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Within the modified formalism of Glauber’s multiple scattering theory, we have
studied the elastic scattering of deuteron with nuclei in the mass region 66B6 72
at intermediate energies. We have calculated the differential cross-section with
and without invoking the phase-variation parameter into the nucleon-nucleon (NN)
scattering amplitude and compared our results with the corresponding experimental
data. We found that the presence of the phase-variation improves our results, especially
at the minima of the diffraction patterns.

1 Introduction

In the interaction of a light ion with nuclei, elastic scattering
is the largest of all partial cross sections. For projectile ener-
gies sufficiently above the Coulomb barrier, the elastic ang-
ular distribution is dominated by a diffractionlike pattern. It
was realized [1] that this phenomenon is due to the finite
size of the nucleus and the fact that nuclei are ”partially
trnsparent”. One of the most important approaches used to
describe such collisions is the Glauber’s multiple scattering
theory (GMST) [2–4]. The theory is based on high-energy
approximation, in which the interacting particles are almost
frozen in their instantaneous positions during the passage
of the projectile through the target. As a result, the nucleon-
nucleus and nucleus-nucleus scattering amplitudes are simply
expressed in terms of the free nucleon-nucleon (NN) ones.
The preliminary applications of this theory were found to
have great successes in reproducing the hadron-nucleus scat-
tering data [5–13]. The confidence in this theory encouraged
the extension of its application to nucleus-nucleus collisions
but this was faced with computational difficulties [14–19] for
collisions between two nuclei of mass numbers A, B> 4.
The series describing these collisions contains numerous
(2A×B − 1) terms so that its complete summation is exten-
sive. Moreover, the higher order multiple scatterings involve
multi-dimensional integrals, which are cumbersome to be
evaluated, even if one uses simple Gaussian forms for the
nuclear densities and NN scattering amplitudes. These draw-
backs were overcomed in the works of many authors like
Yin et al. [20, 21], Franco and Tekou [14], Huang [22]
and El-Gogary et al. [23–25]. Their results describe more
satisfactorily the scattering data for the elastic collisions
considered there except smaller shifts were found to exist
around the diffraction patterns.

Our previous works dealt with studies the elastic scatter-
ing of hadrons either with stable nuclei [26, 27] or exotic
nuclei [28]. The results are found to be good except around
the diffraction pattern (as the previous authors showed) where
overall shifts are still persists. It is of special interest to probe

the validity of the Glauber multiple scattering theory for
the elastic scattering of deuterons (which are weakly bound
composite particles) with nuclei.

The essential feature of the presently proposed method
is the use of a phase variation of the nucleon-nucleon elastic
scattering amplitude which agrees with the empirical ampli-
tude at low q’s at the appropriate energy and its large-q
behaviour is left adjustable in terms of one free parameter.
The effect of the phase variation is to eliminate minima or to
make them shallower and to generally increase cross-sections
even at the momentum transfers where no minima originally
occurred [29, 30]. Franco and Yin [31, 32] have suggested
that the phase of the NN scattering amplitude should vary
with the momentum transfer. So far the physical origin of
this phase variation has not been settled. This phase modifies
the ratio of the real part to the imaginary part of the forward
amplitude and makes the diffraction pattern shallower.

Our present work is directed toward two ways; first, we
have studied the elastic scattering of deuteron with nuclei
in the mass region 66B6 72 using the GMST where both
the full multiple scattering series of the Glauber amplitude
and the consistent treatment of the center-of-mass (c.m.) cor-
relations are simultaneously employed. Second, as a result
of the shifts appeared around the diffraction patterns in the
previous works mentioned above, it is helpful to study the
role of the phase-variation parameter of the NN scattering
amplitude as invoked in this work. The theoretical formulas
used to do the above calculations are given in Section 2.
Section 3 includes the results and their discussions. The
conclusion is summarized in Section 4. The orbits, lengths
and Δ-matrices required for carrying out the above calcula-
tions are exhibited in the appendix.

2 Theoretical framework

This section is devoted to obtain the expression for the ang-
ular distribution ( dσdΩ or σ

σRUTH
) for the elastic scattering

of deuteron with medium-weighted nuclei using Glauber’s
multiple scattering theory. This expression is developed by
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taking into account both the full series expansion of the
Glauber amplitude and the consistent treatment of the center-
of-mass correlation.

In this theory, the elastic scattering amplitude between
deuteron of mass number A and a target nucleus of mass
number B and atomic number ZB is given as [16]

FdB(~q ) =
ik

2π
Θ(~q )

∫
d~b exp(i~q ∙~b)

{
1−exp

(
iχdB(~b)

)}
(1)

where, ~q is the momentum transferred from the deuteron to
the target nucleus B, ~k is the incident momentum of the
deuteron, and ~b is the impact parameter vector. Θ(~q ) arising
from the effect of the center-of-mass correlations [16] and
it was found to has an exponential form of q-squared [17].
χdB(

~b) is the nuclear phase-shift function resulting from the
interaction between the deuteron and a target nucleus B and
it is given by,

exp
[
iχdB(~b)

]
= <Ψd({~r

′
i})ΨB({~r

′
j})

∣
∣ exp

[
iχdB(~b, {~s

′
i}, {~s

′
j})
]∣∣ ΨdΨB >,

(2)

where, Ψd({~r ′i})bΨB({~r
′
j})c is the deuteron (target) wave

functions that depends on the position vectors {~ri}b{~r ′j}c
of the deuteron (target) nucleons whose projections on the
impact parameter plane are {~si}b{~s ′j}c.

In Eq. (1), the effect of the center-of-mass correlation is
treated as a global correction (denoted by Θ(~q )) multiplied
by the scattering amplitude. Because Θ(~q ) leads to unphys-
ical divergence as q goes to high values, Franco and Tekou
[14] have overcomed this drawback by incorporating it in
each order of the optical phase-shift expansion. Such treat-
ment has modified the phase-shift function to a new form,
which is simply expressed in terms of the uncorrelated one.

Thus, Eq. (1) becomes

FdB(~q ) =
ik

2π

∫
d~b exp(i~q ∙~b)

{
1− exp

(
iχ̄dB(~b)

)}
, (3)

where the modified phase-shift function χ̄dB(~b) (which is
referred here by adding a bar sign on the corresponding
uncorrelated one) can be written in terms of the uncorrelated
one, χdB(~b), as [16, 17]

exp
[
iχ̄dB(~b)

]
=

=

∫ ∞

0

J0(qb)Θ(q)qdq

∫ ∞

0

J0(qb
′) exp

[
iχ̄dB(~b

′)
]
b′db′,

(4)

By taking into account the Coulomb phase-shift function
in addition to the nuclear one, we can write

χ̄dB(~b) = χ̄n(~b) + χ̄C(~b) =

= χ̄n(~b) + χ̄
pt
C (
~b) + χ̄EC(~b),

(5)

where χ̄ptC (~b) is the modified point charge correction to the
Coulomb phase-shift function, which is equal to 2n ln ( b2a ),

a is equal to 1
2k , n= ZB e

2

}v is the usual Coulomb parameter

and χ̄EC(~b) is the modified extended charge correction to the
Coulomb phase shift function. χ̄n(~b) is the modified nuclear
interaction phase-shift function.

From Eqs. (3) and (5), we find [16, 25]

FdB(~q ) = f
pt
C (q) + i

∫ ∞

0

(kb)2in+1×

×
{
1− exp

(
iχ̄EC(~b) + iχ̄n(~b)

)}
J0(qb)db .

(6)

Assuming the projectile (deuteron) and target ground
state wave functions to have the form:

Ψi=d,B({~rj}) = ξi(~Ri)Φi({~r
int
j }), ~r intj = ~rj − ~Ri, (7)

where ξi(~Ri), where i= d,B, are the wave functions de-
scribing the center-of- mass motions of the deuteron and tar-
get nucleons, respectively. Accordingly, the center-of-mass
correlation function Θ(~q ) is found to has the form

Θ(~q ) =
[
<ξd(~Rd) ξB(~RB) |e

i~q (~Rd−~RB)| ξdξB>
]−1

, (8)

Now, we need to describe the wave function of the sys-
tem to perform the integrations of Eqs. (2) and (8). Consider
the approximation in which the nucleons inside any cluster
and the clusters themselves inside the nucleus are completely
uncorrelated. Then, we can write

|ΨdΨB |
2 = ΠMA

i=1Π
MN
α=1 ρd(~riα)Π

MB

j=1Π
MN

δ=1 ρB(~r
′
jδ), (9)

where ρd and ρB are the normalized single particle density
functions and are chosen in the present work to be of the
single-Gaussian density which is given as [25, 26, 28]

ργ(~r ) =

(
α2γ
π

)3/2
exp(−α2γr

2), γ = d,B, (10)

where αγ is related to the rms radius by

αγ =

√
3

2

(
1

<r2γ>
1/2

)

.

With the aid of the NN scattering amplitude, fNN (~q ),
which is given as [22, 32]

fNN (~q ) =
kNσ

4π
(i+ ρ) exp

(
−aq2

2

)

, (11)

where, kN is the momentum of the incident particle, σ, is
the total cross-section and ρ is the ratio of the real to the
imaginary parts of the forward scattering amplitude. a is
taken to be complex; a=β2+ iγ2, where β2 is the slope
parameter of the elastic scattering differential cross-section,
and γ2 is a free parameter introducing a phase variation of the
elemental scattering amplitude, adopting the wave function
(9) with the density (10) and following the same procedures
as that given in Ref. [25], we can perform the
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integrations in Eqs. (8) and (2) analytically and get

Θs(q) = exp

[
q2

4

(
1

Aα2d
+

1

Bα2B

)]

(12)

and

exp
[
iχn(b)

]
= 1 +

M1∑

μ1=1

∑

λμ1

T1(μ1, λμ1)×

×ΠMA

i=1Πj=1MB{ZS}
Δij(μ1,λμ1 ) ,

(13)

where ZS has the reduced form

ZS = CdB

M2∑

μ2=1

∑

λμ2

T2(μ2, λμ2)[−g]
μ2×

×RS [μ2, λμ2,Δ(μ2, λμ2), 0, 0, . . .]×

×
(
exp{−WS [μ2, λμ2,Δ(μ2, λμ2), 0, 0, . . .] b

2}
)
,

with

CdB =

[
α2d α

2
B

π2

]MN

The various functions (Θ, Z,R andW ) are marked by the
subscript s to refer to the employed single-Gaussian density.
Incorporating the c.m. correlation, the modified phase-shift
function χ̄n(~b) can be expressed as

exp
[
iχ̄n(b)

]
= 1 +

M1∑

μ1=1

∑

λμ1

T1(μ1, λμ1)×

×ΠMA

i=1Π
MB

j=1{Z̄S}
Δij(μ1,λμ1 ),

(14)

The form of Z̄S is obtained by inserting the expressions
of ZS and ΘS(~q ) into Eq. (4), yielding

Z̄S = CdB

M2∑

μ2=1

∑

λμ2

T2(μ2, λμ2)[−g]
μ2×

× R̄S [μ2, λμ2,Δ(μ2, λμ2), 0, 0, . . .]×

×
(
exp{−W̄S [μ2, λμ2,Δ(μ2, λμ2), 0, 0, . . .] b

2}
)
,

(15)

with

W̄s =

[
1

Ws
−

(
1

Aα2d
+

1

Bα2B

)]−1
and R̄s =

Rs × W̄s

Ws

Finally, the modified extended charge correction to the
Coulomb phase — shift, χ̄EC(b), has already been derived
analytically in Ref. [16] for a single-Gaussian density where
it was found to have the form

χ̄EC(b) = nE1(b
2/R̄2) (16)

where E1(z) is the exponential integral function and,

R̄2 = R2d (1−A
−1)+R2B(1−B

−1), R2d =
1

α2d
, R2B =

1

α2B
.

With the results of Eqs. (14), (15) and (16), the scattering
amplitude FdB(q) can be obtained by performing the integ-
ration in Eq. (6) numerically. Whence, the angular distribu-

E/A (MeV/nucleon) σNN (fm2) ρNN β2 (fm2)

25 24.1 0.85 0.8258599

40 13.5 0.9 0.4861189

60 9.15 1.1725 0.3755747

85 6.1 1.0 0.2427113

342.5 2.84 0.26 0.045

Table 1: Parameters of the Nucleon-Nucleon amplitude [34, 35].

tion of the elastic scattering is given by

dσ(q)

dΩ
=
∣
∣FdB(q)

∣
∣2. (17)

The point change approximation of the coulomb ampli-
tude fptc (~q ), is given as [33]

fptc (q) = −2nkq
−2×

× exp
{
−i
[
2n ln(qa)− 2 arg Γ(1 + in)

]}
.

(18)

The Rutherford formula for the differential cross section,
σRUTH is then given by

σRUTH = |f
pt
c (q)|

2 = 4n2k2q−4, (19)

where a, n, k, q have the same definitions that given above.

3 Results and discussion

To examine the simple analysis presented in the above sec-
tion, we have calculated the differential cross section for a set
of elastic nuclear reactions, like, d-3Li6, d-8O

16, d-23V
50, d-

32Ge70 and d-32Ge72 at incident energies 171 MeV, d-6C
12 at

110, 120 and 170 MeV, d-16S
32 at 52 and 171 MeV, d-20Ca40

at 52 and 700 MeV, d-28Ni58 at 80, 120 and 170 MeV and
d-12Mg24 at 170MeV. The ingredients needed to perform
these calculations are the parameters associated with the NN
scattering amplitude and the nuclear densities as well as the
orbits, lengths and Δ-matrices of the groups G1=SMA ⊗
SMB and G2=SMN ⊗SMN . For the above energies, we used
the values of the NN parameters given in Table 1.

The values of the parameters αγ , after correcting for the
effects of the finite proton-size and the c.m. recoil, are [16]

α2γ =
3

2

(
1− 1

γ

<r2γ>−<r2p>

)

, γ = A,B,

where <r2γ> and <r2p> are the mean square radii of the
deuteron, target nucleus and the proton, respectively. The
values of the rms radii we have used for the present nuclei
and the proton are given in Table 2.

The cluster structure specific to the considered reactions
and the corresponding orbits, lengths and Δ-matrices are
exhibited in Appendix.

The results obtained from these calculations for the con-
sidered reactions are shown as dashed curves in Figs. 1–16.
Fig. 1 contains the result obtained for d-3Li6 reaction at in-
cident energy 171 MeV. We can see from this figure that the
predicted angular distribution satisfactorily agree the scatter-
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Fig. 1: Plots the elastic differential cross section (σ/σRUTH ) versus
scattering angle for the deuteron-3Li6 reaction at incident energy
171 MeV. The dashed curve is the constant phase result (γ2=0) while
the solid curve is obtained with phase variation (γ2=−14 (GeV/c)−2).
The dots are the experimental data [42].

Fig. 2: Plots the elastic differential cross section (σ/σRUTH ) versus
scattering angle for the deuteron-6C12 reaction at incident energy
110 MeV. The dashed curve is the constant phase result (γ2=0) while
the solid curve is obtained with phase variation (γ2=−14 (GeV/c)−2).
The dots are the experimental data [43].

Fig. 3: Plots the elastic differential cross section (σ/σRUTH ) versus
scattering angle for the deuteron-6C12 reaction at incident energy
120 MeV. The dashed curve is the constant phase result (γ2=0) while
the solid curve is obtained with phase variation (γ2=−16 (GeV/c)−2).
The dots are the experimental data [43].

Fig. 4: Plots the elastic differential cross section (dσ/dΩ) versus
scattering angle for the deuteron-6C12 reaction at incident energy
170 MeV. The solid curve is the constant phase result (γ2=0). The
dots are the experimental data [44].

Fig. 5: Plots the elastic differential cross section (σ/σRUTH ) versus
scattering angle for the deuteron-8O16 reaction at incident energy
171 MeV. The dashed curve is the constant phase result (γ2=0) while
the solid curve is obtained with phase variation (γ2=−16 (GeV/c)−2).
The dots are the experimental data [42].

Fig. 6: Plots the elastic differential cross section (dσ/dΩ) versus
scattering angle for the deuteron-12Mg24 reaction at incident energy
170 MeV. The solid curve is the constant phase result (γ2=0). The
dots are the experimental data [44].
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Fig. 7: Plots the elastic differential cross section (σ/σRUTH ) versus
scattering angle for the deuteron-16S32 reaction at incident energy
52 MeV. The dashed curve is the constant phase result (γ2=0) while
the solid curve is obtained with phase variation (γ2=−8 (GeV/c)−2).
The dots are the experimental data [45]

Fig. 8: Plots the elastic differential cross section (σ/σRUTH ) versus
scattering angle for the deuteron-16S32 reaction at incident energy
171 MeV. The dashed curve is the constant phase result (γ2=0) while
the solid curve is obtained with phase variation (γ2=−12 (GeV/c)−2).
The dots are the experimental data [42].

Fig. 9: Plots the elastic differential cross section (σ/σRUTH ) versus
scattering angle for the deuteron- 20Ca40 reaction at incident energy
52 MeV. The dashed curve is the constant phase result (γ2=0) while
the solid curve is obtained with phase variation (γ2=−18 (GeV/c)−2).
The dots are the experimental data [46].

Fig. 10: Plots the elastic differential cross section (σ/σRUTH ) versus
scattering angle for the deuteron-20Ca40 reaction at incident energy
700 MeV. The dashed curve is the constant phase result (γ2=0) while
the solid curve is obtained with phase variation (γ2=−10 (GeV/c)−2).
The dots are the experimental data [47].

Fig. 11: Plots the elastic differential cross section (σ/σRUTH ) versus
scattering angle for the deuteron-23V 50 reaction at incident energy
171 MeV. The dashed curve is the constant phase result (γ2=0) while
the solid curve is obtained with phase variation (γ2=−26 (GeV/c)−2).
The dots are the experimental data [42].

Fig. 12: Plots the elastic differential cross section (σ/σRUTH ) versus
scattering angle for the deuteron-28Ni58 reaction at incident energy
80 MeV. The dashed curve is the constant phase result (γ2=0) while
the solid curve is obtained with phase variation (γ2=−26 (GeV/c)−2).
The dots are the experimental data [48].
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Fig. 13: Plots the elastic differential cross section (σ/σRUTH ) versus
scattering angle for the deuteron-28Ni58 reaction at incident energy
120 MeV. The dashed curve is the constant phase result (γ2=0) while
the solid curve is obtained with phase variation (γ2=−20 (GeV/c)−2).
The dots are the experimental data [42].

Fig. 14: Plots the elastic differential cross section (dσ/dΩ) versus
scattering angle for the deuteron-28Ni58 reaction at incident energy
170 MeV. The dashed curve is the constant phase result (γ2=0) while
the solid curve is obtained with phase variation (γ2=−28 (GeV/c)−2).
The dots are the experimental data [44].

Fig. 15: Plots the elastic differential cross section (σ/σRUTH ) versus
scattering angle for the deuteron-32Ge70 reaction at incident energy
171 MeV. The dashed curve is the constant phase result (γ2=0) while
the solid curve is obtained with phase variation (γ2=−28 (GeV/c)−2).
The dots are the experimental data [42].

Fig. 16: Plots the elastic differential cross section (σ/σRUTH ) versus
scattering angle for the deuteron-32Ge72 reaction at incident energy
171 MeV. The dashed curve is the constant phase result (γ2=0) while
the solid curve is obtained with phase variation (γ2=−28 (GeV/c)−2).
The dots are the experimental data [42].

Nucleus P d Li6 C12 O16 Mg24
√
<r2> (fm) 0.810 2.170 2.450 2.453 2.710 2.980

Ref. 16 16 36 16 16 16

Nucleus S32 Ca40 V50 Ni58 Ge70 Ge72
√
<r2> (fm) 3.239 3.486 3.615 3.790 4.070 4.050

Ref. 37 16 37 16 37 37

Table 2: Nuclear rms radii.

ing data except a smaller shift is found at the minimum. The
predicted angular distribution for d-6C

12 elastic collision at
the energies 110, 120 and 170 MeV is shown in Figs. 2–
4 respectively. The scattering data is well reproduced in
the last case (at 170 MeV) rather than in the other two
cases (110 and 120 MeV) where smaller shifts are still ap-
peared around the diffraction patterns. For d-8O

16 reaction,
Fig. 5, the predicted angular distribution is in good agree-

ment with the corresponding experimental data. In Fig. 6 we
presented the case of the d-12Mg24 reaction at bombarding
energy 170 MeV. One can easily see from this figure that the
predicted angular distribution give an excellent account to
the experimental data over the whole range of the scattering
angles. The calculated angular distribution for the d-16S

32

reaction at energies 52 and 171 MeV are shown in Figs. 7–
8. We observe from these figures that the predicted angular
distribution for the 171 MeV is much better in reproducing
the scattering data than that obtained at 52 MeV and smaller
shifts are found around the minima in both of them. The
results for the angular distribution of the elastic scattering
of 52 and 700 MeV deuteron on 20Ca40 nuclei are shown
in Figs. 9–10. The calculations reproduce reasonably the
scattering data up to the angular range (θ6 35◦) for the first
reaction and up to (θ6 10◦) for the second reaction, while for
larger angles just the qualitative trend is accounted for. For
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d-23V
50 reaction, Fig. 11, the data are reasonably reproduced

with a smaller shift away from the forward angles. Enlarging
the mass of the target nucleus as in the d-28Ni58 reaction,
Figs. 12–14, one can easily see that the predicted angular
distribution in the later case are twofold better in reproducing
the experimental data than in the others with smaller shifts
still found in all of them. For Germanium target nuclei as
in the case of d-32Ge70 and d-32Ge72 reactions, Figs. 15–16,
the data are quantitatively represented at the forward angles
and qualitatively reproduced at the backward angles.

On discussing these results, the positive picture obtained
at smaller values of momentum transfer is expected because
the Glauber theory is a very good approximation at forward
angles. But at larger angles poorer fits are obtained as the
energy increases was not expected.

However, we should keep in mind that at these energies
the input NN cross sections parameters are strongly depen-
dent on energy as shown in Table 1. Therefore, the scattering
would be very sensitive to the large q-details of the density
distributions and the elemental scattering amplitudes.

In the vie of the analysis made by several authors [30,
38–41], the question about the influence of invoking a phase-
variation in the NN scattering amplitude is investigated in
our calculations. To investigate how the q-dependent phase
exp −iγ2q2

2 affects the deuteron-nucleus elastic scattering, we
have carried out extensive numerical calculations for most
of our considered reactions (where smaller shifts are found
around their diffraction patterns), at various nonzero values
of the phase parameter γ2. The calculations showed that for
a given value of the ratio parameter ρ, the variation of γ2

leads to either overall increase or decrease in the estimated
values of the cross sections. Indeed, we found that such
change in the cross section takes place depending on the
signs of ρ and γ2, i.e. if ρ is positive, the negative value of γ2

increases the cross section while the positive value decreases
it and vice versa. Hence, a nonzero value for ρ implies a
single nonzero value for γ2 as well. This in fact agrees with
what was predicted before by Ahmad and Alvi [39] from
potential model calculation. However, the best results of the
present calculations are shown by the solid curves in our
figures. On comparing the solid curve (at γ2 6= 0) with the
dashed curve (at γ2=0) in each figure, we can note that
the influence of the phase is obvious only at the minima
and is roughly notable at the momentum transfers where no
minima originally occurred. In general, taking this phase into
account gives better agreement with the scattering data, Figs.
5, 11, 13, 14 and 16, while the improvement is confined at
the minima of the results obtained for the other reactions
presented in the Figs. 1–3, 7–10, 12 and 15.

4 Conclusion

In the framework of Glauber’s multiple scattering theory
which takes into account both the full multiple scattering

series of the Glauber amplitude and a consistent treatment
of the center-of-mass correlation, we have studied the elastic
scattering of deuteron with different nuclei like, 3Li6, 6C

12,
8O

16, 12Mg24, 16S
32, 20Ca40, 23V

50, 28Ni58, 32Ge70 and
32Ge72 at intermediate energies (256E/A6342.5). We have
calculated the angular distribution ( σ

σRUTH
or dσ

dΩ ) for the
above considered reactions and compared our results with
the corresponding experimental data. It was shown that, in
general, a smaller shift is appeared around the minimum in
most of the theoretical results and a disagreement at large
scattering angles is also exist there. Trial to overcome these
drawbacks is made by investigating the effect of invoking a
phase-variation in the NN scattering amplitude. Although the
results show that a better agreement with the experimental
data is obtained, especially at the minima of the diffraction
patterns in comparison with the free-phase calculations, the
introduction of such phase alone is not sufficient to bring the
Glauber model prediction closer to the experimental data,
except for a few number of the considered energies. The
reason for the insignificance of this phase at large scatteing
angles may be attributed to the followings: First, The com-
plicated eclipse occurred from the multiple scattering colli-
sions between nucleons which are not simple (linear) in its
dependence on q2 as that taken here. Second, the utilized bare
NN parameters that neglecting the in-medium effect. Thus,
for serious phase effect investigation, one should use a more
realistic density distribution for the deuteron and effective
NN parameters that account for the density dependence and
the medium effect. This will be the subject of our future
work.
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Appendix

This appendix contains the tables of the orbits, lengths and Δ-matrices em-
ployed in our calculations. We obtained them by enumerating and investi-
gating all the possible combinations of collisions according to their pertation
[20]. In the present work, the elastic collisions, d-3Li6, d-6C12, d-8O16, d-
12Mg24, d-16S32, d-20Ca40, d-23V50, d-28Ni58, d-32Ge70 and d-32Ge72

have been studied according to their cluster and nucleon structures. The
orbits, lengths and Δ-matrices of the groups G1=SMA ⊗SMB and G2=
=SMN ⊗SMN (defined in Section 2) corresponding to these reactions
depend on the assumed cluster and nucleon configurations.

The numbers (MA,MB ,MN ), determining the cluster and nucleon
structures assumed in each system are taken as follows: MA=1, MN =2
while MB is different for each reaction and it is equal to B/2, where B is
the mass number of the target nucleus.

For the sake of brevity, we give only the tables of the non-similar
groups.

μ λμ T (μ, λμ) Δ(μ, λμ)

1 1 29 10000000000000000000000000000

2 1 406 11000000000000000000000000000

3 1 3654 11100000000000000000000000000

4 1 23751 11110000000000000000000000000

5 1 118755 11111000000000000000000000000

6 1 475020 11111100000000000000000000000

7 1 1560780 11111110000000000000000000000

8 1 4292145 11111111000000000000000000000

9 1 10015005 11111111100000000000000000000

10 1 20030010 11111111110000000000000000000

11 1 34597290 11111111111000000000000000000

12 1 51895935 11111111111100000000000000000

13 1 67863915 11111111111110000000000000000

14 1 77558760 11111111111111000000000000000

Table 3: Orbits, lengths and Δ-matrices for G=S1⊗S29. Total number
of orbits (including the orbits not shown) = 29.

μ λμ T (μ, λμ) Δ(μ, λμ)

1 1 29 10000000000000000000000000000

2 1 190 11000000000000000000000000000

3 1 1140 11100000000000000000000000000

4 1 4845 11110000000000000000000000000

5 1 15504 11111000000000000000000000000

6 1 38760 11111100000000000000000000000

7 1 77520 11111110000000000000000000000

8 1 125970 11111111000000000000000000000

9 1 167960 11111111100000000000000000000

10 1 184756 11111111110000000000000000000

Table 4: Orbits, lengths and — matrices for G=S1⊗S20. Total number of
orbits (including the orbits not shown) = 20.

μ λμ T (μ, λμ) Δ(μ, λμ)

1 1 25 10000000000000000000000000000

2 1 300 11000000000000000000000000000

3 1 2300 11100000000000000000000000000

4 1 12650 11110000000000000000000000000

5 1 53130 11111000000000000000000000000

6 1 177100 11111100000000000000000000000

7 1 480700 11111110000000000000000000000

8 1 1081575 11111111000000000000000000000

9 1 2042975 11111111100000000000000000000

10 1 3268760 11111111110000000000000000000

11 1 4457400 11111111111000000000000000000

12 1 5200300 11111111111100000000000000000

Table 5: Orbits, lengths and Δ-matrices for G=S1⊗S25. Total number
of orbits (including the orbits not shown) = 25.
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μ λμ T (μ, λμ) Δ(μ, λμ)

1 1 3 100

Table 6: Orbits, lengths and Δ-matrices for G=S1⊗S3. Total number of
orbits (including the orbits not shown) = 3.

μ λμ T (μ, λμ) Δ(μ, λμ)

1 1 35 10000000000000000000000000000

2 1 595 11000000000000000000000000000

3 1 6545 11100000000000000000000000000

4 1 52360 11110000000000000000000000000

5 1 324632 11111000000000000000000000000

6 1 1623160 11111100000000000000000000000

7 1 6724520 11111110000000000000000000000

8 1 23535820 11111111000000000000000000000

9 1 70607460 11111111100000000000000000000

10 1 1.835794E8 11111111110000000000000000000

11 1 4.172259E8 11111111111000000000000000000

12 1 8.344518E8 11111111111100000000000000000

13 1 1.4763378E9 11111111111110000000000000000

14 1 2.3199594E9 11111111111111000000000000000

15 1 3.2479432E9 111111111111111000000000000000

16 1 4.0599289E9 111111111111111100000000000000

17 1 4.5375676E9 111111111111111110000000000000

Table 7: Orbits, lengths and Δ-matrices for G=S1⊗S35. Total number
of orbits (including the orbits not shown) = 35.

μ λμ T (μ, λμ) Δ(μ, λμ)

1 1 36 10000000000000000000000000000

2 1 630 11000000000000000000000000000

3 1 7140 11100000000000000000000000000

4 1 58905 11110000000000000000000000000

5 1 376992 11111000000000000000000000000

6 1 1947792 11111100000000000000000000000

7 1 8347680 11111110000000000000000000000

8 1 302660340 11111111000000000000000000000

9 1 94143280 11111111100000000000000000000

10 1 2.5418686E8 11111111110000000000000000000

11 1 6.008053E8 11111111111000000000000000000

12 1 1.2516777E9 11111111111100000000000000000

13 1 2.3107896E9 11111111111110000000000000000

14 1 3.7962972E9 11111111111111000000000000000

15 1 5.5679026E9 111111111111111000000000000000

16 1 7.3078721E9 111111111111111100000000000000

17 1 8.5974966E9 111111111111111110000000000000

18 1 9.0751353E9 111111111111111111000000000000

Table 8: Orbits, lengths and Δ-matrices for G=S1⊗S36. Total number
of orbits (including the orbits not shown) = 36.

In these tables, the first column represents the order of multiple scatter-
ing μ which ranges from 1 to 1×n while λμ in the second column
represents the serial index used to number the orbits of order μ. The
third column represents the length of the orbit T (μ, λμ). In the fourth
column the (1×n) - digit binary numbers give the Δ-matrices of the group
G=S1⊗Sn. The n-digits are the elements Δ1i, where i=1, 2, . . . , n.

By symmetry, the orbits, lengths and Δ-matrices for μ′s which are not
shown in our tables could be easily deduced from the Tables. This is carried
out by using the results for order μ′ = m×n−μ and interchanging the 0′s
and 1′s ofΔ(μ′, λμ′ ). The indices λμ and λμ′ are the same and the lengths
T (μ, λμ) and T (μ′, λμ′ ) are equal. The matrix Δ(n, 1) has elements Δ1j
equal to 1.

The orbits, lengths and Δ-matrices of the groups G = S2 ⊗ S2 [24] &
S1 ⊗ S6 & S1 ⊗ S12 & S1 ⊗ S16 [26] and S1 ⊗ S8 [28] are also used to
carry out our present calculations in addition to what was listed above.
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