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We explore Yang’s Noncommutative space-time algebra (involving two length scales)
within the context of QM defined in Noncommutative spacetimes and the holographic
area-coordinates algebra in Clifford spaces. Casimir invariant wave equations
corresponding to Noncommutative coordinates and momenta in d-dimensions can be
recast in terms of ordinary QM wave equations in d+2-dimensions. It is conjectured
that QM over Noncommutative spacetimes (Noncommutative QM) may be described
by ordinary QM in higher dimensions. Novel Moyal-Yang-Fedosov-Kontsevich star
products deformations of the Noncommutative Poisson Brackets are employed to
construct star product deformations of scalar field theories. Finally, generalizations
of the Dirac-Konstant and Klein-Gordon-like equations relevant to the physics of
D-branes and Matrix Models are presented.

1 Introduction

Yang’s noncommutative space time algebra [1] is a generali-
zation of the Snyder algebra [2] (where now both coordinates
and momenta are not commuting) that has received more
attention recently, see for example [3] and references therein.
In particular, Noncommutative p-brane actions, for even p+1
= 2n-dimensional world-volumes, were written explicitly
[15] in terms of the novel Moyal-Yang (Fedosov-Kontsevich)
star product deformations [11, 12] of the Noncommutative
Nambu Poisson Brackets (NCNPB) that are associated with
the noncommuting world-volume coordinates qA, pA forA =
= 1, 2, 3, . . . n. The latter noncommuting coordinates obey
the noncommutative Yang algebra with an ultraviolet LP
(Planck) scale and infrared (R) scale cutoff. It was shown
why the novel p-brane actions in the “classical” limit ~eff =
= ~LP /R→ 0 still acquire nontrivial noncommutative cor-
rections that differ from ordinary p-brane actions. Super p-
branes actions in the light-cone gauge are also amenable to
Moyal-Yang star product deformations as well due to the fact
that p-branes moving in flat spacetime backgrounds, in the
light-cone gauge, can be recast as gauge theories of volume-
preserving diffeomorphisms. The most general construction
of noncommutative super p-branes actions based on non
(anti) commuting superspaces and quantum group methods
remains an open problem.

The purpose of this work is to explore further the conse-
quences of Yang’s Noncommutative spacetime algebra within
the context of QM in Noncommutative spacetimes and the
holographic area-coordinates algebra in Clifford spaces [14].
In section 2 we study the interplay among Yang’s Noncom-
mutative spacetime algebra and the former area-coordinates
algebra in Clifford spaces. In section 3 we show how Casimir
invariant wave equations corresponding to Noncommutative
coordinates and momenta in D-dimensions, can be recast in

terms of ordinary QM wave equations in D+2-dimensions.
In particular, we shall present explicit solutions of the D’Ala-
mbertian operator in the bulk of AdS spaces and explain its
correspondence with the Casimir invariant wave equations
associated with the Yang’s Noncommutative spacetime al-
gebra at the projective boundary of the conformally compact-
ified AdS spacetime. We conjecture that QM over Noncom-
mutative spacetimes (Noncommutative QM) may be describ-
ed by ordinary QM in higher dimensions.

In section 4 we recur to the novel Moyal-Yang (Fedosov-
Kontsevich) star products [11, 12] deformations of the Non-
commutative Poisson Brackets to construct Moyal-Yang star
product deformations of scalar field theories. The role of
star products in the construction of p-branes actions from
the large N limit of SU(N) Yang-Mills can be found in [6]
and in the Self-Dual Gravity/SU(∞) Self Dual Yang-Mills
relation in [7, 8, 9, 10]. Finally, in the conclusion 5, we
present the generalizations of the Dirac-Konstant equations
(and their “square” Klein-Gordon type equations) that are
relevant to the incorporation of fermions and the physics of
D-branes and Matrix Models.

2 Noncommutative Yang’s spacetime algebra in terms
of area-coordinates in Clifford spaces

The main result of this section is that there is a subalgebra of
the C-space operator-valued coordinates [13] which is iso-
morphic to the Noncommutative Yang’s spacetime algebra
[1, 3]. This, in conjunction to the discrete spectrum of angular
momentum, leads to the discrete area quantization in multi-
ples of Planck areas. Namely, the 4D Yang’s Noncommutat-
ive space-time algebra [3] (written in terms of 8D phase-
space coordinates) is isomorphic to the 15-dimensional sub-
algebra of the C-space operator-valued coordinates associat-
ed with the holographic areas of C-space. This connection
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between Yang’s algebra and the 6D Clifford algebra is pos-
sible because the 8D phase-space coordinates xμ, pμ (assoc-
iated to a 4D spacetime) have a one-to-one correspondence
to the X̂μ5; X̂μ6 holographic area-coordinates of the C-space
(corresponding to the 6D Clifford algebra). Furhermore,
Tanaka [3] has shown that the Yang’s algebra [1] (with
15 generators) is related to the 4D conformal algebra (15
generators) which in turn is isomorphic to a subalgebra of
the 4D Clifford algebra because it is known that the 15
generators of the 4D conformal algebra SO(4, 2) can be
explicitly realized in terms of the 4D Clifford algebra as
shown in [13].

The correspondence between the holographic area coord-
inates XAB↔λ2ΣAB and the angular momentum variables
when A,B= 1, 2, 3, . . . 6 yields an isomorphism between the
holographic area coordinates algebra in Clifford spaces [14]
and the noncommutative Yang’s spacetime algebra in D= 4.
The scale λ is the ultraviolet lower Planck scale. We begin
by writing the exchange algebra between the position and
momentum coordinates encapsulated by the commutator

[
X̂μ6, X̂56

]
= −iλ2η66X̂μ5 ↔

[
λ2R

~
p̂μ, λ2Σ56

]

= −iλ2η66λx̂μ
(2.1)

from which we can deduce that

[
p̂μ, Σ56

]
= −iη66

~
λR

x̂μ, (2.2)

hence, after using the definition N =(λ/R)Σ56, where R
is the infrared upper scale, one has the exchange algebra
commutator of pμ and N of the Yang’s spacetime algebra
given by

[p̂μ,N ] = −iη66
~
R2
x̂μ. (2.3)

From the commutator
[
X̂μ5, X̂56

]
= −

[
X̂μ5, X̂65

]
= iη55λ2X̂μ6 ↔

[
λx̂μ, λ2Σ56

]
= iη55λ2λ2

R

~
p̂μ

(2.4)

we can deduce that

[
x̂μ,Σ56

]
= iη55

λR

~
p̂μ (2.5)

and after using the definition N =(λ/R)Σ56 one has the
exchange algebra commutator of xμ and N of the Yang’s
spacetime algebra

[x̂μ,N ] = iη55
λ2

~
p̂μ. (2.6)

The other relevant holographic area-coordinates commu-
tators in C-space are
[
X̂μ5, X̂ν5

]
=−iη55λ2X̂μν ↔ [x̂μ, x̂ν ]=−iη55λ2Σμν (2.7)

that yield the noncommuting coordinates algebra after having
used the representation of the C-space operator holographic

area-coordinates

iX̂μν ↔ iλ2
1

~
Mμν = iλ2Σμν , iX̂56 ↔ iλ2Σ56, (2.8)

where we appropriately introduced the Planck scale λ as one
should to match units. From the correspondence

p̂μ =
~
R
Σμ6 ↔

~
R

1

λ2
X̂μ6 (2.9)

one can obtain nonvanishing momentum commutator
[
X̂μ6, X̂ν6

]
=−iη66λ2X̂μν↔ [p̂μ, p̂ν ]=−iη66

~2

R2
Σμν. (2.10)

The signatures for AdS5 space are η55=+1; η66=−1
and for the Euclideanized AdS5 space are η55=+1 and
η66=+1. Yang’s space-time algebra corresponds to the latter
case. Finally, the modified Heisenberg algebra can be read
from the following C-space commutators

[
X̂μ5, X̂ν6

]
= iημνλ2X̂56 ↔

[x̂μ, p̂μ] = i~ημν
λ

R
Σ56 = i~ημνN .

(2.11)

Eqs-(2.1–2.11) are the defining relations of Yang’s Non-
commutative 4D spacetime algebra [1] involving the 8D
phase-space variables. These commutators obey the Jacobi
identities. There are other commutation relations like [Mμν ,
xρ], . . . that we did not write down. These are just the well
known rotations (boosts) of the coordinates and momenta.

When λ→ 0 and R→∞ one recovers the ordinary com-
mutative spacetime algebra. The Snyder algebra [2] is reco-
vered by setting R→∞ while leaving λ intact. To recover
the ordinary Weyl-Heisenberg algebra is more subtle. Tanaka
[3] has shown the the spectrum of the operatorN=(λ/R)Σ56

is discrete given by n(λ/R). This is not suprising since
the angular momentum generator M56 associated with the
Euclideanized AdS5 space is a rotation in the now compact
x5 − x6 directions. This is not the case in AdS5 space since
η66=−1 and this timelike direction is no longer compact.
Rotations involving timelike directions are equivalent to non-
compact boosts with a continuous spectrum.

In order to recover the standard Weyl-Heisenberg algebra
from Yang’s Noncommutative spacetime algebra, and the
standard uncertainty relations ΔxΔp > ~ with the ordinary
~ term, rather than the n~ term, one needs to take the limit
n → ∞ limit in such a way that the net combination of
n λR → 1. This can be attained when one takes the double
scaling limit of the quantities as follows

λ→ 0 , R→∞ , λR→ L2,

lim
n→∞

n
λ

R
= n

λ2

λR
=
nλ2

L2
→ 1.

(2.12)

From eq-(2.12) one learns then that

nλ2 = λR = L2. (2.13)

The spectrum n corresponds to the quantization of the
angular momentum operator in the x5−x6 direction (after
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embedding the 5D hyperboloid of throat size R onto 6D).
Tanaka [3] has shown why there is a discrete spectra for the
spatial coordinates and spatial momenta in Yang’s spacetime
algebra that yields a minimum length λ (ultraviolet cutoff
in energy) and a minimum momentum p= ~/R (maximal
length R, infrared cutoff). The energy and temporal coord-
inates had a continous spectrum.

The physical interpretation of the double-scaling limit
of eq-(2.12) is that the the area L2=λR becomes now
quantized in units of the Planck area λ2 as L2=nλ2. Thus
the quantization of the area (via the double scaling limit)
L2=λR=nλ2 is a result of the discrete angular momentum
spectrum in the x5−x6 directions of the Yang’s Noncommu-
tative spacetime algebra when it is realized by (angular mo-
mentum) differential operators acting on the Euclideanized
AdS5 space (two branches of a 5D hyperboloid embedded
in 6D). A general interplay between quantum of areas and
quantum of angular momentum, for arbitrary values of spin,
in terms of the square root of the CasimirA ∼ λ2

√
j (j + 1),

has been obtained a while ago in Loop Quantum Gravity by
using spin-networks techniques and highly technical area-
operator regularization procedures [4].

The advantage of this work is that we have arrived at
similar (not identical) area-quantization conclusions in terms
of minimal Planck areas and a discrete angular momentum
spectrum n via the double scaling limit based on Clifford
algebraic methods (C-space holographic area-coordinates).
This is not surprising since the norm-squared of the holo-
graphic Area operator has a correspondence with the quad-
ratic Casimir ΣABΣAB of the conformal algebra SO(4, 2)
(SO(5, 1) in the Euclideanized AdS5 case). This quadratic
Casimir must not be confused with the SU(2) Casimir J2

with eigenvalues j (j+ 1). Hence, the correspondence given
by eqs-(2.3–2.8) gives A2 ↔ λ4ΣABΣ

AB .
In [5] we have shown whyAdS4 gravity with a topologic-

al term; i. e. an Einstein-Hilbert action with a cosmological
constant plus Gauss-Bonnet terms can be obtained from the
vacuum state of a BF-Chern-Simons-Higgs theory without
introducing by hand the zero torsion condition imposed in the
McDowell-Mansouri-Chamsedine-West construction. One of
the most salient features of [5] was that a geometric mean
relationship was found among the cosmological constant Λc,
the Planck area λ2 and theAdS4 throat size squaredR2 given
by (Λc)−1 = (λ)2(R2). Upon setting the throat size to be of
the order of the Hubble scale RH and λ = LP (Planck scale),
one recovers the observed value of the cosmological constant
L−2P R

−2
H =L−4P (LP /RH)

2∼ 10−120M4
P . A similar geo-

metric mean relation is also obeyed by the condition λR=
=L2(=nλ2) in the double scaling limit of Yang’s algebra
which suggests to identify the cosmological constant as Λc=
=L−4. This geometric mean condition remains to be invest-
igated further. In particular, we presented the preliminary
steps how to construct a Noncommutative Gravity via the
Vasiliev-Moyal star products deformations of the SO(4, 2)

algebra used in the study of higher conformal massless spin
theories in AdS spaces by taking the inverse-throat size 1/R
as a deformation parameter of the SO(4, 2) algebra. A Moyal
deformation of ordinary Gravity via SU(∞) gauge theories
was advanced in [7].

3 Noncommutative QM in Yang’s spacetime from
ordinary QM in higher dimensions

In order to write wave equations in non-commuting space-
times we start with a Hamiltonian written in dimensionless
variables involving the terms of the relativistic oscillator
(let us say oscillations of the center of mass) and the rigid
rotor/top terms (rotations about the center of mass)

H =

(
pμ
~/R

)2
+

(
xμ
LP

)2
+
(
Σμν

)2
(3.1)

with the fundamental difference that the coordinates xμ and
momenta pμ obey the non-commutative Yang’s space time
algebra. For this reason one cannot naively replace pμ any
longer by the differential operator −i~∂/∂xμ nor write the
Σμν generators as 1

~
(xμ∂xν−x

ν∂xμ). The correct coordinate
realization of Yang’s noncommutative spacetime algebra re-
quires, for example, embedding the 4-dim space into 6-dim
and expressing the coordinates and momenta operators as
follows

pμ
(~/R)

↔ Σμ6 = i
1

~

(
Xμ∂X6 −X

6∂Xμ

)
,

xμ
LP

↔ Σμ5 = i
1

~

(
Xμ∂X5 −X

5∂Xμ

)
,

Σμν ↔ i
1

~

(
Xμ∂Xν −X

ν∂Xμ

)
,

N = Σ56 ↔ i
1

~

(
X5∂X6 −X

6∂X5

)
.

(3.2)

This allows to express H in terms of the standard angular
momentum operators in 6-dim. The XA=Xμ, X5, X6 co-
ordinates (μ= 1, 2, 3, 4) and PA=Pμ, P 5, P 6 momentum
variables obey the standard commutation relations of ordi-
nary QM in 6-dim, namely —

[
XA, XB

]
=0,

[
PA, PB

]
=0,[

XA, PB
]
= i~ηAB , so that the momentum admits the stand-

ard realization as PA=−i~∂/∂XA.
Therefore, concluding, the Hamiltonian H in eq-(3.1)

associated with the non-commuting coordinates xμ and mo-
menta pμ in d− 1-dimensions can be written in terms of the
standard angular momentum operators in (d−1)+2 = d+1-
dim as H = C2 − N 2, where C2 agrees precisely with the
quadratic Casimir operator of the SO(d−1, 2) algebra in the
spin s = 0 case,

C2=ΣABΣ
AB=(XA∂B−XB∂A)(X

A∂B−XB∂A) . (3.4)

One remarkable feature is that C2 also agrees with the
d’Alambertian operator for the Anti de Sitter Space AdSd of
unit radius (throat size) (DμDμ)AdSd as shown by [18].

88 C. Castro. On Area Coordinates and Quantum Mechanics in Yang’s Noncommutative Spacetime with a Lower and Upper Scale



April, 2006 PROGRESS IN PHYSICS Volume 2

The proof requires to show that the d’Alambertian oper-
ator for the d+1-dim embedding space (expressed in terms of
the XA coordinates) is related to the d’Alambertian operator
in AdSd space of unit radius expressed in terms of the
z1, z2, . . . , zd bulk intrinsic coordinates as

(DμD
μ)Rd+1 = −

∂2

∂ρ2
−
d

ρ

∂

∂ρ
+
1

ρ2
(DμD

μ)AdS ⇒

C2=ρ
2(DμD

μ)Rd+1+

[
(d−1)+ρ

∂

∂ρ

]
ρ
∂

∂ρ
=(DμD

μ)AdSd .

(3.5)

This result is just the hyperbolic-space generalization
of the standard decomposition of the Laplace operator in
spherical coordinates in terms of the radial derivatives plus a
term containing the square of the orbital angular momentum
operator L2/r2. In the case of nontrivial spin, the Casimir
C2 = ΣABΣ

AB+SABS
AB has additional terms stemming

from the spin operator.
The quantity Φ(z1, z2, . . . , zd)|boundary restricted to the

d− 1-dim projective boundary of the conformally compact-
ified AdSd space (of unit throat size, whose topology is
Sd−2×S1) is the sought-after solution to the Casimir invar-
iant wave equation associated with the non-commutative xμ

coordinates and momenta pμ of the Yang’s algebra (μ=
= 1, 2, . . . , d−1). Pertaining to the boundary of the conform-
ally compactified AdSd space, there are two radii R1, R2
associated with Sd−2 and S1, respectively, and which must
not be confused with the two scales R, LP appearing in eq-
(3.1). One can choose the units such that the present value
of the Hubble scale (taking the Hubble scale as the infrared
cutoff) is R= 1. In these units the Planck scale LP will be
of the order of LP ∼ 10−60. In essence, there has been a
trade-off of two scales LP , R with the two radii R1, R2.

Once can parametrize the coordinates of AdSd=AdSp+2
by writing there, according to [17], X0=R cosh(ρ) cos(τ ),
Xp+1=R cosh(ρ) sin(τ ), Xi=R sinh(ρ)Ωi.

The metric of AdSd=AdSp+2 space in these coordinates
is ds2=R2

[
−(cosh2 ρ)dτ 2+ dρ2+(sinh2 ρ)dΩ2

]
, where

06 ρ and 06 τ < 2π are the global coordinates. The topo-
logy of this hyperboloid is S1×R p+1. To study the causal
structure of AdS it is convenient to unwrap the circle S1

(closed-timelike coordinate τ ) to obtain the universal cov-
ering of the hyperboloid without closed-timelike curves and
take −∞6 τ 6+∞. Upon introducing the new coordinate
06 θ < π

2 related to ρ by tan(θ)= sinh(ρ), the metric is

ds2 =
R2

cos2 θ

[
−dτ 2 + dθ2 + (sinh2 ρ)dΩ2

]
. (3.6)

It is a conformally-rescaled version of the metric of
the Einstein static universe. Namely, AdSd=AdSp+2 can
be conformally mapped into one-half of the Einstein static
universe, since the coordinate θ takes values 06θ< π

2 rather
than 06θ<π. The boundary of the conformally compactified
AdSp+2 space has the topology of Sp × S1 (identical to
the conformal compactification of the p + 1-dim Minkow-
ski space). Therefore, the equator at θ= π

2 is a boundary of

the space with the topology of Sp. Ωp is the solid angle
coordinates corresponding to Sp and τ is the coordinate
which parametrizes S1. For a detailed discussion of AdS
spaces and the AdS/CFT duality see [17].

The d’Alambertian in AdSd space (of radius R, later we
shall set R = 1) is

DμD
μ =

1
√
g
∂μ(
√
ggμν∂ν) =

=
cos2 θ

R2

[
−∂2τ+

1

(R tan θ)p
∂θ
(
(R tan θ)p∂θ

)
]
+

L2

R2 tan2 θ

(3.7)

where L2 is the Laplacian operator in the p-dim sphere Sp

whose eigenvalues are l (l+ p− 1).
The scalar field can be decomposed as follows

Φ=eωRτYl(Ωp)G(θ); the wave equation (DμDμ−m2)Φ=0

leads to the equation
[
cos2 θ

(
ω2+ ∂2θ +

p
tan θ cos2 θ

∂θ
)
+

+ l(l+p−1)
tan2 θ

−m2R2
]
G(θ) = 0, whose solution is

G(θ) = (sin θ)l (cos θ)λ± 2F1(a, b, c; sin θ) . (3.8)

The hypergeometric function is defined as

2F1(a, b, c, z) =
∑ (a)k(b)k

(c)kk!
zn, (3.9)

where |z|<1, (λ)0=1, (λ)k=
Γ(λ+k)
Γ(λ) =λ(λ+1)(λ+2) . . .

(λ+ k−1), k=1, 2, . . . , while a = 1
2 (l+λ±−ωR), b=

= 1
2 (l+λ±+ωR), c= l+ 1

2 (p+ 1)> 0, λ±=
1
2 (p+ 1)±

± 1
2

√
(p+ 1)2+ 4(mR)2.

The analytical continuation of the hypergeometric func-
tion for |z| > 1 is

2F1(a, b, c, z) =

=
Γ(c)

Γ(b)Γ(c− b)

∫ 1

0

tb−1(1− t)c−b−1(1− tz)−adt
(3.10)

with Real(c)> 0 and Real(b)> 0. The boundary value
when θ= π

2 gives

lim
z→1−

F (a, b, c; z) =
Γ(c)Γ(c− a− b)
Γ(c− a)Γ(c− b)

. (3.11)

Let us study the behaviour of the solution G(θ) in the
massless case: m=0, λ−=0, λ+= p+1.

Solutions with λ+=p+1 yield a trivial value of G(θ)=0
at the boundary θ = π

2 since cos (π2 )
p+1=0. Solutions with

λ−=0 lead to cos (θ)λ−=cos (θ)0= 1 prior to taking the
limit θ= π

2 . The expression cos (π2 )
λ− =00 is ill defined.

Upon using l’Hospital rule it yields 0. Thus, the limit θ= π
2

must be taken afterwards the limit λ−=0:

lim
θ→ π

2

[
cos(θ)λ−

]
= lim

θ→ π
2

[
cos(θ)0

]
= lim

θ→ π
2

[1] = 1. (3.12)
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In this fashion the value of G(θ) is well defined and
nonzero at the boundary when λ−=0 and leads to the value
of the wavefunction at the boundary of the conformally
compactified AdSd (for d = p+ 2 with radius R)

Φbound=e
iωτ Yl(Ωp)

Γ
(
l+ p+1

2

)
Γ
(
p+1
2

)

Γ
(
ωR+ l+p+1

2

)
Γ
(
−ωR+ l+p+1

2

) . (3.13a)

upon setting the radius of AdSd space to unity it gives

Φbound=e
iωτ Yl(Ωp)

Γ
(
l+ p+1

2

)
Γ
(
p+1
2

)

Γ
(
ω+ l+p+1

2

)
Γ
(
−ω+ l+p+1

2

) . (3.13b)

Hence, Φbound in eq-(3.13b) is the solution to the Casi-
mir invariant wave equation in the massless m=0 case

C2Φ =

[( pμ
~/R

)2
+
( xμ
LP

)2
+
(
Σμν

)2
+ N 2

]

Φ = 0 (3.14)

and (when R=1)
[( pμ
~/R

)2
+
( xμ
LP

)2
+
(
Σμν

)2
]

Φ=
[
C2−N

2
]
Φ=−ω2Φ (3.15)

sinceN = Σ56 is the rotation generator along the S1 compo-
nent of AdS space. It acts as ∂/∂τ only on the eiωRτ piece of
Φ. Concluding: Φ(z1, z2, . . . , zd)|boundary, restricted to the
d− 1-dim projective boundary of the conformally compact-
ified AdSd space (of unit radius and topology Sd−2×S1)
given by eq-(3.12), is the sought-after solution to the wave
equations (3.13, 3.14) associated with the non-commutative
xμ coordinates and momenta pμ of the Yang’s algebra and
where the indices μ range over the dimensions of the bound-
ary μ= 1, 2, . . . , d − 1. This suggests that QM over Yang’s
Noncommutative Spacetimes could be well defined in terms
of ordinary QM in higher dimensions! This idea deserves
further investigations. For example, it was argued by [16]
that the quantized Nonabelian gauge theory in d dimensions
can be obtained as the infrared limit of the corresponding
classical gauge theory in d+ 1-dim.

4 Star products and noncommutative QM

The ordinary Moyal star-product of two functions in phase
space f(x, p), g(x, p) is

(f ∗ g)(x, p) =
∑

s

~s

s!

s∑

t=0

(−1)tC(s, t)×

×
(
∂s−tx ∂tpf(x, p)

)(
∂tx∂

s−t
p g(x, p)

)
(4.1)

where C(s, t) is the binomial coefficient s!/t!(s− t)!. In the
~ → 0 limit the star product f ∗ g reduces to the ordinary
pointwise product fg of functions. The Moyal product of
two functions of the 2n-dim phase space coordinates (qi, pi)
with i = 1, 2 . . . n is

(f ∗ g)(x, p) =
n∑

i

∑

s

~s

s!

s∑

t=0

(−1)tC(s, t)×

×
(
∂s−txi ∂

t
pif(x, p)

)(
∂txi∂

s−t
pi g(x, p)

)
.

(4.2)

The noncommutative, associative Moyal bracket is

{f, g}MB =
1
i~

(
f ∗ g − g ∗ f

)
. (4.3)

The task now is to construct novel Moyal-Yang star
products based on the noncommutative spacetime Yang’s
algebra. A novel star product deformations of (super) p-brane
actions based on the noncommutative spacetime Yang’s al-
gebra where the deformation parameter is ~eff = ~LP /R, for
nonzero values of ~, was obtained in [15] The modified
(noncommutative) Poisson bracket is now given by

{F (qm, pm),G (qm, pm)}Ω =

= (∂qmF){q
m, qn}(∂qnG) + (∂pmF){p

m, pn}(∂pnG)+

+ (∂qmF){q
m, pn}(∂pnG) + (∂pmF){p

m, qn}(∂qnG) ,

(4.4)

where the entries {qm, qn} 6=0, {pm, pn} 6=0, and also
{pm, qn}=−{qn, pm} can be read from the commutators de-
scribed in section 2 by simply defining the deformation pa-
rameter ~eff ≡ ~(LP /R). One can generalize Yang’s original
4-dim algebra to noncommutative 2n-dim world-volumes
and/or spacetimes by working with the 2n+ 2-dim angular-
momentum algebra SO(d, 2)=SO(p+1, 2)=SO(2n, 2).

The Noncommutative Poisson brackets Ω(qm, qn)=
= {qm, qn}NCPB, Ω(pm, pn)= {pm, pn}NCPB, Ω(qm, pn)=
=−Ω(pn, qm)= {qm, pn}NCPB

Ω(qm, qn) = lim
~eff→0

1

i~eff

[
qm, qn

]
= −

L2

~
Σmn, (4.5a)

Ω(pm, pn) = lim
~eff→0

1

i~eff

[
pm, pn

]
= −

~
L2
Σmn, (4.5b)

Ω(qm, pn) = lim
~eff→0

1

i~eff

[
qm, pn

]
= −ηmn, (4.5c)

defined by above expressions, where Σmn is the “classical”
~eff = (~LP /R) → 0 limit (R→∞, LP → 0, RLP = L2,
~ 6=0) of the quantity Σmn= 1

~
(XmPn−XnPm), after em-

bedding the d−1-dimensional spacetime (boundary of AdSd)
into an ordinary (d−1)+2-dimensional one. In the R→∞,
. . . limit, the AdSd space (the hyperboloid) degenerates into
a flat Minkowski spacetime and the coordinates qm, pn, in
that infrared limit, coincide with the coordinates Xm, Pn.
Concluding, in the “classical” limit (R→∞, . . . , flat limit)
one has

Σmn ≡
1
~

(
XmPn−XnPm

)
→

1
~

(
qmpn− qnpm

)
(4.5d)

and then one recovers in that limit the ordinary definition of
the angular momentum in terms of commuting coordinates
q’s and commuting momenta p’s.
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Denoting the coordinates (qm, pm) by Zm and when
the Poisson structure Ωmn is given in terms of constant
numerical coefficients, the Moyal star product is defined in
terms of the deformation parameter ~eff = ~LP /R as

(F ∗ G)(z) ≡

≡ exp
[
(i~eff)Ω

mn∂(z1)m ∂(z2)n

]
F(z1)G(z2)|z1=z2=z

(4.6)

where the derivatives ∂(z1)m act only on the F(z1) term and

∂
(z2)
n act only on the G(z2) term. In our case the generalized

Poisson structure Ωmn is given in terms of variable coeffi-
cients, it is a function of the coordinates, then ∂Ωmn 6=0,
since the Yang’s algebra is basically an angular momentum
algebra, therefore the suitable Moyal-Yang star product given
by Kontsevich [11] will contain the appropriate corrections
∂Ωmn to the ordinary Moyal star product.

Denoting by ∂m=∂/∂zm=(∂/∂qm; ∂/∂pm) the Moyal-
Yang-Kontsevich star product, let us say, of the Hamiltonian
H(q, p) with the density distribution in phase space ρ (q, p)
(not necessarily positive definite), H(q, p) ∗ ρ (q, p) is

Hρ+ i~effΩ
mn(∂mH∂nρ)+

+
(i~eff)2

2
Ωm1n1Ωm2n2(∂2m1m2

H)(∂2n1n2 ρ)+

+
(i~eff)2

3

[
Ωm1n1(∂n1Ω

m2n2)×

× (∂m1∂n2H∂n2 ρ− ∂m2H∂m1∂n2 ρ)
]
+O(~3eff) ,

(4.7)

where the explicit components of Ωmn are given by eqs-
(4.5a–4.5d). The Kontsevich star product is associative up to
second order [11] (f ∗ g) ∗ h = f ∗ (g ∗ h) + O(~3eff).

The most general expression of the Kontsevich star pro-
duct in Poisson manifold is quite elaborate and shall not
be given here. Star products in curved phase spaces have
been constructed by Fedosov [12]. Despite these technical
subtlelties it did not affect the final expressions for the
“classical” Noncommutative p-brane actions as shown in
[15] when one takes the ~eff→ 0 “classical” limit. In that
limit there are still nontrivial noncommutative corrections to
the ordinary p-brane actions.

In the Weyl-Wigner-Gronewold-Moyal quantization
scheme in phase spaces one writes

H(x, p) ∗ ρ (x, p) = ρ (x, p) ∗H(x, p) = Eρ (x, p) , (4.8)

where the Wigner density function in phase space associated
with the Hilbert space state |Ψ> is

ρ (x, p, ~) =
1

2π

∫
dy Ψ∗

(
x−
~y
2

)
Ψ
(
x+
~y
2

)
e
ipy
~ (4.9)

plus their higher dimensional generalizations. It remains to be
studied if this Weyl-Wigner-Gronewold-Moyal quantization
scheme is appropriate to study QM over Noncommutative
Yang’s spacetimes when we use the above Moyal-Yang-
Kontsevich star products. A recent study of the Yang’s Non-

commutative algebra and discrete Hilbert (Buniy-Hsu-Zee)
spaces was undertaken by Tanaka [3].

Let us write down the Moyal-Yang-Konstevich star de-
formations of the field theory Lagrangian corresponding to
the scalar field Φ=Φ(XAB) which depends on the holo-
graphic-area coordinates XAB [13]. The reason one should
not try to construct the star product of Φ(xm) ∗ Φ(xn)
based on the Moyal-Yang-Kontsevich product, is because the
latter star product given by eq-(4.7) will introduce explicit
momentum terms in the r.h.s of Φ(xm) ∗ Φ(xm), stemming
from the expression Σmn=xmpn−xnpm of eq-(4.5d), and
thus it invalidates writing φ=φ(x) in the first place. If the
Σmn were numerical constants, like Θmn, then one could
write the Φ(xm) ∗ Φ(xm) in a straightforward fashion as it
is done in the literature.

The reason behind choosing Φ=Φ(XAB) is more clear
after one invokes the area-coordinates and angular momen-
tum correspondence discussed in detail in section 2. It allows
to properly define the star products. A typical Lagrangian is

L=−Φ∗∂2XABΦ
(
XAB

)
+
m2

2
Φ
(
XAB

)
∗Φ
(
XAB

)
+

+
gn

n
Φ(XAB

)
∗ Φ
(
XAB

)
∗ ∙ ∙ ∙ ∗n Φ

(
XAB

) (4.10)

and leads to the equations of motion

−
(
∂/∂XAB

)(
∂/∂XAB

)
Φ
(
XAB

)
+m2Φ

(
XAB

)
+

+ gn Φ
(
XAB

)
∗ Φ
(
XAB

)
∗ ∙ ∙ ∙ ∗n−1 Φ

(
XAB

)
= 0

(4.11)

when the multi-symplectic ΩABCD form is coordinate-
independent, the star product is

(Φ ∗ Φ)(ZAB) ≡ exp
[(
iλΩABCD∂XAB∂Y AB

)]
×

×Φ(XAB)Φ
(
Y AB

)∣∣
X=Y=Z

=

= exp
[(
ΣABCD∂XAB∂Y AB

)]
Φ
(
XAB

)
Φ
(
Y AB

)∣∣
X=Y=Z

(4.12)

where ΣABCD is derived from the structure constants of
the holographic area-coordinate algebra in C-spaces [14] as:[
XAB , XCD

]
= ΣABCD ≡ iL2P

(
ηADXBC− ηACXBD+

+ ηBCXAD− ηBDXAC
)
. There are nontrivial derivative

terms acting on ΣABCD in the definition of the star product
(Φ ∗Φ)(ZMN ) as we have seen in the definition of the Kon-
tsevich star productH(x, p) ∗ ρ (x, p) in eq-(4.7). The expan-
sion parameter in the star product is the Planck scale squared
λ = L2P . The star product has the same functional form as (4-
7) with the only difference that now we are taking derivatives
w.r.t the area-coordinatesXAB instead of derivatives w.r.t the
variables x, p, hence to order O(L4P ), the star product is

Φ ∗ Φ = Φ2 +ΣABCD(∂ABΦ ∂CDΦ)+

+
1
2
ΣA1B1C1D1ΣA2B2C2D2(∂2A1B1A2B2Φ)(∂

2
C1D1C2D2

Φ)+

+
1
3

[
ΣA1B1C1D1(∂C1D1 Σ

A2B2C2D2)×

× (∂A1B1 ∂A2B2 Φ ∂C2D2Φ−B1 ↔ B2)
]
.

(4.13)
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Notice that the powers of iL2P are encoded in the defini-
tion of ΣABCD. The star product is noncommutative but is
also nonassociative at the order O(L6P ) and beyond. The
Jacobi identities would be anomalous at that order and be-
yond. The derivatives acting on ΣABCD are

(∂C1D1Σ
A2B2C2D2) =

= iL2P
(
ηA2D2 δB2C2C1D1

− ηA2C2 δB2D2

C1D1

)
+

+ iL2P
(
ηB2C2 δA2D2

C1D1
− ηB2D2 δA2C2C1D1

)
.

(4.14)

where δABCD = δ
A
Cδ

B
D − δADδ

B
C and the higher derivatives like

∂2A1B1C1D1
ΣA2B2C2D2 will be zero.

5 On the generalized Dirac-Konstant equation in Clif-
ford spaces

To conclude this work we will discuss the wave equations
relevant to fermions. The “square” of the Dirac-Konstant
equation (γ[μν]Σμν)Ψ=λΨ yields

(γ[μν]γ[ρτ ]ΣμνΣρτ )Ψ = λ
2Ψ ⇒

[
γ[μνρτ ] + (ημργ[ντ ] − ημτγ[νρ] + . . . )+

+ (ημρηντ1− ημτηνρ1)
]
ΣμνΣρτΨ = λ

2Ψ

(5.2)

where we omitted numerical factors. The generalized Dirac
equation in Clifford spaces is given by [13]

−i

(
∂

∂σ
+ γμ

∂

∂xμ
+ γ[μν]

∂

∂xμν
+ . . .

+ γ[μ1μ2...μd]
∂

∂xμ1μ2...μd

)

Ψ = λΨ ,

(5.3)

where σ, xμ, xμν , . . . are the generalized coordinates assoc-
iated with the Clifford polyvector in C-space

X=σ1+γμxμ+γ
μ1μ2xμ1μ2+ . . . γ

μ1μ2...μdxμ1μ2...μd (5.4)

after the length scale expansion parameter is set to unity. The
generalized Dirac-Konstant equations in Clifford-spaces are
obtained after introducing the generalized angular momen-
tum operators [14]

Σ[[μ1μ2...μn][ν1ν2...νn]] = X [[μ1μ2...μn]P [ν1ν2...νn]] =

= X [μ1μ2...μn]
i∂

∂X[ν1ν2...νn]
−X [ν1ν2...νn]

i∂

∂X[μ1μ2...μn]

(5.5)

by writing
∑

n

γ[[μ1μ2...μn]γ[ν1ν2...νn]]Σ[[μ1μ2...μn][ν1ν2...νn]]Ψ=λΨ(5.6)

and where we sum over all polyvector-valued indices (anti-
symmetric tensors of arbitrary rank). Upon squaring eq-(5.4),
one obtains the Clifford space extensions of the D0-brane
field equations found in [3] which are of the form

[

XAB ∂

∂XCD
−XCD ∂

∂XAB

]

×

×

[

XAB
∂

∂XCD
−XCD

∂

∂XAB

]

Ψ = 0 ,

(5.6)

where A,B = 1, 2, . . . , 6. It is warranted to study all these
equations in future work and their relation to the physics of
D-branes and Matrix Models [3]. Yang’s Noncommutative
algebra should be extended to superspaces, meaning non-
anti-commuting Grassmanian coordinates and noncommut-
ing bosonic coordinates.
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