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A revised Lorentz invariant electromagnetic theory leading beyond Maxwell’s
equations, and to a form of extended quantum electrodynamics, has been elaborated
on the basis of a nonzero electric charge density and a nonzero electric field
divergence in the vacuum state. Among the applications of this theory, there are steady
electromagnetic states having no counterpart in conventional theory and resulting in
models of electrically charged and neutral leptons, such as the electron and the neutrino.
The analysis of the electron model debouches into a point-charge-like geometry with
a very small characteristic radius but having finite self-energy. This provides an
alternative to the conventional renormalization procedure. In contrast to conventional
theory, an integrated radial force balance can further be established in which the
electron is prevented from “exploding” under the action of its net self-charge. Through
a combination of variational analysis and an investigation of the radial force balance,
a value of the electronic charge has been deduced which deviates by only one percent
from that obtained in experiments. This deviation requires further investigation. A
model of the neutrino finally reproduces some of the basic features, such as a small but
nonzero rest mass, an angular momentum but no magnetic moment, and long mean
free paths in solid matter.

1 Introduction

Maxwell’s equations in a vacuum state with a vanishing
electric field divergence have served as a basis for quantum
electrodynamics (QED) in its conventional form [1]. This
theory has been very successful in many applications, but as
stated by Feynman [2], there still exist areas within which it
does not provide fully adequate descriptions of physical real-
ity. When applying conventional theory to attempted models
of the electron, there thus appear a number of incomprehens-
ible and unwieldy problems. These include the existence of a
steady particle state, the unexplained point-charge-like geo-
metry, the question of infinite self-energy and the associated
physical concept of renormalization with extra added counter
terms [3], the lack of radial force balance of the electron
under the action of its self-charge [4], and its unexplained
quantized charge. Also the models of an electrically neutral
state of the neutrino include a number of questions, such as
those of a nonzero but small rest mass, a nonzero angular mo-
mentum and a vanishing magnetic moment, and excessively
long mean free paths for interaction with solid matter.

The limitations of conventional theory have caused a
number of authors to elaborate modified electromagnetic ap-
proaches aiming beyond Maxwell’s equations. Among these
there is a theory [5–12] to be described in this paper. It is
based on a vacuum state that can give rise to local space
charges and an associated nonzero electric field divergence,
leading to a current in addition to the displacement current.
The field equations are then changed in a substantial manner,

to result in a form of extended quantum electrodynamics
(“EQED”).

In applications of the present theory to photon phys-
ics, the nonzero electric field divergence appears as a small
quantity, but it still comes out to have an essential effect
on the end results [11, 12]. For the steady particle states
to be treated here, the field equations contain electric field
divergence terms which appear as large contributions already
at the outset.

2 Basic field equations

The basic physical concept of the present theory is the ap-
pearance of a local electric charge density in the vacuum state
in which there are quantum mechanical electromagnetic fluc-
tuations. This charge density is associated with a nonzero
electric field divergence. When imposing the condition of
Lorentz invariance on the system, there arises a local “space-
charge current density” in addition to the displacement cur-
rent. The detailed deductions are described in earlier reports
by the author [5–12]. The revised field equations in the
vacuum are given by

curlB/μ0 = ε0(divE)C+ ε0∂E/∂t , (1)

curlE = −∂B/∂t , (2)

B = curlA , divB = 0 , (3)

E = −∇φ− ∂A/∂t , divE = ρ̄/ε0 (4)

for the electric and magnetic fields E and B, the electric
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charge density ρ̄, the magnetic vector potentialA, the electro-
static potential φ, and the velocity vector C, where C2= c2.
In analogy with the direction to be specified for the current
density in conventional theory, the unit vector C/c depends
on the geometry of the particular configuration to be studied.

Using well-known vector identities, equations (1) and (2)
can be recast into the local momentum equation

div 2S = ρ̄ (E+C×B) + ε0
∂

∂t
g (5)

and the local energy equation

−divS = ρ̄E ∙C+
1

2
ε0
∂

∂t
wf . (6)

Here 2S is the electromagnetic stress tensor,

g = ε0E×B =
1

c2
S (7)

can be interpreted as an electromagnetic momentum density
with S denoting the Poynting vector, and

wf =
1

2

(
ε0E

2 +B2/μ0
)

(8)

representing the electromagnetic field energy density. An
electromagnetic source energy density

ws =
1

2
ρ̄ (φ+C ∙A) (9)

can also be deduced and related to the density (8) as shown
earlier [12].

As distinguished from Maxwell’s equations, the present
theory includes steady electromagnetic states in which all
explicit time derivatives vanish in equations (1)–(6). The
volume integrals of wf and ws then become equal for certain
configurations which are limited in space.

3 Steady axisymmetric states

Among the steady axisymmetric states the analysis is here
restricted to particle-shaped ones where the configuration is
bounded both in the axial and radial directions. There are also
string-shaped states being uniform in the axial directions, as
described elsewhere [7, 12].

3.1 General features of particle-shaped states

In particle-shaped geometry a frame (r, θ, ϕ) of spherical
coordinates is introduced, where all relevant quantities are
independent of the angle ϕ. The analysis is further limited
to a current density j=(0, 0, Cρ̄) and a vector potential
A=(0, 0, A). Here C =± c represents the two possible spin
directions. The basic equations (1)–(4) then take the form

(r0ρ)
2 ρ̄

ε0
= Dφ =

[
D + (sin θ)−2

]
(CA) , (10)

where the dimensionless radial variable ρ= r/r0 has been
introduced with r0 as a characteristic radial dimension, and
where the operator D=Dρ +Dθ is defined by

Dρ = −
∂

∂ρ

(

ρ2
∂

∂ρ

)

, Dθ = −
∂2

∂θ2
−
cos θ

sin θ

∂

∂θ
. (11)

The general solution of equations (10) is obtained in
terms of a generating function

F (r, θ) = CA− φ = G0 ∙G(ρ, θ) , (12)

where G0 stands for a characteristic amplitude and G for a
normalized dimensionless part. The solutions become

CA = −(sin2θ)DF , (13)

φ = −
[
1 + (sin2θ)D

]
F , (14)

ρ̄ = −

(
ε0
r20 ρ

2

)

D
[
1 + (sin2θ)D

]
F . (15)

The extra degree of freedom introduced by the nonzero
electric field divergence and the inhomogeneity of equations
(10) are underlying this general result.

Using expressions (13)–(15), (9), and the functions

f (ρ, θ) = −(sin θ)D
[
1 + (sin2θ)D

]
G , (16)

g (ρ, θ) = −
[
1 + 2(sin2θ)D

]
G (17)

integrated field quantities can be obtained which represent a
net electric charge q0, magnetic moment M0, mass m0, and
angular momentum s0. The magnetic moment is obtained
from the local contributions of the current density, and the
mass and angular momentum from those of ws/c2 and the
energy relation by Einstein. The current density behaves as a
common convection current. The mass flow originates from
the velocity vector, having the same direction for positive
and negative charge elements. Thus the integrated quantities
become

q0 = 2πε0 r0G0Jq , Iq = f , (18)

M0 = πε0Cr
2
0G0JM , IM = ρ (sin θ)f , (19)

m0 = π(ε0/c
2)r0G

2
0Jm , Im = fg , (20)

s0 = π(ε0C/c
2)r20G

2
0Js , Is = ρ (sin θ)fg (21)

with the normalized integrals

Jk =

∫ ∞

ρk

∫ π

0

Ik dρdθ , k = q,M,m, s . (22)

Here ρk are small radii of circles centered around the
origin ρ=0 when G is divergent there, and ρk=0 when G
is convergent at ρ=0.

At this point a further step is taken by restricting the
analysis to a separable generating function

G(ρ, θ) = R(ρ) ∙ T (θ) . (23)
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The integrands of the normalized forms then become

Iq = τ0R+ τ1(DρR) + τ2Dρ(DρR) , (24)

IM = ρ (sin θ)Iq , (25)

Im = τ0τ3R
2+(τ0τ4+τ1τ3)R(DρR)+τ1τ4(DρR)

2+

+ τ2τ3RDρ(DρR) + τ2τ4(DρR) [Dρ(DρR)] , (26)

Is = ρ (sin θ)Im , (27)

where

τ0 = −(sin θ)(DθT )− (sin θ)Dθ
[
(sin2θ)(DθT )

]
, (28)

τ1 = −(sin θ)T−(sin θ)Dθ
[
(sin2θ)T

]
−sin3θ (DθT ) , (29)

τ2 = −(sin
3 θ)T , (30)

τ3 = −T − 2(sin
2θ)(DθT ) , (31)

τ4 = −2(sin
2θ)T . (32)

The restriction (23) of separability becomes useful here
for configurations having sources ρ̄ and j that are mainly
localized to a region near the origin, such as for a particle of
limited extent. The analysis further concerns a radial function
R which can become convergent or divergent at the origin,
and a finite polar function T with finite derivatives which
can be symmetric or antisymmetric in respect to the “equa-
torial plane” (midplane) defined by θ=π/2. Repeated partial
integration of expressions (22) for Jq and JM leads to the
following results as described in detail elsewhere [7, 8, 12]:

• The integrated charge q0 and magnetic moment M0

vanish in all cases where R is convergent at the origin
and T has top-bottom symmetry as well as antisym-
metry in respect to the equatorial plane. These cases
lead to models of electrically neutral particles, such as
the neutrino;

• The charge q0 and magnetic moment M0 are both
nonzero provided that R is divergent at the origin and
T has top-bottom symmetry. This case leads to models
of charged particles, such as the electron. As will be
seen from the analysis to follow, the divergence of
R can still becomes reconcilable with finite values of
q0, M0, m0, and s0 provided that the characteristic
radius r0 is made to shrink to the very small values
of a point-charge-like state, as also being supported by
experimental observations.

3.2 Quantum conditions of steady states

In this analysis a simplified road is chosen by imposing relev-
ant quantum conditions afterwards on the obtained general
solutions of the field equations. This is expected to be a
rather good approximation to a rigorous approach where
the extended field equations are quantized from the outset.
The quantized equations namely become equivalent to the

original ones in which the field quantities are replaced by
their expectation values according to Heitler [13].

The angular momentum (spin) condition to be imposed
on a model of the electron in the capacity of a fermion
particle, as well as of the neutrino, is combined with equation
(21) to result in

s0 = π
(
ε0C/c

2
)
r20G

2
0Js = ±h/4π . (33)

In particular, for a charged particle such as the electron,
muon, tauon or their antiparticles, equations (18) and (33)
combine to

q∗ ≡ |q0/e| =
√
f0J2q /2Js , f0 = 2ε0ch/e

2. (34)

Here q∗ is a dimensionless charge which is normalized
with respect to the experimentally determined elementary
charge “e”, and f0∼=137.036 is the inverted value of the
fine-structure constant.

According to Dirac, Schwinger, and Feynman [14] the
quantum condition of the magnetic moment of a charged
particle such as the electron becomes

M0m0/q0 s0 = 1 + δM , δM = 1/2πf0 , (35)

which shows excellent agreement with experiments. Here
the unity term of the right hand member is due to Dirac who
obtained the correct Landé factor, and δM is a small quantum
mechanical correction due to Schwinger and Feynman. Con-
ditions (33) and (35) can also be made plausible by element-
ary physical arguments based on the present picture of a
particle-shaped state of “self-confined” radiation [7, 12].

In a charged particle-shaped state the electric current
distribution generates a total magnetic flux Γtot. Here we
consider the electron to be a system having both quantized
angular momentum s0 and a quantized charge q0. The mag-
netic flux should then be quantized as well, and be given by
the specific values of the two quantized concepts s0 and q0.
This leads to the relation

Γtot = |s0/q0| . (36)

4 A model of the electron

The analysis in this section will show that finite and nonzero
integrated field quantities can be obtained in terms of the
shrinking characteristic radius of a point-charge-like state.
This does not imply that r0 has to become strictly equal to
zero, which would end up into the unphysical situation of a
structureless point.

4.1 The integrated field quantities

The generating function to be considered has the parts

R= ρ−γe−ρ, γ > 0 , (37)

T = 1+
n∑

ν=1

{
a2ν−1 sin[(2ν−1)θ] + a2ν cos(2νθ)

}
. (38)
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The radial part (37) appears at first glance to be somewhat
special. Generally one could have introduced a negative
power series of ρ. However, for a limited number of terms,
that with the largest negative power will in any case dominate
at the origin. Due to the analysis which follows the same
series has further to contain one term only, with a locked
special value of γ. Moreover, the exponential factor in the
form (37) secures the convergence of any moment with R,
but will not appear in the end result.

The radial form (37) is now inserted into the integrands
(24)–(27). Then the integrals (22) take a form Jk= JkρJkθ.
Here Jkρ is a part resulting from the integration with respect
to ρ, and which is dominated by terms of the strongest
negative power. The part Jkθ further results from the integra-
tion with respect to θ. In the integrals Jkρ divergences appear
when the lower limits ρk approach zero. To outbalance this,
we introduce a shrinking characteristic radius

r0 = c0 ε , c0 > 0 , 0 < ε� 1 , (39)

where ε is a dimensionless smallness parameter. The integr-
ated field quantities (18)–(21) then become

q0 = 2πε0c0G0 [Jqθ/(γ − 1)] (ε/ρ
γ−1
q ) , (40)

M0m0 = π2(ε20C/c
2)c30G

3
0 ∙

∙ [JMθJmθ/(γ−2)(2γ−1)] (ε
3/ρ

γ−2
M ρ2γ−1m ) , (41)

s0 = π(ε0C/c
2)c20G

2
0 [Jsθ/2(γ − 1)] (ε/ρ

γ−1
s )2. (42)

The reason for introducing the compound quantityM0m0

in expression (41) is that this quantity appears as a single
entity in all finally obtained relations of the present analysis.
The configuration with its integrated quantities is now re-
quired to scale in such a way that the geometry is preserved
by becoming independent of ρk and ε. Such a uniform scaling
implies that

ρq = ρM = ρm = ρs = ε (43)

and that the parameter γ has to approach the value 2 from
above, as specified by

γ (γ − 1) = 2 + δ̃ , 0 6 δ̃ � 1 , γ ≈ 2 + δ̃/3 . (44)

As a result of this

Jkθ =

∫ π

0

Ikθ dθ , (45)

where

Iqθ = −2τ1 + 4τ2 , (46)

IMθ/δ̃ = (sin θ)(−τ1 + 4τ2) , (47)

Imθ = τ0τ3 − 2(τ0τ4 + τ1τ3) +

+ 4(τ1τ4 + τ2τ3)− 8τ2τ4 , (48)

Isθ = (sin θ)Imθ . (49)

Then
q0 = 2πε0 c0G0Aq , (50)

M0m0 = π2(ε20C/c
2)c30G

3
0AMAm , (51)

s0 = (1/2)π(ε0C/c
2)c20G

2
0As (52)

with Aq ≡ Jqθ, AM ≡ JMθ/δ̃, Am≡ Jmθ, and As≡ Jsθ.
The uniform scaling due to relations (39) and (43) in

the range of small ε requires the characteristic radius r0 to
be very small, but does not specify its absolute value. One
possibility of estimating this radius is by a crude modification
of the field equations by an effect of General Relativity
originating from the circulatory spin motion [7, 12]. This
yields an upper limit of r0 of about 10−19 meters for which
this modification can be neglected.

As expressed by equations (39) and (43), the present
results also have an impact on the question of Lorentz invar-
iance of the electron radius. In the limit ε→ 0 the deductions
will thus in a formal way satisfy such an invariance, in terms
of a vanishing radius. At the same time the range of small
ε becomes applicable to the physically relevant case of a
very small but nonzero radius of a configuration having an
internal structure.

4.2 The magnetic flux

According to equation (13) the magnetic flux function be-
comes

Γ = 2πr (sin θ)A = −2πr0 (G0/c)ρ(sin
3θ)DG . (53)

Making use of equations (37) and (39), it takes the form

Γ= 2π(c0G0/C) sin
3θ
{[
γ(γ−1)+2(γ−1)ρ+ρ2

]
T−

− Dθ T}
(
ε/ργ−1

)
e−ρ . (54)

To obtain a nonzero and finite magnetic flux function at
the spherical surface ρ= ε when γ approaches the value 2
from above, one has then to choose a corresponding dimen-
sionless lower radius limit ρΓ= ε, in analogy with the cond-
ition (43).

In the further analysis a normalized flux function

Ψ ≡ Γ(ρ=ε,θ)/2π(c0G0/C) = sin
3θ (DθT−2T ) (55)

is introduced at ρ= ε. A detailed study [8, 9, 12] of this
function shows that there is a main magnetic flux

Ψ0 = Ψ(π/2) ≡ AΓ , (56)

which intersects the equatorial plane, and that the total flux
of equation (36) also includes that of two separate magnetic
“islands” situated above and below the equatorial plane. As
a consequence, the derivative dΨ/dθ has two zero points at
θ1 and θ2>θ1 in the range 0 6 θ 6 π/2. These define the
particular fluxes Ψ1 in the range 0<θ 6 θ1 and Ψ2 in the
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range θ2<θ<π/2. The total normalized magnetic flux thus
becomes

Ψtot = fΓfΨ0 , fΓf = [2(Ψ1 +Ψ2)−Ψ0] /Ψ0 , (57)

where fΓf > 1 is the obtained flux factor including the ad-
ditional contributions from the magnetic islands.

4.3 Quantum conditions

For the angular momentum and its associated charge relation
(34) the quantum condition becomes

q∗ =
√
f0A2q/As (58)

according to equations (50) and (52). The magnetic moment
condition (35) further reduces to

AMAm/AqAs = 1 + δM . (59)

Combination of equations (36), (50), (52), and (56)
finally yields

8πfΓqAΓAq = As , (60)

where fΓq is the flux factor being required by the quantum
condition. For a self-consistent solution the two flux factors
of equations (57) and (60) have to become equal to a common
factor fΓ= fΓf = fΓq .

4.4 Variational analysis of the integrated charge

Since the elementary electronic charge appears to represent
the smallest quantum of free charge, the question may be
raised whether there is a more profound reason for such a
charge to exist, possibly in terms of variational analysis. In
a first attempt efforts have therefore been made to search for
an extremum of the normalized charge (58), under the two
subsidiary quantum conditions (59) and (60) and including
Lagrange multipliers. The available variables are then the
amplitudes (a1, a2, a3, . . . ) of the polar function (38). How-
ever, such a conventional procedure is found to be upset by
difficulties. It namely applies when there are well-defined
and localized points of extremum, but not when such single
points are replaced by a flat plateau in parameter space.

The plateau behaviour is in fact what occurs here, and an
alternative analysis is then applied in terms of an increasing
number of amplitudes that are “swept” (scanned) across their
entire range of variation [9, 12]. One illustration of this is
presented in Fig. 1 for the first four amplitudes, and with
a flux factor fΓ=1.82. The figure shows the behaviour of
the normalized charge q∗ when scanning the ranges of the
remaining amplitudes a3 and a4. There is a steep barrier in
the upper part of Fig. 1, from which q∗ drops down to a flat
plateau being quite close to the level q∗=1 which represents
the experimental value:

• A detailed analysis of the four-amplitude case clearly
demonstrates the asymptotic flat plateau behaviour at

Fig. 1: The normalized electron charge q∗≡ |q0/e| as a function of
the two amplitudes a3 and a4 in the four amplitude case.

large amplitudes a3 and a4. The self-consistent mini-
mum values of q∗ obtained along the perimeter of the
plateau have been found to vary from q∗=0.969 for
fΓ=1.81 to q∗=1.03 for fΓ=1.69. Consequently,
the plateau is found to be slightly “warped”, being
partly below and partly above the level q∗=1;

• For an increasing number of amplitudes beyond four
there is a similar plateau behaviour, with only a slight
increase in the level. This is not in conflict with the
principle of the variational analysis. Any function q∗

can thus have minima in the hyperspace of amplitudes
at points where some of these amplitudes vanishes;

• The preserved plateau behaviour at an increasing num-
ber of amplitudes can be understood from the fact
that the ratio A2q/As in equation (58) becomes a slow
function of the higher “multipole” terms of the expan-
sion (38);

• With these plateau solutions the normalized charge q∗

is still left with some additional degrees of freedom.
These are eliminated by the analysis of the force bal-
ance in the following subsection. There it will be
shown that the lowest value of q∗ obtained from the
variational analysis solely does not become reconcil-
able with the radial force balance.

4.5 The radial force balance

The fundamental description of a charged particle in conven-
tional theory is deficient also in respect to its radial force
balance. Thus, an equilibrium cannot be maintained by the
classical electrostatic force ρ̄E in equation (5) only, but

B. Lehnert. Steady Particle States of Revised Electromagnetics 47



Volume 3 PROGRESS IN PHYSICS July, 2006

is then assumed to require forces of a nonelectromagnetic
character to be present as described by Jackson [4]. In other
words, the electron would otherwise “explode” under the
action of its self-charge.

Turning to the present revised theory, however, there is
an additional magnetic term ρ̄C×B in equation (5) which
under certain conditions provides the radial force balance of
an equilibrium. With the already obtained results based on
equations (10)–(15), the integrated radial force of the right-
hand member in equation (5) becomes

Fr = −2πε0G
2
0

∫∫ [
DG+D

(
s2DG

)]
∙

∙

[
∂G

∂ρ
−
1

ρ
s2DG

]

ρ2s dρdθ , (61)

where s≡ sin θ. For the point-charge-like model of Sections
4.1–4.4 this force is represented by the form

Fr = I+ − I− , (62)

where I+ and I− are the positive and negative contributions
to Fr. The results are as follows [10]:

• The ratio I+/I− in the plateau region of the four-
amplitude case decreases from 1.27 at q∗=0.98 to
0.37 at q∗=1.01, thereby passing a sharply defined
equilibrium point I+/I−=1 at q∗∼=0.988. The re-
maining degrees of freedom of this case have then
been used up;

• With more than four amplitudes slightly higher values
of q∗ have been obtained in a corresponding plateau
region. Even when there exists a force balance at
higher values of q∗ than that of the four-amplitude
solution, the latter still corresponds to the lowest q∗

for an integrated radial force balance;

• The obtained small deviation of q∗∼=0.988 from the
experimental value q∗=1 is a remaining problem. One
possible explanation could be provided by a small
quantum mechanical correction of the magnetic flux
condition (60), in analogy with the correction δM of the
magnetic moment condition (59). Another possibility
to be further examined is simply due to some uncer-
tainty in the numerical calculations of a rather complex
system of relations, being subject to iterations in sever-
al consecutive steps;

• The present analysis of the integrated (total) forc-
es, performed instead of a treatment of their local
parts, is in full analogy with the earlier deductions
of the integrated charge, magnetic moment, mass, and
angular momentum.

With the obtained radial force balance, we finally return
to the radial constant c0 of equation (39). As shown earlier
[7], the mass and magnetic moment become m0=Km/c0

andM0=KMc0 whereKm andKM include the normalized
integrals Am, AM , and As. Introducing the relation hν=
=m0c

2 by Planck and Einstein and the related Compton
wavelength λC = c/ν=h/m0c combination with m0=
=Km/c0 then yields 6πc0/λC =Am/As . In the radial force
balance Am/As=1.07. Choosing the three-fold circumfer-
ence based on the radius c0 to be equal to the Compton
wavelength then results in masses of the electron, muon,
and tauon which deviate by only seven percent from the
experimental values. This three-fold circumference requires
further investigation.

5 A model of the neutrino

The electrically neutral steady states described in Section
3.1 will now be used as a basis for models of the neutrino.
Since the analysis is restricted to a steady particle-shaped
configuration, it includes the concept of a nonzero rest mass.
This is supported by the observed neutrino oscillations. The
present neutrino models are described in detail elsewhere
[7, 12, 15], and will only be outlined in this section.

5.1 A convergent generating function

A separable generating function is now adopted, having a
convergent radial part R and a polar part T of top-bottom
symmetry, as given by

R = ργe−ρ , T = sinα θ , (63)

where γ�α� 1. At increasing values of ρ the part R first
reaches a maximum at ρ= ρ̂= r̂/r0= γ, after which it drops
steeply to zero at large ρ. Therefore r̂= γr0 can be taken as
an effective radius of the configuration. Inserting the forms
(63) into equations (24)–(32) and the integrated expressions
(20)–(22) for the total mass and angular momentum, we
obtain the ratio

Jm/Js = 15/38 γ . (64)

Combination of equations (20), (21), (64), and the quan-
tum condition (33) then yields the mass-radius relation

m0 r̂ = m0γ r0 = 15h/152πc ∼= 7×10
−44 [kg×m] . (65)

For a case with top-bottom antisymmetry of T there is
little difference as compared to the result obtained here.

5.2 A divergent generating function

We now turn to a generating function having a divergent
radial part of the same form (37) as that for the electron
model, and with a polar part of top-bottom antisymmetry.
When ρ= r/r0 increases from ρ=0, the radial part de-
creases from a high level, down to R=1/e at ρ=1, and
further to very small values. Thus r̂= r0 can here be taken
as an effective radius of the configuration.
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The analysis of the radial integrals is analogous to that
of the electron model. To obtain nonzero and finite values of
mass m0 and angular momentum s0, a shrinking effective
radius r̂ and a shrinking amplitude factor G0 are introduced
through the relations

r̂ = r0 = cr ∙ ε , G0 = cG ∙ ε
β , (66)

where cr, cG, and β are positive constants and 0<ε� 1.
Expressions (20) and (21) then take the forms

m0=π(ε0/c
2)crc

2
G(2γ−1)

−1Jmθ
[
ε1+2β/ρ2γ−1m

]
, (67)

s0=π(ε0C/c
2)c2rc

2
G[2 (γ−1)]

−1
Jsθ

[
ε2(1+β)/ρ2(γ−1)s

]
, (68)

where the lower limits ρm and ρs of the integrals (22) have
been introduced. For nonzero and finite values of m0 and s0
it is then required that

ρm = ε
(1+2β)/(2γ−1) , ρs = ε

(1+β)/(γ−1) . (69)

With the quantum condition (33) relations (66)–(69)
further combine to

m0 r̂ =
h

2πc

γ − 1
2γ − 1

(Jmθ/Jsθ) ε . (70)

The ratio Jmθ/Jsθ is here expected to become a slow
function of the profile shapes of T (θ) and Imθ, as obtained
for a number of test functions for Imθ. An additional spec-
ific example with γ=3 and β=3/2 yields ρm= ε4/5 and
ρs= ε

5/4 making ρm and ρs almost linear functions of ε.
In a first crude approximation relation (70) can therefore be
written as

m0r̂ ∼= 2×10
−43 ε [kg×m] . (71)

5.3 Neutrino penetration into solid matter

The mass m0 has to be reconcilable with observed data.
The upper bounds of the neutrino mass are about 4.7 eV
for the electron-neutrino, 170 keV for the muon-neutrino,
and 18 MeV for the tauon-neutrino. Neutrinos can travel
as easily through the Earth as a bullet through a bank of
fog. They pass through solid matter consisting of nucleons,
each having a radius rN ∼=6×10−15 meters. Concerning the
present neutrino models, there are the following options:

• With the result (65) the ratio r̂/rN becomes about 106,
40, and 0.4 for the electron-neutrino, muon-neutrino,
and the tauon-neutrino. The interaction with the
electron-neutrino is then expected to take place be-
tween the short-range nucleon field as a whole and
a very small part of the neutrino field. The latter
field could then “heal” itself in terms of a restoring
tunneling effect. Then the electron-neutrino would re-
present the “fog” and the nucleon the “bullet”. The
mean free paths of the muon- and tauon-neutrinos
would on the other hand become short for this option;

• With the result (71) the corresponding values of r̂/rN
become about 4×106 ε, 100 ε, and ε, respectively. Here
sufficiently small values of ε would make the neutrino
play the role of the “bullet” and the nucleon that of
the “fog”.

6 Conclusions

The present steady electromagnetic equilibria, and their ap-
plications to leptons, have no counterparts in conventional
theory. The electron model, and that of the muon, tauon
and corresponding antiparticles, embrace new aspects and
explanations of a number of so far unsolved problems:

• To possess a nonzero electric net charge, the character-
istic radius of the particle-shaped states has to shrink to
that of a point-charge-like geometry. This agrees with
experimental observation;

• Despite the success of the conventional renormaliza-
tion procedure, physically more satisfactory ways are
needed in respect to the infinite self-energy problem
of a point-charge, and to the extra added counter terms
by which a finite result is obtained from the difference
of two “infinities”. Such a situation is avoided through
the present theory where the “infinity” (divergence) of
the generating function is outbalanced by the “zero”
of a shrinking characteristic radius;

• In the present approach the Lorentz invariance of the
electron radius is formally satisfied at the limit r0→ 0.
At the same time the theory includes a parameter range
of small but nonzero radii being reconcilable with an
internal structure;

• In contrast to conventional theory, an integrated radial
force balance can be provided by the present space-
charge current density which prevents the electron
from “exploding” under the action of its electric self-
charge. Possibly a corresponding situation may arise
for the bound quarks in the interior of baryons. Here
the strong force provides an equilibrium for their mutu-
al interactions, but this does not fully explain how the
individual quarks are kept in equilibrium in respect to
their self-charges;

• The variational analysis results in a parameter range
of the normalized charge q∗ which is close to the
experimental value q∗=1. Within this range the re-
maining degrees of freedom in the analysis become
exhausted when imposing the additional condition of
an integrated radial force balance. This results in
q∗∼=0.99 which deviates by only one percent from
the experimental value. The reason for the deviation is
not clear at the present stage, but it should on the
other hand be small enough to be regarded as an
experimental support of the theory. It can also be taken
as an indirect confirmation of a correctly applied value
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of the Landé factor, because a change of the latter by a
factor of two would result in entirely different results.
Provided that the value q∗=1 can be obtained after
relevant correction, the elementary charge would no
longer remain as an independent constant of nature,
but is then derived from the velocity of light, Planck’s
constant, and the permittivity of the vacuum.

The steady states having a vanishing net charge also form
possible models for a least some of the basic properties of
the neutrino:

• A small but nonzero rest mass is in conformity with
the analysis;

• The steady state includes an angular momentum, but
no magnetic moment;

• Long mean free paths are predicted in solid matter, but
their detailed comparison with observed data is so far
an open question.
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