ρ2
, ε = const > 0

on [1,+∞ [ . Then the geodesic distance δ=
∫ 1
0
`(u)du+

+
∫ ρ
1

ε
u2
du=

∫ 1
0
`(u)du+ ε− ε

ρ tends to the finite value
∫ 1
0
`(u)du+ ε as ρ→∞, which cannot be physically ac-

cepted. Consequently the positive function `(ρ) is allowable
only if the integral

∫ ρ
0
`(u)du tends to +∞ as ρ→+∞.

This being said, it is easy to see that the functions Bα =
Bα(ρ), (α=0, 1, . . . , 9), occurring in the Christoffel sym-
bols resulting from the stationary metric (4.1) are defined by
the following formulae:

B0 = −
hf ′

`2
, B1 =

f ′

ρf
−
h2f ′

ρf`2
,

B2 =
ff ′

ρ `2
, B3 =

hgg′

ρ2f`2
,

B4 =
hf ′

ρ2f2
−

h3f ′

ρ2f2`2
+
h′

ρ2f
−
h`′

ρ2f`
−
hgg′

ρ4f`2
,
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B5 = 0 , B6 =
hf ′

ρ2`2
,

B7 =
h2f ′

ρ3f`2
+
`′

ρ3`
+
gg′

ρ5`2
−
2g′

ρ3g
+
1

ρ4
,

B8 =
1

ρ2
−
gg′

ρ3`2
, B9 = −

1

ρ2
+
g′

ρg
.

Then inserting these expressions in the formulae brought
out at the end of the previous section, we find the functions

Q00 = f

(

−
f ′′

`2
+
f ′`′

`3
−
2f ′g′

`2g

)

, g = ρ`1 ,

Q01 =
h

ρf
Q00 , h = ρf1 ,

Q11 =
1

ρ2

(

−1 +
g′2

`2
+
gg′′

`2
−
`′gg′

`3
+
f ′gg′

f`2

)

,

Q11 + ρ
2Q22 =

f ′′

f
+
2g′′

g
−
f ′`′

f`
−
2`′g′

`g
+
h2

f2
Q00 ,

which are everywhere valid, namely outside as well as inside
the matter, Specifically, by using them, we can establish the
gravitational equations outside the matter with electromag-
netic field and cosmological constant. However, in the pre-
sent short account, our purpose is to put forward the most
significant elementary facts, and this is why we confine our-
selves to the pure gravitational field outside the matter with-
out cosmological constant. Then Q=R=0, λ=0, so that
Q00=0, Q01=0, Q11=0, Q11+ρ2Q22=0. Since Q00=0
impliesQ01=0, we have finally the following three equations

−f ′′ +
f ′`′

`
−
2f ′g′

g
= 0 , (4.2)

−1 +
g′2

`2
+
gg′′

`2
−
`′gg′

`3
+
f ′gg′

f`2
= 0 , (4.3)

f ′′ +
2fg′′

g
−
f ′`′

`
−
2f`′g′

`g
= 0 , (4.4)

By adding (4.2) to (4.4) we obtain

f ′g′

f
= g′′ −

`′g′

`
(4.5)

and inserting this expression of f ′g′

f
into (4.3), we find the

equation
−1 +

g′2

`2
+
2gg′′

`2
−
2`′gg′

`3
= 0

which implies d
dρ

(
−g+ gg′2

`2

)
=0 so that

−g +
gg′2

`2
= −2A = const. (4.6)

On the other hand (4.5) can be written as (f`)′g′=(f`) g′′

whence d
dρ

(
g′

f`

)
=0 and

f` = cg′, (where c = const) . (4.7)

The equations (4.6) and (4.7) define the general stationary
solution outside the matter. The function h does not appear
in them, but it is not empty of physical meaning as is usually

believed. It occurs in the problem as a function satisfying
the condition |h| 6 `. The different allowable choices of h
correspond to different significations of the time coordinate.

Proposition 4.1. If A=0, the solution defined by (4.6) and
(4.7) is a pseudo-Euclidean metric (or, better, a family of
pseudo-Euclidean metrics).
Proof. On account of A=0, (4.6) implies g′= ` and next
(4.7) gives f=c. Referring to (4.1) and setting

∫ ρ
0
vf(v)dv=

=α (ρ), we have

dα(ρ) = ρf1(ρ)dρ = f1(ρ)xdx

and
f(ρ)dt+ f1(ρ)xdx = d

(
ct+ α (ρ)

)
,

which suggests the transformation τ = t+ α(ρ)
c . On the other

hand, since `= g′= (ρ`1)′= ρ`′1+ `1, we have

`21dx
2+
`2−`21
ρ2

(xdx)2=`21dx
2+2`1`

′
1
(xdx)2

‖x‖
+ `′

2
1 (xdx)

2 =

=

(
`1dx1 + x1`

′
1
xdx

ρ

)2
+

(
`1dx2 + x2`

′
1
xdx

ρ

)2
+

+

(
`1dx3+x3`

′
1
xdx

ρ

)2
=
(
d (`1x1)

)2
+
(
d (`1x2)

)2
+
(
d (`1x3)

)2

so that by setting y1= `1x1, y2= `1x2, y3= `1x3, we ob-
tain the metric in the standard pseudo-Euclidean form ds2=
= c2dτ 2− (dy21 + dy

2
2 + dy

2
3). In the sequel we give up this

trivial case and assume A 6= 0.

5 Punctual sources of the gravitational field do not exist

(4.6) is a first order differential equation with respect to the
unknown function g = g(ρ), so that its general solution
depends on an arbitrary constant. But (4.6) contains already
the constant A and moreover the function ` = `(ρ) which
is not given. Consequently the general solution of (4.6)
contains two constants. Moreover, it seems that it depends
on the function `(ρ), namely that to every allowable function
`(ρ) there corresponds a solution of (4.6) depending on two
constants. However, we can prove that the function `(ρ) is
not actually involved in the general solution of (4.6).

Since the geodesic distance δ=
∫ ρ
0
`(u)du=β (ρ) is a

strictly increasing function of ρ tending to +∞ as ρ→+∞,
the inverse function ρ = γ (δ) is also a strictly increasing
function of δ tending to +∞ as δ→+∞. Consequently g (ρ)
can be considered as a function of δ:

G(δ) = g
(
γ (δ)

)
.

It follows that the determination of G(δ) as a function of
the geodesic distance δ, which possesses an intrinsic meaning
with respect to the stationary metric, allows its definition
with respect to any other radial coordinate depending diffeo-
morphically on δ.
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Now, since δ = β
(
γ(δ)

)
, we have 1= dβ

dρ
dρ
dδ
= `(ρ)γ ′(δ)

and G′=G′(δ)= g′(ρ)γ ′(δ)= g′(ρ)

`(ρ)
, so that the equation

(4.6) takes the form −G+GG′2=−2A or

GG′2 = G− 2A (5.1)

which does not contain the function `.
Regarding (4.7), it is obviously replaced by the equation

F = cG′

with F =F (δ)= f
(
γ(δ)

)
. The functions F andG are related

to a stationary metric which results from the stationary metric
(4.1) by the introduction of the new space coordinates:

yi =
δ

ρ
xi =

β(ρ)

ρ
xi , (5.2)

where i=1, 2, 3; ‖y‖=δ; ‖x‖=ρ. This transformation is
C∞ everywhere, even at the origin, because the function
B(ρ)= β(ρ)

ρ (where B(0)= `(0)) belongs to the algebra Γ0.

In fact, since β′(ρ)= `(ρ), we have β(ρ)= ρ
∫ 1
0
β′(ρu)du=

= ρ
∫ 1
0
`(ρu)du and

B(ρ) =

∫ 1

0

`(ρu)du ,

consequently B(2m+1)(ρ) =
∫ 1
0
`(2m+1)(ρu)u2m+1du and

since `∈Γ0 implies `(2m+1)(0) = 0, we obtain

B(2m+1) (0) = 0 , (m = 0, 1, 2, 3, . . . )

and, from proposition 2.1, it follows that B ∈ Γ0.
The inverse of (5.2) is defined by the equations

xi = Δ(δ)yi , i = 1, 2, 3 , (5.3)

where Δ(δ) = ρ
β(ρ)

= γ(δ)

δ
. Since γ (δ) = δ

∫ 1
0
γ ′ (δu)du =

= δ
∫ 1
0

du
`(γ(δu))

, it can be shown by induction that the function

Δ(δ) = γ(δ)

δ
=
∫ 1
0

du
`(γ(δu))

is an element of the algebra Γ0,
so that (5.3) is universally valid. A simple computation gives

xdx =
3∑

1

xidxi =
γγ ′

δ
(ydy) ,

dx2 =

3∑

1

dx2i =

(
γ ′2

δ2
−
γ2

δ4

)

(ydy)
2
+
γ2

δ2
dy2

so that, by setting F (δ)=f
(
γ(δ)

)
, F1(δ)=f1

(
γ(δ)

)γ(δ)γ ′(δ)
δ

,

L1(δ)= `1
(
γ(δ)

)γ(δ)
δ

, L(δ)= `
(
γ(δ)

)
γ ′(δ)= 1, we obtain

the transformed metric

ds2 =
(
Fdt+ F1(ydy)

)2
−

(

L21dy
2+
1−L21
δ2

(ydy)
2

)

(5.4)

which is related to the geodesic distance δ = ‖y‖ and the
functions F andG. Instead of h(ρ), we have now the function

H = H(δ) = δF1(δ), and moreover the invariant curvature
radius of the spheres δ = const. is given by the function

G = G(δ) = δL1(δ) .

Before solving the equation (5.1), we can anticipate that
the values of the solution G(δ) do not cover the whole
half-line [0,+∞ [ or, possibly, the whole open half-line
] 0,+∞ [ , because by taking a sequence of positive values
δn→ 0, we have G(δn)→ 0 and then the equation (5.1)
implies A=0 contrary to our assumption A 6=0. (This con-
clusion follows also from (4.6), because g(0)= 0 implies
A=0.) So, we are led to anticipate that the values of the
solution G(δ) cover a half-line [α,+∞ [ with α> 0. This
important property, which implies that the source of the field
cannot be reduced to a point, will be verified by the explicit
expression of the solution.

Now, since G(δ) > α> 0 and G− 2A > 0 according to
(5.1), the function G(δ) is obtained by the equation

dG

dδ
=

√

1−
2A

G

and since
√
1− 2A

G > 0, G(δ) is a strictly increasing funct-

ion of δ. Moreover G(δ) can not remain bounded because
dG
dδ
→ 1 as G→ +∞.
Technically, we have first to obtain the inverse function

δ = P (G) by integrating the equation

dδ

dG
=

1
√
1− 2A

G

which implies also that δ = P (G) is a strictly increasing and
not bounded function of G. Now, we introduce an auxiliary
fixed positive length ξ which will not appear in the final
result, but it is needed in order to carry out correctly the
computations. In fact, since G, A, G−2A represent also
lengths, the ratios G

ξ
, G−2A

ξ
are dimensionless, so that we

can introduce the logarithm

ln

(√
G
ξ
+

√
G− 2A
ξ

)

and since d
dG

(√
G (G−2A) + 2A ln

(√
G
ξ
+
√

G−2A
ξ

))
=

= 1√
1− 2A

G

the preceding equation gives δ=P (G),

δ = B+
√
G(G− 2A)+2A ln

(√
G
ξ
+

√
G− 2A
ξ

)

(5.5)

where B= const. It follows that

δ

G(δ)
=
P (G)

G
=
B

G
+

√

1−
2A

G
+
2A

G
ln

(√
G
ξ
+

√
G−2A
ξ

)

and since we have 2A
G
ln
(√

G
ξ
+
√

G−2A
ξ

)
= 2A

G
ln
√

G
ξ
+

+ 2A
G
ln
(
1 +

√
1− 2A

G

)
→ 0 as G→+∞ we have
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δ

G(δ)
= 1 + ε(δ),

G(δ)

δ
=

1

1 + ε(δ)

with ε(δ)→ 0 as δ→+∞. This property allows to determine
the constant A by using the so-called Newtonian approxim-
ation of the metric (5.4) for the great values of the distance δ.
Classically this approximation is referred to the static metric,
namely to the case where F1=0. We have already seen that
|δF1(δ)|6 1, but this condition does not imply that δF1(δ)
possesses a limit as δ→+∞. So we accept the condition
F1(δ)= 0 for the derivation of the Newtonian approximation,
without forgetting that we have to do with a specific choice
of F1 used for convenience in the case of a special problem.

This being said, the Newtonian approximation is obtain-
ed by setting ε(δ)= 0 and F1=0 . Then since F = cG′=

= c
√
1− 2A

G
= c
√
1− 2A

δ
− 2Aε (δ)

δ
, 1−L21=1−

(
1

1+ε (δ)

)
2
,

and ‖y‖
δ
=1, we get the form

ds2 = c2
(

1−
2A

δ

)

dt2 − dy2

which, by means of a known argument, leads to identify c2A
δ

with km
δ

, whence A = km
c2
= μ.

Since G− 2A> 0, we have G(δ)> 2μ, so that, as anti-
cipated, G(δ) possesses the strictly positive greatest lower
bound 2μ, which, as we see, is independent of the second
constant B appearing in the solution (5.5). It follows that
the strictly increasing function G(δ) appears as an implicit
function defined by the equation

δ = B +
√
G (G− 2μ) + 2μ ln

(√
G
ξ
+

√
G− 2μ
ξ

)

.

The greatest lower bound 2μ is obtained for δ=B+

+ 2μ ln
√

2μ
ξ and this is why it is convenient to introduce, in-

stead ofB, the constant δ0=B+2μ ln
√

2μ
ξ

, which allows to

write δ= δ0+
√
G (G− 2μ)+2μ ln

(√
G
2μ+

√
G
2μ−1

)
or

δ = δ0 +

∫ G

2μ

du
√
1− 2μ

u

, G = G(δ) > 2μ

which does not contain the auxiliary length ξ. The solution
is completed by the determination of the function

F = cG′ = c

√

1−
2μ

G (δ)
.

As far as H(δ)= δF1(δ) is concerned, we repeat that it
is introduced simply as a C∞ function vanishing for δ=0
and satisfying the condition |H(δ)|6 1.

What about the new constant δ0 ? From the mathematical
point of view, negative values of δ0 are not excluded. So, we
distinguish the following cases (see Figure):

(a) δ0< 0. Then the values of G(δ) for δ06 δ < 0 are
meaningless physically, because G(δ) is conceived on
[0,+∞ [ . But the value δ=0 is also excluded because

∫ G(0)

2μ

du
√
1− 2μ

u

=−δ0> 0

implies G(0)> 2μ contrary to the geometrical cond-
ition G(0)= 0. Consequently there exists a constant
δ1> 0 (the radius of the considered distribution of
matter) such that only the restriction of G(δ) to
[δ1,+∞ [ is taken into account.

(b) δ0=0. Then
∫ G(0)

2μ

du
√
1− 2μ

u

= 0

so that G(0)= 2μ contrary to the geometrical cond-
ition G(0)= 0. Consequently the solution is valid, as
previously, on a half-line [δ1,+∞ [ with δ1> 0.

(c) δ0> 0. Then G(δ0)= 2μ, F (δ0)= 0, so that the metric
degenerates for δ= δ0. A degenerate metric does not
possess physical meaning. Consequently, there exists
a constant δ1>δ0 (the radius of the sphere bounding
the matter) such that the solution is physically valid
only on the half-line [δ1,+∞ [ .

Whatever the case may be, the vacuum solution is not de-
fined for δ < δ1. In other words, the ball ‖y‖6 δ1 is occupied
by matter, so that the source of the field cannot be reduced to
a point. The constant δ0 is related to a boundary condition,
namely the value of the curvature radius of the sphere bound-
ing the matter. In fact, if δ1 is the radius of this sphere, and the
value G(δ1) is known, then the value δ0 is easily obtained:

δ0 = δ1 −
√
G(δ1) (G(δ1)− 2μ) −

− 2μ ln

(√
G(δ1)
2μ

+

√
G(δ1)
2μ

− 1

)

.
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However, it is difficult, even impossible, to obtain G(δ1)
by direct measurements. So the value δ0 is to be found
indirectly by taking into account the phenomena induced
by δ0. This problem will be treated in another paper.

The most impressive characteristic of the solution is per-
haps the non-Euclidean structure of the space and specifically
the strong non-Euclidean properties in the neighbourhood
of the origin. If the theory is applicable to the elementary
particles, then strong deviations from the Euclidean geometry
are to be expected in the world of microphysics. Together
with the new geometrical ideas, the solution brings about an
improvement of the law of gravitation in accordance with
Poincaré’s prediction: “Il est difficile de ne pas supposer
que la loi véritable contient des termes complémentaires qui
deviendraient sensibles aux petites distances” [1]. In fact, the
Newton potential

−
km

δ
is an approximation of the more accurate expression

−
km

G(δ)

which depends on the curvature radius G(δ). There is a sign-
ificant discrepancy between the two formulae. Although, as
shown earlier, the ratio G(δ)

δ
converges to 1, the difference

δ −G(δ) = P (G)−G = δ0 +

+ 2μ ln

(√
G
2μ
+

√
G
2μ
− 1

)

−
2μ

1 +
√
1− 2μ

G

tends to +∞ as δ→+∞. Moreover G(δ) depends not only
on the radius δ, but also on the constant δ0. Of course, the dis-
tinction between Newton’s theory and Einstein’s theory does
not reduce to the distinction between δ and G(δ). Einstein’s
theory provides a new entity, namely a spacetime metric.

A last question regards the “boundary conditions at in-
finity”. Classically it is required that the metric admit as
limit form the standard pseudo-Euclidean metric as δ→+∞.
Since, as already remarked, δF1(δ) does not possess a limit
as δ→+∞, this requirement presupposes that F1=0, name-
ly that we are dealing with a static metric. Then the metric
can be written as

ds2 = c2
(

1−
2μ

G(δ)

)

dt2−

−

((
G(δ)

δ

)2
dy2 +

1

δ2

(

1−

(
G(δ)

δ

)2)

(ydy)
2

)

and since G(δ)→+∞, G(δ)
δ
→ 1, ‖y‖

δ
=1, we find, in fact,

“at infinity” the standard pseudo-Euclidean form

ds2 = c2dt2 − dy2.

Note that, if we introduce the so-called polar coordinates,
this conclusion fails. In fact, then we have the form

ds2 = c2
(

1−
2μ

G(δ)

)

dt2−
(
dδ2+

(
G(δ)

)2(
sin2 θdφ2+dθ2

))

which does not possess a limit form as δ→+∞.

6 Black holes do not exist

The pseudo-theory of black holes appeared as a consequence
of misunderstandings and mathematical errors brought out
in detail in the papers [3, 5, 6]. We emphasize that the
so-called “horizon” does not represent an observable value
of the curvature radius G(δ). According to the established
rigorous solution, 2μ is the greatest lower bound of the
vacuum solution G(δ) and is defined for a certain value
δ0 of the new constant. If δ06 0 there exists no real sphere
with the curvature radius 2μ, and the physically valid part
of the solution is defined for δ> δ1, where δ1 is a strictly
positive value such that G(δ1)> 2μ. On the other hand,
if δ0> 0, the degeneracy of the metric for δ= δ0 implies
that the corresponding sphere lies inside the matter, so that
the vacuum solution is valid for δ> δ1 where δ1>δ0 and
G(δ1)> 2μ. Whatever the case may be, the notion of black
hole is inconceivable.

References
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