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The local momentum equation of the pure radiation field is considered in terms of an
earlier elaborated and revised electromagnetic theory. In this equation the contribution
from the volume force is found to vanish in rectangular geometry, and to become
nonzero but negligible in cylindrical geometry. Consequently the radiated momentum
is due to the Poynting vector only, as in conventional electrodynamics. It results in
physically relevant properties of a photon model having an angular momentum (spin).
The Poynting vector concept is further compared to the quantized momentum concept
for a free particle, as represented by a spatial gradient operator acting on the wave
function. However, this latter otherwise successful concept leads to difficulties in the
physical interpretation of known and expected photon properties such as the spin, the
negligible loss of transverse momentum across a bounding surface, and the Lorentz
invariance.

1 Introduction

In the original and current presentation of Quantum Electro-
dynamics, the Poynting vector forms a basis for the quant-
ized momentum of the pure radiation field [1, 2]. Thereby
Maxwell’s equations with a vanishing electric field diverg-
ence in the vacuum state are used to determine the electro-
magnetic field strengths and their potentials which, in their
turn, are expressed by sets of quantized plane waves.

In the deduction of the Schrödinger equation, the quant-
ized momentum for a free particle with mass has on the
other hand been represented by an operator acting on the
wave function and including a spatial gradient [1].

Since the individual photon can appear both as a wave
and as a particle, the question may be raised whether its
momentum should be represented by the Poynting vector
concept, or by the spatial gradient operator concept. This
question is discussed and illustrated in the present paper,
in terms of a revised electromagnetic theory described in a
recent review [3]. A summary of the basic equations of the
theory is presented in Section 2, followed by two simple
examples in Section 3 on a slab-shaped dense photon beam
and on an axisymmetric model of the individual photon. A
comparison between the two momentum concepts is finally
made in Section 4.

2 Basic equations of the revised theory

The zero-point-energy of the vacuum state, its related elect-
romagnetic vacuum fluctuations, the Casimir effect, and the
electron-positron pair formation out of the vacuum support
the hypothesis of a local electric charge density and an as-
sociated nonzero electric field divergence in such a state. On
account of this, a Lorentz and gauge invariant theory has
been elaborated, the details of which are given elsewhere

[3–8]. The basic equations for the electric and magnetic
fields E and B become

curlB/μ0 = ε0 (divE)C+ ε0∂E/∂t , (1)

curlE = −∂B/∂t , (2)

divE = ρ̄/ε0 . (3)

Here ρ̄ is the local electric charge density in the vacuum,
ε0 and μ0 are the conventional dielectric constant and mag-
netic permeability of the vacuum, c2=1/μ0ε0, and C2=c2

results from the Lorentz invariance where C has the char-
acter of a velocity vector. Combination of equations (1) and
(2) yields the extended wave equation
(
∂2

∂t2
− c2∇2

)

E+

(

c2∇+C
∂

∂t

)

(divE) = 0 (4)

for the electric field, and the associated relation
(
∂

∂t
+C ∙ ∇

)

(divE) = 0 (5)

provided that divC=0 which is an adopted restriction
henceforth.

Using known vector identities, the basic equations (1),
(2), and (3) result in the local momentum equation

div 2S = f +
∂

∂t
g , (6)

where 2S is the electromagnetic stress tensor,

f = ρ̄E′ E′ = E+C×B (7)

is the local volume force density, and

g = ε0E×B =
1

c2
S (8)
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can be interpreted as a local electromagnetic momentum den-
sity of the radiation field, with S standing for the Poynting
vector. Likewise a local energy equation

−divS = ρ̄E ∙C+
1

2
ε0
∂

∂t

(
E2 + c2B2

)
(9)

is obtained. It is here to be observed that equations (6)
and (9) are rearranged relations which do not provide more
information than the original basic equations.

In the examples to be considered here, a velocity vector
of the form

C = c (0, cosα, sinα) (10)

is adopted, either in a rectangular frame (x, y, z) or in a
cylindrical frame (r, ϕ, z). All field quantities are assumed
to vary with t and z as exp

[
i(−ωt + kz)

]
where ω and

k are the corresponding frequency and wave number of an
elementary normal mode. Equation (5) then results in the
dispersion relation

ω = kv v = c(sinα) . (11)

In order not to get in conflict with observations, such as
those due to the Michelson-Morley experiments, the analysis
is restricted to the condition

0 < cosα ≡ δ � 1 . (12)

With a smallness parameter δ6 10−4, the difference be-
tween v and c would become less than a change in the eight
decimal of c.

3 Normal modes in slab-shaped and axisymmetric geo-
metries

The first example is given by a slab-shaped dense light
beam. The beam propagates in the z-direction of a rectangul-
ar frame (x, y, z), has a core region defined by −a<x<a,
and two narrow boundary regions at −b<x<−a and
a<x<b. Within the core there is a homogeneous conven-
tional electromagnetic wave field. This field is matched to
the electromagnetic field in the inhomogeneous boundary
regions as shown elsewhere [3, 8]. The analysis is here
restricted to these regions within which the inhomogeneity
in the x-direction requires the revised field equations to
be used. In an analogous beam of circular cross-section,
the source of angular momentum becomes localized to a
corresponding inhomogeneous boundary region [3, 8].

The wave equation (4) now results in the relations

Ex = −(i/kδ
2)
∂Ez
∂x

, (13)

Ey = −(sinα)Ez/δ , (14)

where the field Ez plays the rôle of a generating function for
the components Ex and Ey . From equation (2) the magnetic

field components become

Bx = −Ey/c(sinα) , (15)

By = Ex/c(sinα) +
i

kc(sinα)

∂Ez
∂x

= (sinα)Ex/c , (16)

Bz = −
i

kc(sinα)

∂Ey
∂x

= −δEx/c . (17)

Insertion of relations (13)–(17) into the expression (7)
for the volume force then yields E′=0.

Further turning to the momentum density (8) of the rad-
iation field, relations (13)–(17) give

gx = 0 , (18)

gy = δε0
[
E2x + E

2
y/(sinα)

2
]
/c , (19)

gz = ε0
[
E2x + E

2
y/(sinα)

2
]
/c . (20)

Finally the power term in the energy equation (9) van-
ishes because relations (10), (13), and (14) combine to

E ∙C = 0 . (21)

This example thus demonstrates the following features:

• The volume force density f vanishes in rectangular
geometry.

• The momentum density g of the radiation field has a
primary component gz in the direction of propagation.

• There is a secondary component gy of the order δ,
directed along the boundary and being perpendicular
to the direction of propagation. This component cor-
responds to that which generates angular momentum
(spin) in cylindrical geometry.

• There is a vanishing component gx and no momentum
is flowing across the boundary of the beam.

• The local power term in the energy equation vanishes.

The second example concerns an axisymmetric model of
the individual photon. A wave or a wave packet of preserved
and limited geometrical shape and undamped motion in a
defined direction has then to be taken as a starting point. This
leads to cylindrical geometry with propagation along z in a
frame (r, ϕ, z). From earlier deductions based on equations
(1)–(5), the electric and magnetic field components of an
elementary normal mode then become [3–6]

Er = −ig0R5/θ , (22)

Eϕ = g0 δ(sinα)R3 , (23)

Ez = g0 δ
2R4 (24)

and

Br = −Eϕ/c(sinα) = −g0 δR3/c , (25)

Bϕ = Er(sinα)/c = −ig0 (sinα)R5/θc , (26)

Bz = −ig0 δR8/θc . (27)
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Here we have introduced g0=G0/δ2 where G0 is the
characteristic amplitude of a normalized generating function
G, θ= kr0 with r0 as a characteristic radial length, and

R3 = ρ
2DG R4 = 1−R3 (28)

R5 =
∂

∂ρ
R4 R8 =

(
∂

∂ρ
+
1

ρ

)

R3 (29)

with ρ= r/r0 and the operator D given by

D =
∂2

∂ρ2
+
1

ρ

∂

∂ρ
− θ2δ2 . (30)

For the electric field E′ the components now reduce to

E′r = −ig0 δ
2(R5 +R8) , /θ (31)

E′ϕ = 0 , (32)

E′z = g0 δ
2(R3 +R4) (33)

and the momentum components of the radiation field are
given by

cgr/ε0g
2
0 = iδ2(sinα)(R4R5 −R3R8)/θ , (34)

cgϕ/ε0 g
2
0 = δR5R8/θ

2 − δ3R3R4 , (35)

cgz/ε0 g
2
0 = −(sinα)R25/θ

2 + δ2(sinα)R23 . (36)

Finally the power term in the energy equation (9) becomes

ρ̄E ∙C = δ2ρ̄ cg0 (sinα)(R3 +R4) (37)

thus being of second order in the parameter δ.
To the first order in δ the axisymmetric geometry then

has features being analogous to those of the slab-shaped
geometry:

• There is a negligible contribution from the volume
force density f , as well as from the radial component
gr of the radiation field.

• A secondary component gϕ of order δ gives rise to a
spin of the photon model [3].

• The power term in the energy equation is negligible.

A corresponding analysis of a non-axisymmetric photon
model with periodic ϕ-dependence and screw-shaped geo-
metry leads to similar results [7].

The total(net) electric charge and magnetic moment of
the present photon models have finally been shown to vanish
through spatial integration [5–7].

4 Comparison between the momentum concepts

In the spatial gradient concept the momentum is represented
by the operator

p = −ih̄∇ . (38)

For the normal modes being considered here, the corres-

ponding axial component reduces to

pz = h̄k = h/λ = hν/c (39)

which in conventional theory becomes related to a photon of
energy hν, moving along z at the velocity c of light.

A comparison between the concepts of equations (8) and
(38) is now made in respect to the remaining components
being perpendicular to the direction of propagation, as well
as in respect to the related question about Lorentz invariance.

4.1 The transverse component directed across a confin-
ing boundary

As compared to the axial component gz , the momentum
density g has a vanishing component gx in slab-shaped geo-
metry, and a nonzero but negligible component gr in axi-
symmetric geometry. The corresponding relations between
the momentum pz and the components px and pr are in a
first approximation represented by

|px/pz| ∼= λ/2πLx , |pr/pz| ∼= λ/2πLr (40)

with Lx and Lr as corresponding characteristic lengths. Then
the transverse components px and pr cannot generally be
neglected. This becomes questionable from the physical point
of view when considering individual photons and light beams
which have no transverse losses of momentum.

4.2 The transverse component directed along a confin-
ing boundary

With vanishing derivatives ∂/∂y or ∂/∂ϕ, along a boundary
in rectangular geometry or around the axis in cylindrical
geometry, there are components gy and gϕ being related
to a nonzero spin. This behaviour differs from that of the
momentum p for which the components py and pϕ vanish,
as well as the spin. Such a behaviour appears to lack physical
explanation.

When there are nonvanishing derivatives ∂/∂y and
∂/∂ϕ, the concepts of g and p both result in transverse
components along a boundary, but being of different forms.

4.3 The Lorentz invariance

In the present revised Lorentz invariant theory on the photon
model, there is a component of the momentum g around the
axis. This provides a spin, at the expense of the axial velocity
of propagation. The latter then has to become slightly less
than c, as required by the dispersion relation (11).

With the definition (38) of the momentum p, there is
a different situation. Thus equation (39) is in conventional
theory consistent with an individual photon that moves at
the full velocity c along the axial direction. But for the
same photon also to possess a nonzero spin, it should have
an additional transverse momentum pϕ, with an associated
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velocity vϕ which circulates around the z-axis. For a radia-
tion field within the volume of the photon to be considered as
a self-consistent entity, the total local velocity then becomes
equal to (c2+v2ϕ)

1/2>c. This would represent a superlumin-
al field configuration not being Lorentz invariant.

5 Conclusions

As expressed in terms of the present revised electromagnetic
theory, the momentum concept of the pure radiation field
appears to be physically relevant. The corresponding volume
force density thus vanishes in rectangular geometry and is
nonzero but negligible in cylindrical geometry. The momen-
tum density is represented by the Poynting vector, as in con-
ventional theory. Thereby its transverse components become
consistent with the spin of the photon, and with a negligible
loss of transverse momentum across a bounding surface.

The spatial gradient operator concept for the quantized
momentum of a free particle with mass has earlier been
used with success in the Schrödinger equation. However,
when applying this concept to the free radiation field of
the individual photon or of dense light beams, the obtained
results differ from those based on the Poynting vector, and
are in some cases difficult to interpret from the physical
point of view. This discrepancy requires further investigation.

In this connection it should finally be mentioned that
the present axisymmetric photon model [3, 6] is radially
polarized. The core of a dense light beam being treated
earlier [8] consists on the other hand of a linearly polarized
conventional electromagnetic wave, with a boundary region
having a radial gradient and leading to a spin of the beam
considered as an entity.

The theory of this latter model can as well be applied to
the limit of an individual photon with a linearly polarized
core, a boundary region of finite radial extension, and a
nonzero spin. It should thereby be kept in mind that such a
model concerns the internal structure of a single photon, and
therefore does not deal with the entangled quantum states of
two interacting photons.
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