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The conventional representation of the Hy molecule characterizes a 4-body system
due to the independence of the orbitals of the two valence electrons as requested by
quantum chemistry, under which conditions no exact solution is possible. To overcome
this problem, Santilli and Shillady introduced in 1999 a new model of the Hz-molecu-
le in which the two valence electrons are deeply bounded-correlated into a single
quasi-particle they called isoelectronium that is permitted by the covering hadronic
chemistry. They pointed out that their new Hz-model is a restricted 3-body system
that, as such, is expected to admit an exact solution and suggested independent studies
for its identification due to its relevance, e.g., for other molecules. In 2000, Aringazin
and Kucherenko did study the Santilli-Shillady restricted 3-body model of the Ho
molecules, but they presented a variational solution that, as such, is not exact. In any
case, the latter approach produced significant deviations from experimental data, such
as a 19.6% inter-nuclear distance greater than the experimental value. In this paper we
present, apparently for the first time, an exact solution of the Santilli-Shillady restricted
3-body model of the Hydrogen molecule along the lines of its originators and show
that it does indeed represent correctly all basic data. Intriguingly, our solution confirms
that the orbital of the isoelectronium (referred to as its charge distribution around the
nuclei) must be concentrated in a limited region of space given by the Santilli-Shillady
oo-shaped orbits. Our exact solution is constructed by following the Ley-Koo solution
to the Schrodinger equation for a confined hydrogen molecular ion, HJ . We show
that a confined model to the 3-body molecule reproduces the ground state curve as
calculated by Kolos, Szalewics and Monkhorst with a precision up to the 4-th digit

and a precision in the representation of the binding energy up to the 5-th digit.

1 Introduction

As it is well known, the conventional representation of the
Hydrogen molecule characterizes a four-body system due to
the independence of the orbitals of the two valence electrons
as requested by quantum chemistry, under which conditions
no exact solution is possible. To overcome this problem,
R.M. Santilli and D. Shillady introduced in 1999 a new
model of the Hy-molecule [1, 2], in which the two valence
electrons are deeply bounded-correlated into a single quasi-
particle they called isoelectronium that is permitted by the
covering hadronic chemistry [3a].

They pointed out that their new model of Hydrogen mo-
lecule is a restricted three-body system that, as such, is ex-
pected to admit an exact solution; they suggested to carry out
independent studies for its identification due to its relevance,
e.g., for other molecules. In 2000, Aringazin and Kuche-
renko [4] did study the Santilli-Shillady restricted three-
body model of the Hydrogen molecule, but they presented a
variational solution that, as such, is not exact. In any case,
the latter approach produced significant deviations from
experimental data, such as a 19.6% inter-nuclear distance
greater than the experimental value.

In this paper we present, apparently for the first time,
an exact solution of the Santilli-Shillady restricted three-
body model of the Hydrogen molecule along the lines of its
originators and show that it does indeed represent correctly
all basic data. Intriguingly, our solution confirms that the
orbital of the isoelectronium (referred to as its charge distrib-
ution around the nuclei) must be concentrated in a limited
region of space given by the Santilli-Shillady oo-shaped
orbits. Our exact solution is constructed by following the
E. Ley-Koo and A. Cruz solution to the Schrédinger equation
for a confined hydrogen molecular ion, Hy [5]. We show
that a confined model to the three-body molecule reproduces
the ground state curve as calculated by Kolos, Szalewics and
Monkhorst [6] with a precision up to the 4-th digit and a
precision in the representation of the binding energy up to
the 5-th digit.

The suggestion that a kind of correlated state of electrons
is present while they surround in closed paths the nuclei sti-
mulates the search of a complementary quantum mechanical
approach. In addition, Pérez-Enriquez [7], while working on
high-Te superconductivity, found that by using a Mdbius-
type orbital for Cooper pairs, there is a structural parameter
in perovskite type superconductors that correlates linearly
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with the critical temperature. Other contributions to the dis-
cussion about correlation between electrons were presented
by Taut [8] in 1999. He reported that a one-particle represen-
tation could apply to systems with high densities of charge,
based upon a pair-correlation function and density of charge
for a system of two electrons in an external potential.

In our approach as it has been mentioned, we use the
idea of a system under confinement as worked by E.Ley-
Koo and A.Cruz for the hydrogen molecular ion and by
other authors for molecules under pressure [9, 10]. Besides,
previous studies related to the present discussion concerning
hydrogenic impurities and excitons in quantum dots have
been carried out by our team and others [11, 12, 13].

The main features of the restricted three-body Santilli-
Shillady model, we discuss here, are summarized in sec-
tion 2; special attention is drawn to the isoelectronium pro-
posal. In this section, we also compare the results from this
model with a standard ground state energy curve calculated
by Kolos, Szalewics and Monkhorst (KSM curve) [6]. In
section 3, we describe how to calculate the exact solution
to the three-body model including a spheroidal confinement
and a defect of mass parameters in order to reproduce the
standard KSM curve, using a variational calculation. Finally,
in section 4, some conclusions are made with regard to the
accuracy of our results.

2 Iso-chemical model of the hydrogen molecule

The point of departure of the iso-chemical model of the
hydrogen molecule, presented for the first time in 1999 by
Santilli and Shillady [1], resides in the fact that the distance
between nuclei is large; hence, the force binding them to-
gether comes form the orbiting electrons. The main hypo-
thesis of the model describes how the valence electrons
become involved in a binding process when they are at very
short distance giving rise to a new state or quasi-particle,
called isoelectronium. This particle would be responsible for
the stability of the molecule and would describe a oo-shaped
orbit around the nuclei “in a similar way as a planet orbits
around binary stars” [1].

This hydrogen molecule model is forbidden by quantum
mechanics and quantum chemistry since the proximity of
electrons creates a repulsive Coulomb force between them;
however, the authors assume that this difficulty can be over-
ruled by a non-Hamiltonian interaction based on the over-
lapping of wave packets associated with each electron. This
force surmounts the electrostatic one and allows the quasi-
particle formation. They affirm that “the attractive force
coming from the deep wave-overlapping does not have an
equivalent in quantum mechanics and requires the new the-
ory”’[1]. This is the reason to introduce the so called iso-
mechanics and iso-chemistry theories as part of hadronic
mechanics [3b].

Our approach, however, uses the isoelectronium hypo-

thesis and at the same time looks for a compatible state in the
frame of quantum chemistry. We will show that there exists
a state reproducing the ground state energy of the hydrogen
molecule in the frame of the restricted three-body Santilli-
Shillady model.

The two basic notions of hadronic chemistry that we
need for understanding the iso-chemical model of the hydro-
gen molecule are:

(a) Hadronic horizon. The hadronic horizon is a distance
between electrons, 7., which measures one femtometer
(1 fm = 1075 m). Outside this range quantum chem-
istry applies and within it hadronic chemistry is valid;
(b) The trigger, which is given by external (conventional)
interactions, causes the identical electrons to move
one toward the other and penetrate the hadronic hor-
izon against Coulomb interaction (once inside the said
horizon, the attractive hadronic force overcomes the
repulsive Coulomb one), resulting in a bound state.

Santilli presented for the first time the hypothesis of a
bound state between electrons in 1978 [3], while explaining
the structure of a m° meson as a hadronic bound state of
one electron and one positron. Later, Animalou [14] and
Animalou and Santilli [15] extended the model to consider
the Cooper pair in superconductivity as a hadronic bound
state of two identical electrons.

According to Santilli, in the case of 7° there is no need
for a trigger because the involved particles have opposite
charges. However, the existence of the Cooper pair requires a
trigger, which Santilli and Animalou identified as the field of
the copper ions. In the case of the hydrogen molecule, they
conjecture that the trigger, constituted by the field between
nuclei, is sufficiently intense (attractive for the electrons)
enough to draw them together. They assume, essentially, that
atom attraction is sufficient to cause the overlapping between
wave packets, thus pushing electrons beyond the hadronic
horizon.

2.1 Four-body Santilli-Shillady model

The iso-chemical model of the hydrogen molecule uses the
conventional quantum model of the Hy subject to a non-
unitary transformation for the condition r, = 715. This inter
electronic distance is small given that the electrons are inside
the hadronic horizon. After using this transformation, one
can reduce the problem to an equation that uses a Hulthén
potential, recalling that at short distances, this behaves like
a Coulomb potential,

f2 ﬁ2 —7r12/Te 2
,Lv% ,7v§,V067 &
2p 2p2 1—ema/re  pyg |
c -t hip-m v
Tia Toa T Tw R

As Santilli and Shillady affirm, this equation exhibits a
new explicitly attractive force among neutral atoms of the
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Concept/species Hy @ I/-I'g b) ﬁg )
Energy (variational) | —1.12822497 | —7.61509174 *
Energy SCF (au) 1.14231305 * —1.13291228
Energy SAS (au) * * —1.174444
Energy exact®) (au) | —1.174474 * —1.174474
Bond length (bohr) 1.4011 0.2592 1.4011

) ) ) o Isoelectronium
Fig. 1: Hydrogen molecule in the restricted three-body Santilli- radius (bohr) * * 0.01124995

Shillady model; a stable isoelectronium moves around nuclei in a
oo-shaped orbit (figure taken from Santilli 1999, ref. [1]).

molecule in a way that is not possible within the quantum
chemistry framework. They claim that Eq. (1) explains why
only two hydrogen atoms make up the molecule and allows
the exact representation of the binding energy in the full 4-
body configuration.

A further simplification of the iso-chemical model can be
introduced by making the two iso-electrons (electrons inside
the hadronic horizon) be bound together into a state called
isoelectronium as mentioned above. With this approximation,
Equation (1) is reduced to a restricted three-body problem
because one can consider 714 X T2 =74 and 71 T Top =74
as 112 < g, Tp. In this manner, an exactly solvable problem
similar to the conventional ion is obtained. One remarkable
idea proposed by the authors consists in representing the
isotopic model of the molecule as two H-protons at rest and
the isoelectronium moving around them in a oo-shaped orbit,
as it is shown in Figure 1 and described by the following
structural equation:

Mg Py e e
2ur L 2uy 2 Cl—e /e | pp
2e2 2% e?) -~ ~ @)
2 U~ B 1P,
=B

This simplification, impossible in a quantum chemistry
environment, could be used to reach an exact solution of
the H-molecule. At this point, it is worth mentioning that
with the aid of this model, Santilli and Shillady extended
their analysis to other molecules; in particular, they studied
the hydrogen and oxygen atoms in order to form HO. This
gave them elements to present, for the first time, an exact
solution to the water molecule, treated as an HOH molecule,
using an isotopic intersection of an HO and an OH [2]. They
have further their research to extend their model to another
type of molecular chains and molecules.

Results for the Santilli-Shillady model of molecular hyd-
rogen were obtained by the standard Boys-Reeves model [1],
using an attractive Gaussian-screened-Coulomb potential.
These authors used their SASLOBE programme (Santilli-
Animalou-Shillady LOBE) to calculate the energies reported
in columns three and four of Table 1, which in turn are
compared with the quantum chemical results (first column).

Results from Table 1 show that the energy calculated
by the SASLOBE program (—1.174444 au) differs from the
exact result in the 6th digit (a 3x10~5 error) with a 20 hours

Notes: ®Normal molecule in the quantum-chemical model
®)Molecule in the restricted three-body model (see)
©)Molecule in the iso-chemical model (stable isoelectronium)
@) Ground state energy by Kolos, Szalewicz and Monhorst

Table 1: Comparison of results from Iso-chemical model. Taken
from Santilli 1999, ref. [1].

process time in a 320 MFLOPS Silicon Graphics computer.
Notice that some changes in the most expensive routines
in the iso-chemical model improve by a factor of 1000 the
time used to compute a Boys-Reeves C.I. calculation. An im-
portant result is that with their method, they found a bound
length (R=1.4011 bohr) which coincides with that of the
C.I value.

This new way to represent chemical bonding has allowed
the opening of a whole field named Hadronic Mechanics.
With this new tool, several problems of physics and chem-
istry have been worked, leading to new proposals that range
from energetic problems to superconductivity issues [16].
Our work has not taken that road; it considers the solution of
the restricted three-body in the frame of Quantum Mechan-
ics, two protons bound by an orbiting stable isoelectronium.
This approach uses the solution of an Hj ion but with a
charge g =—2e for the quasi-particle.

2.2 Restricted three-body Santilli-Shillady model

The four-body Santilli-Shillady model, as described by
Eq. (2), was modified by Aringazin and Kucherenko [4] in
order to restrict it to an explicit three-body approach. Within
this restricted three-body Santilli-Shillady model (M3CS-S),
these authors found a set of two equations that can be solved
exactly. In this section we follow the main features of their
method and show some of their results to contrast them
with the results from our approach. The restricted Santilli-
Shillady model assumes three basic conditions:

(a) A stable isoelectronium;

(b) The size of the isoelectronium can be neglected as
compared with the inter nuclear distance; and,

(c) The Born-Oppenheimer approximation is valid.

When we combine these conditions with Eq. (2), re-
presenting a four-body equation, we arrive at a couple of
differential equations which can be exactly solved. Aringazin
and Kucherenko assumed that:

B1 = H2 =M. 3)
And that the isoelectronium mass and reduced mass were
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In order to simplify expressions, they transformed the
momentum operators

M = p1 + po;

p; = —th

L =1,2; 5
87"1" ? Pd] ()

into generalized ones:
0

Py = —ih .
M ’ 0712

Dip = —th (6)

OTap’
Through them, Aringazin and his colleague arrived to a

new equation from which the three-body equation can be
derived by a variable separation method; i.e., from equation

ﬁ2 5 ﬁ2 5 e—le/"‘c 62
{—anb Tom 2T T e T T

&2 M
S -sim)

they got two equations, one describing the electrons inside
the hadronic horizon in terms of the distance between them:

®)

and, the second for the isoelectronium interaction with the
nuclei:

ﬁ2
— 5 Vi X+ V(r2) x = ex;

2

—oaf V¥t W(re,re R) Y =(B-e)y, ()
where R
1Y) = x(r12) ¥ (ra, Ts) (10)
with o2 o—ria/7e
V(le):a*%m, (11)
" e 22 E

The Aringazin-Kucherenko proposal, Egs. (9) and (12),
becomes the restricted three-body Santilli-Shillady Model
(M3CS-S) with which we are going to compare our results.
On the other hand, Egs. (8) and (11) become the description
of the electrons involved in the isoelectronium itself. They
have also considered that since the size of isoelectronium is
small, the energy must be near zero, € = 0; a point we are
not going to discuss here.

v E Ropt ¥
0.3 —1.142556 | 1.722645
0.307 —1.169215 | 1.683367
0.308 —1.173024 | 1.677899
0.308381°9) | —1.174475 | 1.675828
0.309 —1.176832 | 1.672471

Notes: *)Mass parameter in
5) Optimum bond length (bohr)
©)Parameter to obtain best energy

Table 2: Minimum energy dependence on the mass parameter

The direct solution of these equations gives results for the
energy and bond length far from the experimentally observ-
ed; for example, the minimum energy, £ =—7.614289 au,
is much lower than E.—=-—1.17447567 au, while the bond
length, R=0.25 bohr, markedly differs from R=1.4011
bohr.

2.3 Results from the Aringazin-Kucherenko approach

As it has just been mentioned, the application of the restricted
three-body Santilli-Shillady model gives results far from the
experimental values for both, energy and bond length. In
order to correct this problem, Aringazin and his team have
chosen a scaling method to equalize their energy value with
that experimentally observed. By assuming a charge equal to
—2e for the isoelectronium and its mass M =vm., they as-
signed to E the formula E=W+1/R (W is isoelectronium
energy) and R in Eq. (9) to get a scaling rule for their original
calculated data. The summary of the scaling process is:

(RW) —s (R, W+1/R) — (i 41/W) —

R AW 2v (13)
— (21/, vW+ R) .

Values in Table 2 show energy variations with respect to
mass parameter and allows the identification of as the best
parameter for the estimation of energy, £ =—1.174475 au.
While we have a 7th significant digit precision to the desired
energy, the correspondent bond length disagrees 19.6% from
the expected value.

There are, in the literature, a great number of studies and
estimates for the ground state energy of molecular hydrogen.
This elemental molecule is the most studied one and has
compelled researchers in this field to design tools and other
quantum mechanical theories. To compare our results with
those of Aringazin-Kucherenko, we are going to use as the
ground state energy curve the values reported by Kolos,
Szalewicz y Monkhorst [6] as reference. Though there are
already other studies reporting higher precision values, up to
12 significant digits [17], for example, we will not employ
them here for we do not need such precision as our method
gives numbers up to the 6th significant digit. These data are
going to be identified as Kolos data or KSM curve.

With the aid of the data for the electronic energy W as
a function of the distance between nuclei in the molecule
(we remit the reader to Table 2 in ref. [4]), it is possible to
construct a curve for the molecular energy according to the
M3CS-S model. In Figure 2, we present a graph comparing
the corresponding curve with Kolos data. It is self evident
that both curves are very different, mainly in the region
R > 2.0, though profiles are similar for lower R values.

On the other hand, the optimum bond length, R=
=1.675828 bohr, of this curve is deviated from the experi-
mentally observed value by 19.6%. These observations to
the M3CS-S model imply that some kind of adjustment is
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Ground state energy curve

— - — Aringazin-Kucherenko
® Kolos
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Energy (au)
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05 1.0 15 \ 20 25 3.0

R,=1.6758 R (bohr)

Fig. 2: Comparison between KSM’s ground state energy data and
scaled Aringazin-Kucherenko curve.

needed; probably a change in one of the features of the
isoelectronium model could suppress these differences. In
next section, we will present one such modification: the
finite extension of isoelectronium.

3 Confined isoelectronium approach

We have shown until this point that the M3CS-S model
satisfies the established conditions for the existence of iso-
electronium with two drawbacks: it lacks the precision to
represent the ground state potential energy curve of the hyd-
rogen molecule and does not give a good approximation to
its optimum bond length. In this section, we are going to in-
troduce a condition directly related to the isoelectronium de-
finition, a condition on the extension of isoelectronium wave
function that will provide a modified three-body Santilli-
Shillady model reproducing the behavior of the KSM curve
in an appreciable range of distances between nuclei in the
molecule.

The isoelectronium, as proposed by iso-chemistry, is a
particle that brings together both electrons in the Hydrogen
molecule, bound firmly (stable isoelectronium) by a Hulthén
type potential. With a charge twice of the electron this quasi-
particle has to orbit around protons in a very compact way.
For an M = 2m, particle, the results of the calculations give
very low energies and small bond length values. From this
picture, we consider that the four-body problem of the hydro-
gen molecule can be converted into a compatible three-body
approach if some aspects of the quasi-particle formation
and molecule structure are taken into account. First of all,
the formation of particles involves the transformation of
mass into energy as it is observed for example in nuclear
reactions; this means that while electrons come together to
form an isoelectronium, there must be an effective mass
factor present in the description of the molecule. As seen
from the Schrédinger equation, this parameter would appear
as a scaling factor for the energy and bond length.

This kind of scaling has been suggested in the literature
before, not just by Aringazin and Kucherenko but by other

authors as well. In particular, Svidzinsky and collaborators
[18] have recently published a paper on the role of scaling
while they attempt to represent the hydrogen molecule from
Bohr’s model. They make a dimensional scaling of the
energy in this pre-quantum mechanical description. In our
approach, scaling comes from an effective mass factor.
Another factor that must be considered in our model
arises from the fact that a double charged particle surround-
ing both nuclei in the molecule can not extend in the same
way as an electron does in the molecular ion. This small but
heavily charged quasi-particle must have to limit its motion
to confined orbits. Thus, the Hydrogen molecule with the
isoelectronium orbiting two protons has to appear as a con-
fined system. Therefore, as a way to improve the restricted
three-body Santilli-Shillady model, a pair of conditions was
introduced to understand the kind of movement an isoelect-
ronium would describe. We have hypothesized the following
additional restrictions for the isoelectronium model:

(a) The formation of the quasi-particle from the two elec-
trons involves an effective mass transformation; i.e.,
the mass and charge of isoelectronium are M =vm,
and g =-—2e, respectively, where v is the effective
mass parameter, also called “iso-renormalization of
mass”’; and

(b) The spatial extension of the orbits of isoelectronium

is limited to a defined region of space: the isoelectro-

nium must orbit in a spheroidal shaped region of space.

Using these two hypotheses we have worked out two
methods for the solution of the hydrogen molecule problem.
First, the solution of Eq. (9) is considered in a way similar
to the Ley-Koo and Cruz solution for the molecular ion
confined by a spheroidal box [5]. They arrive to an exact
solution for the differential equation by using separation of
variables and the condition of a vanishing wave function on
the spheroidal border. The second, whose results are reported
here, uses a variational approach to solve Eq. (9) as it was
done by Marin and Muiioz [19], with the same border con-
dition: ¥ (&0, m, ¢)=0 and &y defines the shape of the box.

3.1 Exact solution to the confined model

Our variational approach to solve the modified three-body
Santilli-Shillady model of the hydrogen molecule (modified
M3CS-S) arrives to the following equation after applying
the Hamiltonian for H5, but including the above stated
conditions on the mass, M = vm,, where v is the mass
parameter, and the ¢ = —2e is the charge:

h 4 0, .5 o 9
{nmfauwﬂ%@”%+w
£—n 8®  4e® (Z1+2Z2)E+ (Z2—Zh)n

Te-na-mer s ew

2
leze} w(fv m, (p) = E/ 110(67 m QD) ?

0
1-n")—| +
")an

(14)

Jr
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subject to the following restriction: ’ ) RY | v | g4
_ 48.46714783 | 1.41847181 | 0.37030 —1.1741987
dj(&)’ ™ (,0) =0 (15) 48.46714783 | 1.41847181 | 0.37035 —1.1743573
. . . . 48.46714783 | 1.41847181 | 0.37038 —1.1744523
which spe(:lﬁes a spheroidal shaped region of space wh.ere 4346714783 | 141847181 | 037039 117448409
the particle moves (§ < §o). Moreover, the wave function 48.46714783 | 1.41847181 | 0.37040 —1.1745157
must vanish at the border. Due to the symmetry of the mole- 48.46714783 | 1.41847181 | 0.37050 —1.1748325
cule in the ground state (m = 0), the azimuthal variable, can 4846714783 | 141847181 | 037060 —1.1751492
be suppressed so the problem is reduced to the z — z plane. Notes: ®) Shape parameter inverse of eccentricity (optimization)

In addition, we introduce atomic units:

K2 e?

ag = 7E, R =

: »
mee?’ ag
Thus, the equation is rewritten as

H¢ = E¢
or
4 | O e O 0 O
{ VR (€ —nP) [as(g Dag oy an}

(16)
8 () + (BT, D: } B(6,m)=E(€,n)

R £2—n? R

With this reduction, the above stated conditions can be
met by a simple variational function considering one para-
meter and a cut off factor:

¢(o;€,m) = (o — &) (exp[—a(€ + m)]+
+exp[—a(¢ —n)]).

The minimum energy of this modified M3CS-S molecule
can be obtained by minimization of the functional of energy

amn

(¢ H|¢)
E = 18
@)= "410) (9
subject to the condition
0F
% E:Emin: 07 (19)

But really such a minimum energy, Eni,, will depend on
several parameters

Emin - min(l/; 50) R) )

i.e., mass scale, spheroidal box and nuclei separation para-
meters. If we leave free all three parameters and use a sim-
plex optimization method, a Nelder-Mead method for exam-
ple [20], we will find that this energy is located at a point
near the one reported by Santilli-Shillady and included here
in Table 1 (E=-7.61509174au and R=0.2592 bohr).
However, we can choose a fixed value for the mass para-
meter and find the minimum energy suitable for the ground
state energy of free Hs.

Effectively, in order to obtain the minimum energy cor-
responding to a given mass parameter, v, we have optimized
the energy using the Nelder-Mead algorithm for two para-
meters: £ — spheroidal box shape; and, R — bond length.

(20)

b Bond length parameter (optimization)

©)Mass parameter up to five digits (fixed)

4)Minimum energy (calculated by program)

©)Nearest value to exact energy (error)
Table 3: Minimum energy from parameter optimization for the
confined model.

One relevant aspect resulting from these calculations is that
for all mass parameter values the convergence of the method
yields always identical values for both parameters as can be
seen in Table 3 ({o =48.46714783; R=1.41847181 bohr).
Furthermore, the minimum energy for v =0.37039 gives
an energy E =—1.1744840au; that is, we have obtained
the energy of the experimentally observed ground state of
molecular hydrogen with a precision of 1x10~% and a corres-
ponding error in bond length of just 1.24%. This last result
must be compared with the difference calculated by Aringa-
zin and Kucherenko, 19.6%, to appreciate the importance of
our finding.

Our approach to the hydrogen molecule, named from
here onward as the Pérez-Marin-Riera approach to the res-
tricted three-body Santilli-Shillady of the hydrogen molecule
or M3CPM-R, encompasses more than the sole calculation
of the minimum energy. With it, we can reproduce the whole
set of data points of the KSM ground state curve in the
R € ]0.8,3.2] interval.

3.2 Comparison of our data with KSM curve

As we have just mentioned, our approach to the isoelectro-
nium movement provides an effective way to represent the
ground state of Hs. Using the box shape and effective mass
parameters found for the closest value to the exact energy
of the ground state minimum, we have calculated the energy
for several values of the distance between protons ranging
from 0.4 to 6.0 bohr. The values obtained in this manner
show a very significant behavior, a least in a defined interval
R € ]0.8,3.2]. We reproduce the values that Kolos and his
collaborators obtained with a highly sophisticated computing
method, shown with ours in Table 4 for comparison. As
can be seen while reviewing the las column in the table,
a difference appears in the fourth significant digit for the
worst result and up to the fifth digit for the best, which is
located at R = 1.40 bohr.

Figure 3 illustrates the values for the energy as a function
of R found by Kolos (big points) together with the curve
(line) representing our data. Both data sets are identical to
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Pérez-Marin-Riera Potential Energy Curve ’ RO | ) M3CPM O KSM D) Diff. ©)
(o3 - 111.
ool —-—This work 0.80 | 0.4188965 | —1.024900 | —1.0200565 | 0.0048435
® KSMcurve 0.90 | 0.4585059 | —1.085753 | —1.0836432 | 0.0021098
Parameters: 1.00 | 0.4964746 | —1.125001 | —1.1245396 | 0.0004614
= ' 1.10 | 0.5331055 | —1.149680 | —1.1500574 | 0.0003774
e o] 120 | 0.5686328 | —1.164305 | —1.1649352 | 0.0006302
g 130 | 0.6032813 | —1.171876 | —1.1723471 | 0.0004711
& 1.40 | 0.6371875 | —1.174438 | —1.1744757 | 0.00003777)
150 | 0.6705273 | —1.173416 | —1.1728550 | 0.0005610
12 1.60 | 0.7033789 | —1.169826 | —1.1685833 | 0.0012427
1.70 | 0.7358594 | —1.164397 | —1.1624586 | 0.0019384
, , , , , 1.80 | 0.7680469 | —1.157664 | —1.1550686 | 0.0025954
0s 10 '8 Rib ;“ 2 80 2.00 | 08319141 | —1.141767 | —1.1381329 | 0.0036341
(bohr) 220 | 0.8953906 | —1.124237 | —1.1201321 | 0.0041049
Fig. 3: Comparison between Kolos data and our exact restricted ;‘6‘8 ?g;gz?gg *iéggggz *iégg‘;é?g 888;33‘2“7‘
three-body model for the H lecul t Cv- : : -L -L :
ree-body ml(l) . dof he ydrogen molecule (parameters are: ¥ 2.80 | 1.0871880 | —1.071422 | —1.0706831 | 0.0007389
mass; §o - spheroidal shape). 3.00 | 1.1521880 | —1.055136 | —1.0573262 | 0.0021902
320 | 1.2179690 | —1.039776 | —1.0457995 | 0.0060235
each other up to the 4th significant digit; this is confirmed Notes: ®)Bond length (in bohr)

by a x? statistical test (x2=1.3522 with gl =17), with a
confidence level of 0.9999998 We state that by confining
the isoelectronium, it is possible to reproduce the standard
curve with a minimum computational calculation effort.

Again, if compare this result with that of the Aringazin-
Kucherenko curve (x? =410.239 with gl = 17), we state that
the Aringazin curve differs completely from the KSM curve,
as it was shown in Figure 2.

Both findings, up to six digit precision in minimum en-
ergy coincidence and whole curve reproduction, give support
to our approach to the three-body Santilli-Shillady model.
We can establish that the hypothesis on the isoelectronium
movement is correct; that is, the orbiting of isoelectronium
around both nuclei limits itself to a spheroidal region of spa-
ce. Another way to express this behavior is that the forma-
tion of isoelectronium could be favored by the confinement
of the molecule without changing its general properties.

The isoelectronium movement in a bound state together
with the charge distribution confirms the explanation given
by iso-chemistry to the following question: Why has the
hydrogen molecule only two atoms? In our view, as soon as
the molecule forms (isoelectronium) it becomes a bound sys-
tem thus limiting the possibility of another hydrogen atom to
be part of the molecule. In fact, the Pauli principle requires
that the two valence electrons are correlated-bounded in a
singlet state; as a result, the isoelctronium has spin zero.
Consequently, no third electron can be bound via a conven-
tional valence (see [3c] for details).

4 Conclusions

The value for the minimum energy of the ground state of the
hydrogen molecule has been obtained using the three-body
Santilli-Shillady model. Other parameters involved, such as
the optimum bond length or energies for several distances
between nuclei, can not be verified with it. We have shown
that after modifying the model, by introducing a condition on

®)Non linear variational parameter

©)Our data in the present work with £o = 48.467148
and v =0.37039

4)Kolos, Szalewicz and Monhorst data from 1986 [6]

e) Absolute value of the difference.

f)Best approximation up to 6th significant digit

Table 4: Energies for the M3CP-M model and KSM curve

the isoelectronium orbit, it is possible to calculate a minimum
energy for the ground state coincident with the experimental
values up to the sixth significant digit. Furthermore, the
modified three-body model of the hydrogen molecule, a con-
fined three-body system, enables the reproduction of the
whole curve of ground state energy in the range [0.80, 3.20]
for the bond length. The physical interpretation to the con-
fined isoelectronium model comprehends the isoelectronium
itself, since the interaction between electrons while the quasi-
particle is forming, implies its movement to be restricted
to a defined region of space. The Santilli-Shillady orbits,
the oo-shaped orbits, go beyond a way of speaking, they
are a condition for the movement of the electron pair. This
limitation in movement could be present in other states of
electron pairs, such as the Cooper pairs of superconductivity,
mainly in high Tc Superconductivity, for example.

The M3CP-M-R model of the hydrogen molecule intro-
duced here represents an appropriate approach to study this
molecule and gives support to the isoelectronium model in-
troduced by Santilli and Shillady.
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