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Recent theoretical works have concentrated on calculating the Casimir effect in curved
spacetime. In this paper we outline the forward problem of metrical variation due
to the Casimir effect for spherical geometries. We consider a scalar quantum field
inside a hollow superconducting sphere. Metric equations are developed describing
the evolution of the scalar curvature after the sphere transitions to the normal state.

1 Introduction

The classical Casimir effect [1, 2] may be viewed as vacuum
reduction by mode truncation where the presence of conduct-
ing boundaries, or capacitor plates, excludes vacuum modes
with wavelengths longer than the separation between the
conductors. The exclusion of longer wavelengths results in
a lower vacuum pressure between the plates than in external
regions. The resulting pressure difference, or Casimir force,
may act to push the conductors together, effectively collaps-
ing the reduced vacuum phase. This tiny force has been
measured experimentally [3, 4] in agreement with the pre-
dictions of quantum electrodynamics. Boyer gives the first
detailed treatment of the vacuum modes inside a conducting
sphere [5] with more a recent account by Milton [6]. The
Casimir effect for spherical conducting shells in external
electromagnetic fields has been investigated [7, 8]. Applica-
tions of the Casimir effect to the bag model have been
studied for massive scalar [9] and Dirac [10] fields confined
to the interior of the shell. An example of the Casimir effect
in curved spacetime has been considered for spherical geom-
etries [11] in de Sitter space [12] and in the background
of static domain wall [13]. In this paper we investigate the
metrical variations resulting from vacuum pressure differ-
ences established by a spherical superconducting boundary.
We first consider the static case when the sphere is supercon-
ducting and then the dynamical case as the sphere passes to
the normal state.

2 The static case

Our idealized massless, thin sphere of radius R0 has zero
conductivity in the normal state. In the superconducting state,
the vacuum inside the hollow is reduced so that there exists
a pressure difference Δp inside and outside the sphere. In
general, all quantum fields will contribute to the vacuum
energy. When the sphere of volume V transitions to the
superconducting state, a latent heat of vacuum phase transi-

tion ΔpV is exchanged. The distribution of vacuum pres-
sure, energy density and space-time geometry are described
by the semi-classical Einstein field equations taking c=1,

Rμν −
1

2
Rgμν = 8πG 〈Tμν〉 , (1)

where Rμν and R are the Ricci tensor and scalar curvature,
respectively. 〈Tμν〉 is the vacuum expectation of the stress
energy tensor. Regulation procedures for calculating the re-
normalized stress energy tensor are given in [14] for various
geometries. The most general line element with spherical
symmetry is

ds2 = B (r, t) dt2 − A (r, t) dr2 − C (r, t) drdt−

−r2dθ2 − r2 sin2θ dφ2,
(2)

where A, B, and C are arbitrary functions of time and the
radial coordinate. (2) can be written under normal coordinate
transformation [15],

ds2 = B̃ (r, t) dt2−Ã (r, t) dr2−r2dθ2−r2 sin2θ dφ2. (3)

The metric tensor then becomes, dropping tildes,

gμν = Diag
(
B (r, t) ,−A (r, t) ,−r2,−r2 sin2θ

)
. (4)

For a diagonal stress energy tensor, the solutions to equa-
tion (3) relating A and B are
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(7)

with a fourth equation identical to (7). The prime denotes ∂r.
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Note that all time derivatives cancel from the field equations
when the metric is in standard form and the stress energy
tensor is diagonal. When the sphere is in the superconducting
state, the scalar curvature R = gμνRμν is given by

R =
2

r2
−

2

r2A
+
2A′

rA2
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2B′

rAB
+

+
A′B′

2A2B
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B′2

2AB2
−
B′′

AB
.

(8)

In calculating the Casimir force, one properly calculates
differences in vacuum pressure established by the conducting
boundaries [2]. In the present case, it is only meaningful
to consider changes in scalar curvature due to variations in
vacuum pressure.

3 The dynamical case

If the sphere passes from the superconducting to the normal
state, the pressure should equalize as the vacuum relaxes.
The diagonal form of the stress energy tensor results in the
cancellation of all time derivatives in the field equations.
External electromagnetic fields will contribute off-diagonal
terms, however we wish to consider how the pressure equal-
izes in absence of external fields. The key is that the required
time dependence is provided by the zero point field fluctua-
tions. As the simplest example, we consider the massless
scalar quantum field with stress energy tensor [14]

Tμν = φ,μφ,ν −
1

2
gμν g

αβ φ,αφ,β . (9)

The non-zero components of Tμν are
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, (13)

T01 = φ̇φ
′, (14)

where T01=T10. The semi-classical field equations become
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Equations (15) and (16) are identical to (5) and (6). Two
additional equations are identical to (17) and (18). Express-
ions for A and B may be obtained from equation (18) and
(15) or (16), respectively. The scalar curvature is given by
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Combining equation (19) with (15–17) and (10–12) re-
veals

R = 16πG

〈
φ̇2

2B
−
φ′2

2A

〉

. (20)

When evaluating changes in scalar curvature, the ex-
pression for R in absence of the sphere should be subtracted
from that obtained for a given quantum field.

4 Conclusion

When a hollow sphere transitions between the normal and
superconducting state a latent heat of vacuum phase transi-
tion is exchanged. In the dynamical case, zero-point field
fluctuations result in off-diagonal components of the stress
energy tensor that give rise to time dependent field equations.
The analysis presented here may be extended to include
massive fields with coupling or spin (0, 1

2 and 1) as well
as other superconducting geometries.
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