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Herein is constructed, using General Relativity, the space metric along the Earth’s
trajectory in the Galaxy, where the Earth traces outs a complicated spiral in its orbital
motion around the Sun and its concomitant motion with the solar system around
the centre of the Galaxy. It is deduced herein that this space is inhomogeneous and
anisotropic. The observable properties of the space, characterizing its gravitation,
rotation, deformation, and curvature, are obtained. The theory predicts that the
observable velocity of light is anisotropic, due to the anisotropy and inhomogeneity
of space caused by the presence of gravitation and the space rotation, despite the
world-invariance of the velocity of light remaining unchanged. It is calculated that
two pairs of synchronised clocks should record a different speed of light for light
beams travelling towards the Sun and orthogonal to this direction, of about 4×10−4 c
(i. e. 120 km/sec, 0.04% of the measured velocity of light c). This effect should have
oscillations with a 12-hour period (due to the daily rotation of the Earth) and 6 month
period (due to the motion of the Earth around the Sun). The best equipment for
detecting the effect is that being used by R. T. Cahill (Flinders University, Australia)
in his current experiments measuring the velocity of light in an RF coaxial-cable
equipped with a pair of high precision synchronized Rb atomic clocks.

The geniality of geometry, its applicability to our real
world, can be verified by observation or experiment,
not logical deduction.

N. A. Kozyrev

1 Introduction

We construct herein, by General Relativity, a mathematical
model for a space body moving around another body (the
centre of attraction), both moving in an observer’s reference
space. The Earth rotates around the Sun, and orbits in com-
mon with it around the centre of the Galaxy; the Sun rotates
around the centre of the Galaxy and orbits in common with
the Galaxy around the centre of the Local Group of galaxies;
etc. As a result there are preferred directions determined by
orbital motions, so the real Universe is anisotropic (inequiv-
alence of directions). Because there are billions of centres of
gravitational attraction, the Universe is also inhomogeneous
(inequivalence of points). Hence, for the real Universe, we
cannot ignore the anisotropy of space and gravitation.

On the other hand, most cosmologists use the concept
of a homogeneous isotropic Universe wherein all points and
directions are equivalent. Such a model can be built only
by an observer who, observing matter in the Universe from
afar, doesn’t see such details as stars and galaxies. Such con-
ceptions lead to a vicious circle — most cosmologists are sure
that our Universe is a homogeneous isotropic ball expanding
from an initial point-like state (singularity); they ignore the
anisotropy of space and gravitation in such models.

Relativistic models of a homogeneous isotropic universe
(which include the Friedmann solutions) are only a few partial
solutions to Einstein’s equations. Besides, as shown during

the last decade, many popular cosmological metrics (includ-
ing the Friedmann solutions) are inadmissible, because the
difference between the radial coordinate and the proper ra-
dius isn’t taken into account there (see [1, 2] and References
therein).

And so forth, we shall show that the homogeneous iso-
tropic metric spaces contain no rotation and gravitation, and
that they can only undergo deformation: no stars, galaxies
or other space bodies exist in such a universe∗. Why do the
scientists use such solutions? The answer is clearly evident:
such solutions are simple, and thereby easier to study.

We shall consider another problem statement, the case
of an inhomogeneous anisotropic universe as first set up in
1944 by A. Zelmanov [4, 5]. Such a consideration is applic-
able to any local part of the Universe. We show in this paper
that along such a preferred direction, caused by the orbit-
al motion of a space body, an anisotropy of the observable
velocity of light can be deduced, despite the world-invariance
of the velocity of light remaining unchanged†. Using this
result as a basis, we will show in a subsequent paper (now
in preparation) that not only is the anisotropy of the velocity
of light expected along a satellite’s trajectory, but even its
motion is permitted only in a non-empty space filled by a
distribution of matter and a λ-field (both derived from the
right side of Einstein’s equations). This conclusion leads to

∗This situation is similar to the standard solution of the gravitational
wave problem, which considers them as space deformation waves in a space
free of rotation and gravitation [3].

†The observable velocity of light is different to the world-invariant
velocity of light if considered by means of the mathematical apparatus
of physically observed quantities in General Relativity — so-called
chronometric invariants [4, 5].
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the possibility of a new source of energy working in a rotat-
ing (non-holonomic) space, and has a direct link to the con-
clusion that stars produce energy due to the background spa-
ce non-holonomity (as recently derived by means of General
Relativity in [6, 7]).

2 Observed characteristics of space in the Earth’s mo-
tion in the Galaxy

How do the Earth and the planets move in space? The Earth
rotates around its own axis at 465 m/sec at the equator, with
an approximately 24-hour period, and moves at 30 km/sec
around the Sun with a 365.25-day period (astronomical year).
The Sun, in common with the planets, moves at 250 km/sec
around the centre of the Galaxy with an ∼ 200 million year
period. And so the Earth’s orbit traces a cylinder, the axis
of which is the galactic trajectory of the Sun. As a result,
the local space of the Earth draws a very stretched spiral,
spanned over the “galactic” cylinder of the Earth’s orbit.
Each planet traces a similar spiral in the Galaxy.

We aim to build a metric for the space along the Earth’s
transit in the Galaxy. We do this in two steps. First, the
metric along the Earth’s transit in the gravitational field of
the Sun. Second, using the Lorentz transformation to change
to the reference frame moving (with respect to the first
frame) along the axis coinciding with the direction in which
the Earth moves in the Galaxy.

We use a reference frame which rotates and moves for-
wards in a weak gravitational field. We therefore use cylindr-
ical coordinates. Then the metric along the Earth’s transit in
the gravitational field of the Sun has the form∗

ds2 =

(

1−
2GM

c2r
−
ω2r2

c2

)

c2dt2 −
2ωr2

c
cdtdϕ−

−

(

1 +
2GM

c2r

)

dr2 − r2dϕ2 − dz2,

(1)

where ω is the angular velocity of the Earth’s rotation around
the Sun: ω = vorb

r = 2×10−7 sec−1.
We now change to a reference frame that rotates in a

weak gravitational field and moves uniformly with a velocity
v (associated with the motion of the Sun in the Galaxy) along
the z-axis. We apply the Lorentz transformations

z̃ =
z + vt
√
1− v2

c2

, t̃ =
t+ vz

c2√
1− v

c2

, (2)

where z̃ and t̃ are corresponding coordinates in the new ref-

∗See any textbook on relativity. Note that the gravitational field is
included in the components of the fundamental metric tensor gαβ as GM

c2r
.

The mass of the Sun is M�= 2×1033 g, the mass of the Earth is M⊕=
= 6×1027 g; the distance between the Sun and the Earth is 15×1011 cm, the

Earth’s radius is 6.37×108 cm. We obtain
GM�
c2r

= 10−8,
GM⊕
c2r

= 10−10.
So, in this consideration we mean the daily rotation of the Earth and its
gravitational field neglected (quasi-Newtonian approximation).

erence frame. We differentiate z̃ and t̃, then substitute the
resulting dz̃2, dt̃2 and dt̃ into (2). For v= 250 km/sec we
have v2/c2= 7×10−7, hence 1√

1−v2/c2
≈ 1+v2/2c2. We ig-

nore terms in powers higher than 1
c2

. As a result we obtain
the metric along the Earth’s trajectory in the Galaxy (dropp-
ing the tilde from the formulae)

ds2 =

(

1−
2GM

c2r
−
ω2r2

c2

)

c2dt2−
2ωr2

c
cdtdϕ−

−

(

1+
2GM

c2r

)

dr2−r2dϕ2−
2ωvr2

c2
dϕdz−dz2.

(3)

This metric differs from (1), because of a spatial term
2ωr2v/c2 depending upon the linear velocity v.

In order to obtain really observable effects expected in
the metric (3), we use the mathematical method of physical
observed quantities [4, 5], which considers a fixed spatial
section connected to a real reference frame of an observer.
For such an observer the fundamental metrical tensor† has
the three-dimensional invariant form

hik = −gik +
1

c2
vivk , i, k = 1, 2, 3, (4)

dependent upon the linear velocity of the space rotation vi=
=− cg0i√

g00
. In (3) the metric tensor has the components

h11 = 1 +
2GM

c2r
, h22 = r

2

(

1 +
ω2r2

c2

)

,

h23 =
ωr2v

c2
, h33 = 1 ,

(5)

while its contravariant components are

h11 = 1−
2GM

c2r
, h22 =

1− ω2r2

c2

r2
,

h23 = −
ωv

c2
, h33 = 1 .

(6)

According to the theory [4, 5], any reference space has
principal observable (chronometrically invariant) character-
istics: the chr.inv.-vector of gravitational inertial force

Fi =
1

1− w
c2

(
∂w

∂xi
−
∂vi
∂t

)

; (7)

the chr.inv.-tensor of the angular velocity of the space rota-
tion

Aik =
1

2

(
∂vk
∂xi

−
∂vi
∂xk

)

+
1

2c2
(Fivk − Fkvi) ; (8)

and the chr.inv.-tensor of the rates of the space deformation

Dik =
1

2

∗∂hik
∂t

, (9)

†The spatial indices 1, 2, 3 are denoted by Roman letters, while the
space-time indices 0, 1, 2, 3 are denoted by Greek letters.
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where w= c2
(
1−
√
g00
)
, while

∗∂
∂t
= 1√

g00
∂
∂t

is the so-called
chronometrically invariant time derivative.

Calculating these for the metric space (3), we obtain

F 1 =

(

ω2r −
GM

r2

)(

1 +
ω2r2

c2

)

; (10)

A12 =
ω

r

(

1−
2GM

c2r
+
ω2r2

2c2

)

, A31 =
ω2vr

c2
. (11)

All components of Dik equal zero. Hence the reference
body gravitates, rotates, and moves forward at a constant
velocity. Appropriate characteristics of the metrics (1) and
(3) coincide, aside for A31: A31=0 in (3).

The observable time interval dτ contains vi [4, 5]:

dτ =
(
1−

w

c2

)
dt−

1

c2
vidx

i. (12)

Within an area wherein Aik=0 (holonomic space) the
time coordinate x0= ct can be transformed so that all vi=0.
In other words, the time interval between two events at
different points does not depend on the path of integration:
time is integrable, so a global synchronization of clocks is
possible. In such a space the spatial section x0= const is
everywhere orthogonal to time lines xi= const. If Aik 6=0
(non-holonomic space), it is impossible for all vi to be zero:
the spatial section is not orthogonal to the time lines, and the
time interval between two events at different points depends
on the path of integration (time is non-integrable).

Zelmanov also introduced the chr.inv.-pseudovector of
the angular velocity of the space rotation [4]

Ωi =
1

2
εijkA

jk, (13)

where εijk=
eijk√
h

is the three-dimensional discriminant ten-
sor, eijk is the completely antisymmetric three-dimensional
tensor, h=det‖hik‖. Hence, Ω1=A23, Ω2=A31, Ω3=A12.

In our statement we have two bodies, both rotating and
gravitating. The first body is at rest with respect to the ob-
server, whilst the second body moves with a linear velocity.
As seen from (11), for the rest body only Ω3 6=0. For the
moving body we also obtain Ω2 6=0 and Ω3 6=0.∗ In other
words, any linear motion of an observer with respect to his
reference body provides an additional degree of freedom to
rotations of his reference space.

Besides the aforementioned observable “physical” char-
acteristics Fi, Aik, and Dik, every reference space also has
an observable geometric characteristic [4]: the chr.inv.-tensor
of the three-dimensional space curvature

Clkij = Hlkij −
1

c2
(
2AkiDjl + AijDkl+

+AjkDil + AklDij + AliDkj
)
,

(14)

∗This is because any linear motion leads to an additional term in the
observable metric tensor hik: see formulae (5) and (6).

which possesses all the properties of the Riemann-Christoffel
curvature tensor Rαβγδ in the spatial section. Here Hlkij =
=hjmH

∙∙∙m
lki∙ , where H ∙∙∙m

lki∙ is the chr.inv-tensor similar to
Schouten’s tensor [8]:

H
∙∙∙j
lki∙ =

∗∂Δ
j
il

∂xk
−

∗∂Δ
j
kl

∂xi
+ΔmilΔ

j
km −Δ

m
klΔ

j
im . (15)

If all Aik or Dik are zero in a space, Ciklj =Hiklj .
Zelmanov also introduced Hik=hmnHimkn, H =hikHik,
Cik=h

mnCimkn and C =hikCik.
The chr.inv.-Christoffel symbols of the first and second

kinds, by Zelmanov, are

Δkij =h
kmΔij ,m =

1

2

( ∗∂him
∂xj

+
∗∂hjm
∂xi

−
∗∂hij
∂xm

)

, (16)

where
∗∂
∂xi
= ∂

∂xi
− 1

c2

∗∂
∂t

is the so-called chr.inv.-spatial de-
rivative.

Calculating the components of Δkij for the metric (3), we
obtain

Δ122 = −r

(

1−
2GM

c2r
+
2ω2r2

c2

)

,

Δ111 =
GM

c2r2
, Δ123 = −

ωvr

c2
,

Δ212 =
1

r

(

1 +
ω2r2

c2

)

, Δ213 =
ωv

c2r
,

(17)

while non-zero components of Ciklj , Cik and C are

C1212 = −
GM

c2r
+
3ω2r2

c2
,

C11 = −
GM

c2r3
+
3ω2

c2
, C22 = −

GM

c2r
+
3ω2r2

c2
,

C = 2

(

−
GM

c2r3
+
3ω2

c2

)

.

(18)

We have thus calculated by the theory of observable
quantities, that:

The observable space along the Earth’s trajectory in
the Galaxy is non-holonomic, inhomogeneous, and
curved due to the space rotation and/or Newtonian
attraction. This should be true for any other planet
(or its satellite) as well, or any other body considered
within the framework this analysis.

3 Deviation of light in the field of the Galactic rotation

We study how a light ray behaves in a reference body space
described by the metric (3). Light moves along isotropic
geodesic lines. Such geodesics are trajectories of the parallel
transfer of the four-dimensional isotropic wave vector

Kα =
Ω

c

dxα

dσ
, gαβ K

αKβ = 0 , (19)
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where Ω is the proper frequency of the radiation, dσ=
=hik dx

idxk is the three-dimensional observable interval∗.
The equations of geodesic lines in chr.inv.-form are [4, 5]

dΩ

dτ
−
Ω

c2
Fi c

i +
Ω

c2
Dikc

ick = 0 ,

d(Ωci)

dτ
+2ω(Di

k+A
∙i
k∙)c

k−ΩF i+ΩΔiknc
kcn = 0 ,

(20)

where ci= dxi

dτ is the observable chr.inv.-velocity of light (its
square is invariant cici=hikcick= c2).

Substituting the chr.inv.-characteristics of the reference
space (3) into equations (20), we obtain

1

Ω

dΩ

dτ
−
1

c2

(

ω2r −
GM

r2

)
dr

dτ
= 0 ,

(21)
d

dτ

(

Ω
dr

dτ

)

− 2Ωωr

(

1−
2GM

c2r
+
3ω2r2

2c2

)
dϕ

dτ
−

−Ω

(

ω2r−
GM

r2

)(

1+
ω2r2

c2

)

−
2Ωωvr

c2
dϕ

dτ

dz

dτ
−

−Ωr

(

1−
2GM

c2r
+
2ω2r2

c2

)(
dϕ

dτ

)2
= 0 ,

(22)

d

dτ

(

Ω
dϕ

dτ

)

+
2Ωω

r

(

1 +
GM

2c2r
+
ω2r2

2c2

)
dr

dτ
+

+
2ω

r

(

1 +
ω2r2

c2

)
dr

dτ

dϕ

dτ
+
2Ωωv

c2r

dr

dτ

dz

dτ
= 0 ,

(23)

d

dτ

(

Ω
dz

dτ

)

−
2Ωω2vr

c2
dr

dτ
= 0 . (24)

Integrating (21) we obtain the observable proper frequen-
cy of the light beam at the moment of observation

Ω=
Ω0√

1− 2GM
c2r −

ω2r2

c2

≈ Ω0

(

1+
GM

c2r
+
ω2r2

2c2

)

, (25)

where Ω0 is its “initial” proper frequency (in the absence of
external affects). We integrate (22)–(24) with the use of (25).

Rewrite (24) as

d

dτ

(

Ω
dz

dτ

)

=
Ωω2v

c2
d

dτ

(
r2
)
, (26)

integration of which gives

Ω
dz

dτ
=
Ωω2vr2

c2
+Q , Q = const, (27)

where ż0=
(
dz
dτ

)
0

is the initial value of dz
dτ , while the integ-

ration constant is Q=Ω0
(
ż0−

ω2vr20
c2

)
.

∗So the space-time interval ds2= gαβ dxαdxβ in chr.inv.-form is
ds2= c2dτ2− dσ2=0. Therefore, because ds2=0 along isotropic tra-
jectories by definition, there dσ= cdτ .

Substituting (27) into (23) and (24) and using Ω from
(25), we obtain the system of equations with respect to r
and ϕ,

d

dτ

(

Ω
dϕ

dτ

)

+
2Ωω

r

(

1 +
GM

2c2r
+
ω2r2

2c2

)
dr

dτ
+

+
2ω

r

(

1 +
ω2r2

c2

)
dr

dτ

dϕ

dτ
+
2Ω0ωvż0
c2r

dr

dτ
= 0 ,

d

dτ

(

Ω
dr

dτ

)

− 2Ωωr

(

1−
2GM

c2r
+
3ω2r2

2c2

)
dϕ

dτ
−

−Ω

(

ω2r−
GM

r2

)(

1+
ω2r2

c2

)

−
2Ω0ωvż0r

c2
dϕ

dτ
−

−Ωr

(

1−
2GM

c2r
+
2ω2r2

c2

)(
dϕ

dτ

)2
= 0 .






(28)

We are looking for an approximate solution to this sys-
tem. The last term has the dimensionless factor vż0

c2
. For a

light beam, ż0 (the initial value of the light velocity along
the z-axis) is c. Hence vż0

c2
= v

c . At 250 km/sec, attributed to
the Earth moving in the Galaxy, v

c = 8.3×10−4. The terms
GM
c2r

and ω2r2

c2
, related to the orbital motion of the Earth,

are in order of 10−8. We therefore drop these terms from
consideration, so equations (28) become

d

dτ

(

Ω
dr

dτ

)

− 2Ωωr
dϕ

dτ
− Ω

(

ω2r −
GM�

r2

)

−

−Ωr

(
dϕ

dτ

)2
−
2Ω0ωvż0r

c2
dϕ

dτ
,

(29)

d

dτ

(

Ω
dϕ

dτ

)

+
2Ωω

r

dr

dτ
+
2ω

r

dr

dτ

dϕ

dτ
+
2Ω0ωvż0
c2r

dr

dτ
=0. (30)

We rewrite (30) as

ϕ̈+ 2(ϕ̇+ ω̃)
ṙ

r
= 0 , (31)

where ω̃=ω
(
1+ vż0

c2

)
, ϕ̇= dϕ

dτ
, ϕ̈= d2ϕ

dτ2
. This is an equation

with separable variables, so its first integral is

ϕ̇ =
B

r2
− ω̃, B = const = (ϕ̇0 + ω̃)r

2
0 , (32)

where ϕ̇0 and r0 are the initial values of ϕ̇ and r.
We rewrite (29) as

r̈ − 2ω̃rϕ̇+
GM

r2
− ω2r − rϕ̇2 = 0 , (33)

where ṙ= dr
dτ

, r̈= d2r
dτ2

. In our consideration, GM
r2
−ω2r is

zero, so the motion of the Earth around the Sun satisfies the
weightlessness condition [9, 10]† — a balance between the

†Each planet, in its orbital motion, should satisfy the weightlessness
condition w= viui, where w is the potential of the field attracting the
planet to a body around which this planet is orbiting, vi is the linear velocity
of the body’s space rotation in this orbit, and ui= dxi/dt is the coordinate
velocity of the planet in its orbit. The orbital velocity is the same as the
space rotation velocity. Hence the weightiness condition can be written as
GM/r= v2= viv

i [9, 10].
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acting forces of gravity GM
r2

and inertia ω2r. Taking this into
account, and substituting (32) into (33), we obtain

r̈ + ω̃2r −
B2

r3
= 0 . (34)

We replace the variables as ṙ= p. So r̈= p dpdr and the
equation (36) takes the form

p
dp

dr
=
B2

r3
− ω̃2r2, (35)

which can be easily integrated:

p2 =

(
dr

dτ

)2
= −

B2

r2
− ω̃2r2 +K , K = const, (36)

where the integration constant is K = ṙ20 + (ϕ̇0 + ω̃)
2
r20 +

+ ω̃2r20 , so we obtain

dr

dτ
= ±

√

K − ω̃2r2 −
B2

r2
. (37)

Looking for τ as a function of r, we integrate (37) taking
the positive time flow into account (positive values of τ ). We
obtain

τ =

∫ r

r0

rdr
√
−ω̃2r4 +Kr2 −B2

. (38)

Introducing a new variable u = r2 we rewrite (38) as

τ =
1

2

∫ u

u0

du
√
−ω̃2u2 +Ku−B2

, (39)

which integrates to

τ = −
1

2ω̃

[

arcsin

(
−2ω̃2r2 +K
√
K2 − 4ω̃2B2

)

−

− arcsin

(
−2ω̃2r20√
K2 − 4ω̃2B2

)] (40)

where

K2 − 4ω̃2B2 ≡ Q2 =

=
(
ṙ20 + r

2
0 ϕ̇

2
0

)[
ṙ20 + 4ω̃ (ω̃ + ϕ̇0) r

2
0 + ϕ̇

2
0r
2
0

]
,

(41)

so we obtain r2 and r

r2 =
Q

2ω̃2
sin 2ω̃τ+r20 , r =

√
Q

2ω̃2
sin 2ω̃τ + r20 , (42)

where r0 is the initial displacement in the r-direction.
Substituting (42) into (32) we obtain ϕ,

ϕ =

∫ τ

0

(
B

r2
− ω̃

)

dτ = − ω̃τ +
ω̃B

√
Q2 − 4ω4r40

×

× ln

∣
∣
∣
∣
∣

(
Q+

√
Q2 − 4ω̃4r40

)
tan ω̃τ + 2ω̃2r20(

Q−
√
Q2 − 4ω̃4r40

)
tan ω̃τ + 2ω̃2r20

∣
∣
∣
∣
∣
+ ϕ0 ,

(43)

where ϕ0 is the initial displacement in the ϕ-direction.
Substituting Ω from (25) into (27), and eliminating the

terms containing GM
c2r

and ω2r2

c2
, we obtain the observable

velocity of the light beam in the z-direction

ż =
ω2vr2

c2
+ ż0 −

ω2vr20
c2

, (44)

the integration of which gives its observable displacement

z = ż0τ +
ω2Qv

4 ω̃3c2
(1− cos 2ω̃τ ) + z0 , (45)

which, taking into account that ω̃=ω
(
1+ vż0

c2

)
, is

z = ż0τ +
vQ

4 ω̃c2
(1− cos 2 ω̃τ )

(

1−
vż0
c2

)2
+ z0 . (46)

We have obtained solutions for ṙ, ϕ̇, ż and r, ϕ, z. We
see the galactic velocity of the Earth in only ż and z.

Let’s find corrections to the displacement of the light ż
and its displacement z caused by the motion of the Earth in
the rotating and gravitating space of the Galaxy.

As follows from formula (41), Q doesn’t include the
initial velocity and displacement of the light beam in the
z-direction. Besides, Q=0 if ṙ0=0 and r0=0. In a real
situation ṙ0 6=0, because the light beam is emitted from the
Earth so r0 is the distance between the Sun and the Earth.
Hence, in our consideration, Q 6=0 always. If ϕ̇0=0, the
light beam is directed strictly towards the Sun.

We calculate the correction to the light velocity in the
r-direction Δż0 (we mean ϕ̇0=0, ż0=0). Eliminating the
term 1− vż0

c2
we obtain

Δż =
Qv

2c2
sin 2ω̃τ , Q = ṙ0

√
ṙ20 + 4ω̃

2r20 . (47)

We see that the correction Δż0 is a periodical function,
the frequency of which is twice the angular velocity of the
Earth’s rotation around the Sun; 2 ω̃=4×10−7sec−1. Because
the initial value of the light velocity is ṙ0= c, and also
4 ω̃2r20� c2, we obtain the amplitude of the harmonic os-
cillation

Qv

2c2
=
ṙ20
2c2

√

1 +
4 ω̃2r20
c2

≈
v

2
, (48)

then the correction to the light velocity in the r-direction
Δż0 is,

Δż =
v

2
sin 2ω̃τ = 4×10−4 ( sin 2ω̃τ ) c . (49)

From this resulting “key formula” we have obtained we
conclude that:

The component of the observable vector of the light
velocity directed towards the Sun (the r-direction)
gains an addition (correction) in the z-direction, be-
cause the Earth moves in common with the Sun in the
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Galaxy. The obtained correction manifests as a har-
monic oscillation added to the world-invariant of the
light velocity c. The expected amplitude of the oscil-
lation is 4×10−4c, i. e. 120 km/sec; the period T= 1

2ω̃

is half the astronomical year. So the theory predicts
an anisotropy of the observable velocity of light due
to the inhomogeneity and anisotropy of space, caused
by its rotation and the presence of gravitation.

In our statement the anisotropy of the velocity of light
manifests in the z-direction. We therefore, in this statement,
call the z-direction the preferred direction.

We can verify the anisotropy of the velocity of light by
experiment. By the theory of observable quantities [4, 5], the
invariant c is the length

c =
√
hik cick =

√
hik dxidxk

dτ
=
dσ

dτ
(50)

of the chr.inv.-vector ci= dxi

dτ of the observable light velocity.
Let a light beam be directed towards the Sun, i. e. in the
r-direction. According to our theory, the Earth’s motion in
the Galaxy deviates the beam away from the r-axis so that
we should observe an additional z-component to the light
velocity invariant. Let’s set up two pairs of detectors (synch-
ronised clocks) along the r-direction and z-direction in order
to measure time intervals during which the light beams travel
in these directions. Because the distances Δσ between the
clocks are fixed, and c is constant, the measured time in
the z-direction is expected to have a dilation with respect to
that measured in the r-direction: by formula (49) the light
velocity measured in both directions is expected to be differ
by ∼120 km/sec at the maximum of the effect.

The most suitable equipment for such an experiment is
that used by R. T. Cahill (Flinders University, Australia) in
his current experiments on the measurement of the velocity
of light in an RF coaxial-cable equipped with a pair of high
precision synchronized Rb atomic clocks [11]. This effect
probably had a good chance of being detected in similar ex-
periments by D. G. Torr and P. Colen (Utah State University,
USA) in the 1980’s [12] and, especially, by Roland De Witte
(Belgacom Laboratory of Standards, Belgium) in the 1990’s
[13]. However even De Witte’s equipment had a measure-
ment precision a thousand times lower than that currently
used by Cahill.

Because the Earth rotates around its own axis we should
observe a weak daily variation of this effect. In order to
register the complete variation of this value, we should mea-
sure it at least during half the astronomical year (one period
of its variation).

4 Inhomogeneity and anisotropy of space along the
Earth’s transit in the Galaxy

We just applied the metric (3) to the Earth’s motion in the
Galaxy. Following this approach, we can also employ this

metric to other preferred directions in the Universe, con-
nected to the motion of another space body, for instance —
the motion of our Galaxy in the Local Group of galaxies.

Astronomical observations show that the Sun moves in
common with our Galaxy in the Local Group of galaxies
at the velocity 700 km/sec.∗ The metric (3) can take into ac-
count this aspect of the Earth’s motion as well. In such a case
we should expect two weak maximums in the time dilation
measured in the above described experimental system during
the 24-hour period, when the z-direction coincides with the
direction of the apex of the Sun. The amplitude of the varia-
tion of the observable light velocity should be 2.8 times the
variation caused by the Earth’s motion in the Galaxy.

Swedish astronomers in the 1950’s discovered that the
Local Group of galaxies is a part of an compact “cloud”
called the Supercluster of galaxies, consisting of galaxies,
small groups of galaxies, and two clouds of galaxies. The
Supercluster has a diameter of ∼98 million light years, while
our Galaxy is located at 62 million light years from the
centre. The Supercluster rotates with a period of ∼100 bil-
lion years in the central area and ∼200 billion years at the
periphery. As supposed by the Swedes, our Galaxy, located
at ∼2/3 of the Supercluster’s radius, from its centre, rotates
around the centre at a velocity of ∼700 km/sec. (See Chapter
VII, §6 in [14] for the details.)

In any case, in any large scale our metric (3) gives the
same result, because any of the spaces is non-holonomic
(rotates) around its own centre of gravity. All the spaces
are included, one into the other, and cause bizarre spirals in
their motions. The greater the number of the space structures
taken onto account by our metric (3), the more complicated
is the spiral traced out by the Earth observer in the space
— the spiral is plaited into other space spirals (the fractal
structure of the Universe [15]).

This analysis of our theoretical results, obtained by Ge-
neral Relativity, and the well-known data of observational
astronomy leads us to the obvious conclusion:

The main factors forming the observable structure
of the space of the Universe are gravitational fields
of bulky bodies and their rotations, not the space
deformations as previously thought.

Many scientists consider homogeneous isotropic models
as models of the real Universe. A homogeneous isotropic
space-time is described by Friedmann’s metric

ds2 = c2dt2 −R2
dx2 + dy2 + dz2

[
1 + k

4 (x
2 + y2 + z2)

]2 , (51)

where R=R(t); k=0,±1. For such a space, the main ob-
servable characteristics are F i=0, Aik=0, Dik 6=0. In other
words, such a space can undergo deformation (expansion,

∗The direction of this motion is pointed out in the sky as the apex of
the Sun. Interestingly, the Sun has a slow drift of 20 km/sec in the same
direction as the apex, but within the Galaxy with respect to its plane.
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compression, or oscillation), but it is free of rotation and
contains no gravitating bodies (fields). So the metric (51)
is the necessary and sufficient condition for homogeneity
and isotropy. This is a model constructed by an imaginary
observer who is located so far away from matter in the real
Universe that he sees no such details as stars and galaxies.

In contrast to them, we consider a cosmological model
constructed by an Earth observer, who is carried away by all
motions of our planet. Zelmanov, the pioneer of inhomoge-
neous anisotropic relativistic models, pointed out the math-
ematical conditions of a space’s homogeneity and isotropy,
expressed with the terms of physically observable character-
istics of the space [4]. The conditions of isotropy are

Fi = 0 , Aik = 0 , Πik = 0 , Σik = 0 , (52)

where Πik=Dik− 1
3Dhik and Σik=Cik− 1

3 Chik are the
factors of anisotropy of the space deformation and the three-
dimensional (observable) curvature. In a space of the metric
(3) we have Dik=0, hence there Πik=0. However Fi and
Aik are not zero in such a space (see formulae 10 and 11).
Besides these there are the non-zero quantities,

Σ11 = −
1

3

GM

c2r3
+
ω2

c2
;

Σ22 = −
1

3

GM

c2r2
+
ω2r

c2
;

Σ33 =
2

3

GM

c2r3
−
2ω2

c2
.

(53)

We see that a space of the metric (3) is anisotropic due
to its rotation and gravitation.

The conditions of homogeneity, by Zelmanov [4], are

∇jFi = 0 , ∇jAik = 0 , ∇jDik = 0 , ∇jCik = 0 . (54)

Calculating the conditions for the metric (3), we obtain

∇1C11 =
3GM

c2r4
, ∇1C22 =

3GM

c2r2
,

∇1F1 = ω
2

(

1 +
3ω2r2

c2

)

+
2GM

r3

(

1 +
3GM

c2r

)

,

∇1A12 = −ω

(
2

r2
+
ω2

c2
+
3GM

c2r3

)

.

(55)

This means, a space of the metric (3) is inhomogeneous
due to its rotation and gravitation.

The results we have obtained manifest thus:

The real space of our Universe, where space bodies
move, is inhomogeneous and anisotropic. Moreover,
the space inhomogeneity and anisotropy determine
the bizarre structure of the Universe which we ob-
serve: the preferred directions along which the space
bodies move, and the hierarchial distribution of the
motions.

5 Conclusions

By means of General Relativity we have shown that the
space metric (3) along the Earth’s trajectory in the Galaxy,
where the Earth follows a complicated spiral traced out by
its orbital motion around the Sun and its concomitant motion
with the whole solar system around the centre of the Galaxy.
We have shown that this metric space is: (a) globally non-
holonomic due to its rotation and the presence of gravitation,
as manifested by the non-holonomic chr.inv.-tensor Aik (11)
calculated in the metric space∗; (b) inhomogeneous, because
the chr.inv.-Christoffel symbols Δkij indicating inhomogene-
ity of space, being calculated in the metric space as shown by
(17), contain gravitation and space rotation; (c) curved due
to gravitation and space rotation, represented in the formulae
for the three-dimensional chr.inv.-curvature Ciklj calculated
in the metric space as shown by (18).

Consequently, in real space there exist “preferred” spatial
directions along which space bodies undergo their orbital
motions.

We have deduced that the observable velocity of light
should be anisotropic in space due to the anisotropy and in-
homogeneity of space, caused by the aforementioned factors
of gravitation and space rotation, despite the world-invariance
of the velocity of light. It has been calculated that two pairs
of synchronised clocks should record different values for the
speed of light in light beams directed towards the Sun and
orthogonal to this direction, at about 4×10−4 c (0.04% of
the measured velocity of light c, i. e. ∼120 km/sec). This
effects should undergo oscillations with a 12-hour period
(due to the daily rotation of the Earth) and with a 6-month
period (due to the motion of the Earth around the Sun).
Equipment most suitable for detecting the effect is that used
by R. T. Cahill (Flinders University, Australia) in his current
experiment on the measurement of the velocity of light in
a one-way RF coaxial-cable equipped with a pair of high
precision synchronized Rb atomic clocks.

The predicted anisotropy of the observable velocity of
light has been deduced as a direct consequence of the geom-
etrical structure of four-dimensional space-time. Therefore,
if the predicted anisotropy is detected by experiment, it will
be one more fact in support of Einstein’s General Theory of
Relativity.

The anisotropy of the observable velocity of light as a
consequence of General Relativity was first pointed out by
D. Rabounski in the editorial preface to [13], his papers
[6, 7], and many private communications with the author,
which commenced in Autumn, 2005. He has stated that the
anisotropy results from the non-holonomity (rotation) of the

∗Gravitation is represented by the mass of the Sun M , while the space
rotation is represented by two factors: the angular velocity ω of the solar
space rotation in the Earth’s orbit (equal to the angular velocity of the
Earth’s rotation around the Sun), and also the linear velocity v of the
rotation of the Sun in common with the whole solar system around the
centre in the Galaxy.
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local space of a real observer and/or the non-holonomity of
the background space of the whole Universe. Moreover, the
non-holonomic field of the space background can produce
energy, if perturbed by a local rotation or oscillation (as this
was theoretically found for stars [6, 7]).

Detailed calculations provided in the present paper show
not only that the non-holonomity (rotation) of space is the
source of the anisotropy of the observable velocity of light,
but also gravitational fields.

This paper will be followed by a series of papers wherein
we study the interaction between the fields of the space non-
holonomity, and also consider these fields as new sources of
energy. This means that we consider open systems. Naturally,
given the case of an inhomogeneous anisotropic universe,
it is impossible to study it as a closed system since such
systems don’t physically exist owing to the presence of space
non-holonomity and gravitation∗. In a subsequent paper we
will consider the non-holonomic fields in a space of the
metric (3) with the use of Einstein’s equations. It is well
known that the equations can be applied to a wide variety
distributions of matter, even inside atomic nuclei. We can
therefore, with the use of the Einstein equations, study the
non-holonomic fields and their interactions in any scaled
part of the Universe — from atomic nuclei to clusters of
galaxies — the problem statement remains the same in all
the considerations.
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