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The fluctuations of funnel solutions of intersecting D1 and D3 branes are quite
explicitly discussed by treating different modes and different directions of the
fluctuation at the presence of world volume electric field. The boundary conditions
are found to be Neumann boundary conditions.

1 Introduction

D-branes described by Non-abelian Born-Infeld (BI) action
[1] have many fascinating features. Among these there is the
possibility for D-branes to morph into other D-branes of dif-
ferent dimensions by exciting some of the scalar fields [2, 3].
It’s known in the literature that there are many different
but physically equivalent descriptions of how a D1-brane
may end on a D3-brane. From the point of view of the D3
brane the configuration is described by a monopole on its
world volume. From the point of view of the D1-brane the
configuration is described by the D1-brane opening up into
a D3-brane where the extra three dimensions form a fuzzy
two-sphere whose radius diverges at the origin of the D3-
brane. These different view points are the stringy realization
of the Nahm transformation [4, 5]. Also the dynamics of
the both bion spike [2, 6] and the fuzzy funnel [5, 7, 8]
were studied by considering linearized fluctuations around
the static solutions.

The present work is devoted to study the fluctuations of
funnel solutions in the presence of a world-volume electric
field. By discussing the solutions and the potentials for this
particular case we end by the system D1⊥D3 branes gets a
special property because of the presence of electric field; the
system is divided to two regions corresponding to small and
large electric field. Consequently, the system has Neumann
boundary conditions and the end of open string can move
freely on the brane which is agree with its dual discussed in
[9] considering Born-Infeld action dealing with the fluctua-
tion of the bion skipe in D3⊥D1-case.

The paper is organized as follows: In section 2, we start
by a brief review on D1⊥D3 branes in dyonic case by using
the non-Born-Infeld action. Then, we discuss the fluctuations
of the fuzzy funnel in section 3 for zero and high modes. We
give the solutions of the linearized equations of motion of
the fluctuations for both cases the overall transverse and the
relative one. We also discuss the solutions and the potential
depending on the presence of electric field which is leading
to Neumann boundary conditions as special property of the
system. Then the waves on the brane cause the fuzzy funnel
to freely oscillate.

2 D1⊥D3 branes with electric field swished on

In this section, we review in brief the funnel solutions for
D1⊥D3 branes from D3 and D1 branes points of view. First,
using abelian BI action for the world-volume gauge field
and one excited transverse scalar in dyonic case, we give
the funnel solution. It was showed in [10] that the BI action,
when taken as the fundamental action, can be used to build a
configuration with a semi-infinite fundamental string ending
on a D3-brane [11]. The dyonic system is given by using
D-string world-volume theory and the fundamental strings
introduced by adding a U(1) electric field. Thus the system
is described by the following action

S =

∫
dtL =

= −T3

∫
d4σ
√
−det(ηab + λ2 ∂aφi ∂bφi + λFab) =

= −T3

∫
d4σ
[
1 + λ2

(
|∇φ|2 +B2 + E2

)
+

+λ4
(
(B ∙ ∇φ)2 + (E ∙B)2 + |E ∧∇φ|2

)] 1
2

(1)

in which Fab is the field strength and the electric field is de-
noted as F09=EIab, (Iab isN×N matrix). σa (a=0, . . . , 3)
denote the world volume coordinates while φi (i=4, . . . , 9)
are the scalars describing transverse fluctuations of the brane
and λ=2π`2s with `s is the string length. In our case we
excite just one scalar so φi=φ9≡φ. Following the same
process used in the reference [10] by considering static gauge,
we look for the lowest energy of the system. Accordingly to
(1) the energy of dyonic system is given as

Ξ = T3

∫
d3σ
[
λ2|∇φ+ ~B+ ~E|2+(1−λ2∇φ∙ ~B)2−

− 2λ2 ~E ∙( ~B+∇φ)+λ4
(
( ~E ∙ ~B)2+ | ~E∧∇φ|2

)] 1
2

,

(2)

then if we require ∇φ + ~B + ~E = 0, Ξ reduces to Ξ0 > 0
and we find

Ξ0 = T3

∫
d3σ
[(
1− λ2 (∇φ) ∙ ~B

)2
+ 2λ2 ~E ∙ ~E+

+λ4
(
( ~E ∙ ~B)2 + | ~EΛ∇φ|2

)] 12 (3)
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as minimum energy. By using the Bianchi identity ∇∙B=0
and the fact that the gauge field is static, the funnel solution
is then

φ=
Nm +Ne
2r

, (4)

with Nm is magnetic charge and Ne electric charge.
Now we consider the dual description of the D1⊥D3

from D1 branes point of view. To get D3-branes from D-
strings, we use the non-abelian BI action

S = −T1

∫
d2σ×

× Str
[
− det(ηab + λ

2 ∂aφ
iQ−1ij ∂bφ

j) detQij
] 1
2

(5)

where Qij = δij + iλ
[
φi, φj

]
. Expanding this action to lead-

ing order in λ yields the usual non-abelian scalar action

S ∼= −T1

∫
d2σ×

×
[
N + λ2 tr

(
∂aφ

i + 1
2

[
φi, φj

][
φj , φi

])
+ . . .

] 1
2

.

The solutions of the equation of motion of the scalar
fields φi, i=1, 2, 3 represent the D-string expanding into
a D3-brane analogous to the bion solution of the D3-brane
theory [2, 3]. The solutions are

φi = ±
αi
2σ
,

[
αi, αj

]
= 2iεijkαk,

with the corresponding geometry is a long funnel where the
cross-section at fixed σ has the topology of a fuzzy two-
sphere.

The dyonic case is taken by considering (N,Nf )-strings.
We have N D-strings and Nf fundamental strings [5]. The
theory is described by the action

S = −T1

∫
d2σ×

× Str
[
−det(ηab+λ

2∂aφ
iQ−1ij ∂bφ

j+λEIab) detQ
ij
] 1
2

(6)

in which we replaced the field strength Fab by EIab (Iab is
N×N -matrix) meaning that the fundamental string is intro-
duced by adding a U(1) electric field E.

The action can be rewritten as

S = −T1

∫
d2σ Str

[

−det

(
ηab+λEIab λ∂aφ

j

−λ∂bφ
i Qij

)] 1
2

, (7)

then the bound states of D-strings and fundamental strings
are made simply by introducing a background U(1) electric
field on D-strings, corresponding to fundamental strings dis-
solved on the world-sheet. By computing the determinant,
the action becomes

S = −T1

∫
d2σ×

× Str
[
(1− λ2E2 + αiαiR̂

′2)(1 + 4λ2αjαjR̂
4)
] 1
2

,
(8)

where the following ansatz were inserted

φi = R̂αi . (9)

Hence, we get the funnel solution for dyonic string by
solving the equation of variation of R̂, as follows

φi =
αi

2σ
√
1− λ2E2

. (10)

3 Fluctuations of dyonic funnel solutions

In this section, we treat the dynamics of the funnel solutions.
We solve the linearized equations of motion for small and
time-dependent fluctuations of the transverse scalar around
the exact background in dyonic case.

We deal with the fluctuations of the funnel (10) discussed
in the previous section. By plugging into the full (N −Nf )
string action (6, 7) the “overall transverse” δφm(σ, t)=
= fm(σ, t)IN , m=4, . . . , 8 which is the simplest type of
fluctuation with IN the identity matrix, together with the
funnel solution, we get

S = −T1

∫
d2σ Str

[

(1 + λE)

(

1 +
λ2αiαi

4σ4

)

×

×

((

1 +
λ2αiαi

4σ4

)
(
1 + (λE − 1)λ2(∂tδφ

m)2
)
+

+λ2(∂σδφ
m)2

)] 1
2

≈ −NT1

∫
d2σH

[

(1 + λE)−

− (1− λ2E2)
λ2

2
(ḟm)2 +

(1 + λE)λ2

2H
(∂σf

m)2 + . . .

]

(11)

where

H = 1 +
λ2C

4σ4

and C = trαiαi. For the irreducible N × N representation
we have C = N2 − 1. In the last line we have only kept
the terms quadratic in the fluctuations as this is sufficient to
determine the linearized equations of motion
(

(1− λE)

(

1 + λ2
N2 − 1
4σ4

)

∂2t − ∂
2
σ

)

fm = 0 . (12)

In the overall case, all the points of the fuzzy funnel
move or fluctuate in the same direction of the dyonic string
by an equal distance δxm. First, the funnel solution is φi=
= 1

2
√
1−λ2E2

αi

σ and the fluctuation fm waves in the direction
of xm; fm(σ, t) = Φ(σ) e−iwtδxm. (13)

With this ansatz the equation of motion is
(
(1− λE)Hw2 + ∂2σ

)
Φ(σ) = 0 , (14)

then the problem is reduced to finding the solution of a single
scalar equation.
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Thus, we remark that the equation (14) is an analog one-
dimensional Schrödinger equation and it can be rewritten
as

(
− ∂2σ + V (σ)

)
Φ(σ) = w2 (1− λE)Φ(σ), (15)

with

V (σ) = w2(λE − 1)λ2
N2 − 1
4σ4

.

We notice that, if the electric field dominates E� 1, the
potential goes to w2λ3E N2

4σ4
for large N and if E� 1 we

find V =−w2 λ2 N2

4σ4
. This can be seen as two separated

systems depending on electric field so we have Neumann
boundary condition separating the system into two regions
E� 1 and E� 1.

Now, let’s find the solution of a single scalar equation
(14). First, the equation (14) can be rewritten as follows

(
1

w2(1− λE)
∂2σ + 1 +

λ2N2

4σ4

)

Φ(σ) = 0 , (16)

for large N . If we suggest σ̃=w
√
1−λE σ the latter equa-

tion becomes
(

∂2σ̃ + 1 +
κ2

σ̃4

)

Φ(σ̃) = 0 , (17)

with the potential is

V (σ̃) =
κ2

σ̃4
, (18)

and κ= λNw2

2 (1−λE). This equation is a Schrödinger
equation for an attractive singular potential ∝ σ̃−4 and de-
pends on the single coupling parameter κ with constant po-
sitive Schrödinger energy. The solution is then known by
making the following coordinate change

χ(σ̃) =

∫ σ̃

√
κ

dy

√

1 +
κ2

y4
, (19)

and

Φ =

(

1 +
κ2

σ̃4

)− 1
4

Φ̃ . (20)

Thus, the equation (17) becomes

(
− ∂2χ + V (χ)

)
Φ̃ = 0 , (21)

with

V (χ) =
5κ2

(
σ̃2 + κ2

σ̃2

)3 . (22)

Then, the fluctuation is found to be

Φ =

(

1 +
κ2

σ̃4

)− 1
4

e±iχ(σ̃). (23)

Fig. 1: Left hand curve represents the overall fluctuation wave
in zero mode and low electric field. Right hand curve shows the
scattering of the overall fluctuation wave in zero mode and high
electric field. This latter caused a discontinuitity of the wave which
means Neumann boundary condition.

Fig. 2: The up line shows the potential in zero mode of the overall
funnel’s fluctuations at the absence of electric field E and the dots
represent the potential in the same mode at the presence of E. The
presence of E is changing the potential totally to the opposite.

This fluctuation has the following limits; at large σ,
Φ∼ e±iχ(σ̃) and if σ is small Φ=

√
κ
σ̃ e

±iχ(σ̃). These are the
asymptotic wave function in the regions χ → ±∞, while
around χ ∼ 0; i.e. σ̃ ∼

√
κ, fm∼ 2−

1
4 e−iwtδxm (Fig. 1).

The potential (22) in large and small limits of electric
field becomes (Fig. 2):

• E � 1, V (χ)∼ −5λN2

Eσ6
;

• E � 1, V (χ)∼ 5λ2N2w2

4
(
w2σ2+ λ2N2w2

4σ2

) .

At the presence of electric field we remark that around
σ∼ 0 there is a symmetric potential which goes to zero
very fast and more fast as electric field is large ∼ −1

Eσ2
.

As discussed above, again we get the separated systems in
different regions depending on the values of electric field.
Also if we have a look at the fluctuation (23) we find that
fm in the case of E� 1 is different from the one in E� 1
case and as shown in the Fig. 1 the presence of electric
field causes a discontinuity of the fluctuation wave which
means free boundary condition. Contrarily, at the absence of
electric field the fluctuation wave is continue. Then, this is
seen as Neumann boundary condition from non-Born-Infeld
dynamics separating the system into two regions E� 1 and
E� 1 which is agree with its dual discussed in [9].
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The fluctuations discussed above could be called the zero
mode ` = 0 and for high modes ` > 0, the fluctuations are

δφm(σ, t) =

N−1∑

`=0

ψmi1...i`α
i1 . . . αi`

with ψmi1...i` are completely symmetric and traceless in the
lower indices.

The action describing this system is

S ≈ −NT1

∫
d2σ

[

(1 + λE)H − (1− λ2E2)×

×H
λ2

2
(∂tδφ

m)2 +
(1 + λE)λ2

2H
(∂σδφ

m)2−

− (1−λ2E2)
λ2

2

[
φi, δφm

]2
−
λ4

12

[
∂σφ

i, ∂tδφ
m
]2
+. . .

]
(24)

Now the linearized equations of motion are
[
(1 + λE)H∂2t − ∂

2
σ

]
δφm + (1− λ2E2)×

×
[
φi,
[
φi, δφm

]]
−
λ2

6

[
∂σφ

i,
[
∂σφ

i, ∂2t δφ
m
]]
= 0 .

(25)

Since the background solution is φi ∝ αi and we have[
αi, αj

]
=2iεijkα

k, we get
[
αi,
[
αi, δφm

]]
=
∑

`<N

ψmi1...i`
[
αi,
[
αi, αi1 . . . αi`

]]

=
∑

`<N

4`(`+ 1)ψmi1...i`α
i1 . . . αi`

(26)

To obtain a specific spherical harmonic on 2-sphere, we
have

[
φi,
[
φi, δφm`

]]
=
`(`+ 1)

σ2
δφm` ,

[
∂σφ

i,
[
∂σφ

i, ∂2t δφ
m
]]
=
`(`+ 1)

σ4
∂2t δφ

m
` .

(27)

Then for each mode the equations of motion are
[(

(1 + λE)

(

1 + λ2
N2−1
4σ4

)

−
λ2`(`+1)

6σ4

)

∂2t −

− ∂2σ + (1− λ
2E2)

`(`+ 1)

σ2

]

δφm` = 0 .

(28)

The solution of the equation of motion can be found
by taking the following proposal. Let’s consider φm` =
= fm` (σ)e

−iwtδxm in directionm with fm` (σ) is some func-
tion of σ for each mode `.

The last equation can be rewritten as
[
− ∂2σ + V (σ)

]
fm` (σ) = w2(1 + λE) fm` (σ) , (29)

with

V (σ) = −w2
(

(1 + λE)
λ2N2

4σ4
−
λ2`(`+ 1)

6σ4

)

+

+(1− λ2E2)
`(`+ 1)

σ2
.

Let’s write the equation (29) in the following form
[

w2
(

(1 + λE)H −
λ2`(`+ 1)

6σ4

)

−

− (1− λ2E2)
`(`+ 1)

σ2
+ ∂2σ

]

fm` (σ) = 0 .

(30)

and again as
[

1 +
1

σ4

(

λ2
N2 − 1
4

−
λ2`(`+ 1)

6(1 + λE)

)

−

− (1− λE)
`(`+ 1)

w2σ2
+

1

w2(1 + λE)
∂2σ

]

fm` (σ) = 0 .

(31)

We define new coordinate σ̃=w
√
1+λE σ and the latter

equation becomes
[

∂2σ̃ + 1 +
κ2

σ̃4
+

η

σ̃2

]

fm` (σ) = 0 , (32)

where

κ2 = w2(1 + λE)

(

λ2
N2 − 1
4

−
λ2`(`+ 1)

6(1 + λE)

)1
2

,

η = −(1− λ2E2) `(`+ 1)

such that

N >

√
2`(`+ 1)

3(1 + λE)
+ 1 .

For simplicity we choose small σ, then the equation (32)
is reduced to [

∂2σ̃ + 1 +
κ2

σ̃4

]

fm` (σ) = 0 , (33)

as we did in zero mode, we get the solution by using the steps
(19–22) with new κ. Since we considered small σ we get

V (χ) =
5σ̃6

κ4
,

then

fm` =
σ̃
√
κ
e±iχ(σ̃) . (34)

This fluctuation has two different values at large E and
small E (Fig. 3) and a closer look at the potential at large
and fixed N in large and small limits of electric field leads to

• E � 1, V (χ)∼ 20w2Eσ6

λN2 ;

• E � 1, V (χ)∼ 5w2σ6

λ2
(
N2

4 − `(`+1)
6

) .

The potential in the first case is going fast to infinity than
the one in the second case because of the electric field if
σ � 1 (Fig. 4).

For large σ the equation of motion (30) of the fluctuation
becomes

[
− ∂2σ + Ṽ (σ)

]
fm` (σ) = w2(1 + λE)fm` (σ) , (35)
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Fig. 3: The left figure shows the continuity of the fluctuation wave
in high mode of the overall fluctuation at the absence of electric
field E. The right figure shows the discontinuity of the wave at the
presence of E in high mode meaning free boundary condition.

with Ṽ (σ)= (1−λ2E2) ` (`+1)

σ2
and fm` is now a Sturm-

Liouville eigenvalue problem (Fig. 3). We found that the
fluctuation has discontinuity at the presence of electric field
meaning free boundary condition. Also we remark that the
potential has different values in the different regions of elec-
tric field E � 1 and E � 1 and this time for large σ. In this
side, the potential drops with opposite sign from one case to
other and as shown in (Fig. 4). The presence of E is changing
the potential totally to the opposite in both cases zero and
high modes.

Consequently, by discussing explicitly the fluctuations
and the potential of intersecting D1-D3 branes in D1-brane
world volume theory we found that the system has Neumann
boundary conditions and the end of the string can move
freely on the brane for both zero and high modes of the
overall transverse fluctuations case.

3.1 Relative Transverse Fluctuations

Now if we consider the “relative transverse” δφi(σ, t)=
= f i(σ, t)IN , i=1, 2, 3 the action is

S = −T1

∫
d2σ×

× Str

[

−det

(
ηab+λEIab λ∂a(φ

j+δφj)

−λ∂b(φ
i+δφi) Qij

∗

)] 1
2

,

(36)

with Qij∗ = Qij+iλ
([
φi, δφj

]
+
[
δφi, φj

]
+
[
δφi, δφj

])
. As

before we keep only the terms quadratic in the fluctuations
and the action becomes

S ≈ −NT1

∫
d2σ

[

(1− λ2E2)H −

− (1−λE)
λ2

2
(ḟ i)2+

(1+λE)λ2

2H
(∂σf

i)2+ . . .

]

.

(37)

Then the equations of motion of the fluctuations are
(

−∂2σ − w
2 1− λE
1 + λE

λ2
N2 − 1
4σ4

)

f i = w2
1− λE
1 + λE

f i. (38)

If we write f i=Φi(σ) e−iwtδxi in the direction of xi,
the potential will be

V (σ) = −
1− λE
1 + λE

λ2
N2 − 1
4σ4

w2.

Fig. 4: The line represents the potential for small σ and dots for
large σ in both figures. In high mode of overall fluctuations at the
absence of electric field E, the left figure shows high potential at
some stage of σ where the two curves meet. The right figure shows
a critical case. The curves represent the potentials at the presence of
E for small and large σ. As a remark, there is no intersecting point
for theses two potentials! At some stage of σ there is a singularity.

Fig. 5: The line shows the potential in zero mode of the relative
funnel’s fluctuations at the absence of electric field E and the dots
represent the potential in the same mode at the presence of E. The
presence of E is changing the potential totally to the opposite.

Let’s discuss the cases of electric field:

• E � 1, V (σ)∼ − λ2N
2−1
4σ4

w2;

• E � 1, V (σ)∼λ2N
2−1
4σ4

w2.

Also in the relative case, this is Neumann boundary con-
dition (Fig. 5) which can be also shown by finding the
solution of (38) for which we follow the same way as above
by making a coordinate change suggested by WKB. This
case is seen as a zero mode of what is following so we will
treat this in general case by using this coordinate change for
high modes.

Now let’s give the equation of motion of relative trans-
verse fluctuations of high ` modes with (N−Nf ) strings
intersecting D3-branes. The fluctuation is given by

δφi(σ, t) =

N−1∑

`=1

ψii1...i`α
i1 . . . αi`

with ψii1...i` are completely symmetric and traceless in the
lower indices.
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The action describing this system is

S ≈ −NT1

∫
d2σ

[

(1− λ2E2)H −

− (1− λE)H
λ2

2
(∂tδφ

i)2 +
(1 + λE)λ2

2H
(∂σδφ

i)2−

− (1− λE)
λ2

2

[
φi, δφi

]2
−
λ4

12

[
∂σφ

i, ∂tδφ
i
]2
+ . . .

]

.

(39)

The equation of motion for relative transverse fluctua-
tions in high mode is as follows
[
1− λE
1 + λE

H∂2t − ∂
2
σ

]

δφi + (1− λE)
[
φi,
[
φi, δφi

]]
−

−
λ2

6

[
∂σφ

i,
[
∂σφ

i, ∂2t δφ
i
]]
= 0 .

(40)

By the same way as done for overall transverse fluctua-
tions the equation of motion for each mode is
[

−∂2σ+

(
1−λE
1+λE

(

1+λ2
N2−1
4σ4

)

−
λ2`(`+1)

6σ4

)

∂2t +

+(1− λE)
`(`+ 1)

σ2

]

δφi` = 0 .

(41)

We take δφi` = f i` e
−iwtδxi, then the equation (41) be-

comes
[

−∂2σ−

(
1−λE
1+λE

(

1+λ2
N2−1
4σ4

)

−
λ2`(`+1)

6σ4

)

w2+

+(1− λE)
`(`+ 1)

σ2

]

f i` = 0 .

(42)

To solve the equation we choose for simplicity the boun-
daries of σ; For small σ, the equation is reduced to
[

−∂2σ −

(
1− λE
1 + λE

(

1 + λ2
N2 − 1
4σ4

)

−

−
λ2`(`+ 1)

6σ4

)

w2
]

f i` = 0 ,

(43)

which can be rewritten as follows
[

−
1 + λE

1− λE
∂2σ −

((

1 + λ2
N2 − 1
4σ4

)

−

−
1 + λE

1− λE
λ2`(`+ 1)

6σ4

)

w2
]

f i` = 0 .

(44)

We change the coordinate to σ̃=
√

1−λE
1+λE wσ and the

equation (44) becomes
[

∂2σ̃ + 1 +
κ2

σ̃4

]

f i` (σ̃) = 0 , (45)

with

κ2 = w4λ2
3(1− λE)2(N2 − 1)− 2(1− λ2E2) `(`+ 1)

12(1 + λE)2
.

Then we follow the suggestions of WKB by making a
coordinate change;

β(σ̃) =

∫ σ̃

√
κ

dy

√

1 +
κ2

y4
, (46)

and

f i` (σ̃) =

(

1 +
κ2

σ̃4

)− 1
4

f̃ i` (σ̃) . (47)

Thus, the equation (45) becomes
(
− ∂2β + V (β)

)
f̃ i = 0 , (48)

with

V (β) =
5κ2

(
σ̃2 + κ2

σ̃2

)3 . (49)

Then

f i` =

(

1 +
κ2

σ̃4

)− 1
4

e±iβ(σ̃) . (50)

The discussion is similar to the overall case; so the ob-
tained fluctuation has the following limits; at large σ, f i` ∼

∼ e±iβ(σ̃) and if σ is small f i` =
√
κ
σ̃ e

±iβ(σ̃). These are the
asymptotic wave function in the regions β→±∞, while
around β ∼ 0; i.e. σ̃ ∼

√
κ, f i` ∼ 2

− 1
4 .

Then let’s have a look at the potential in various limits
of electric field:

• E ∼ 1
λ , V (β) ∼ 0;

• E� 1, κ2≡κ2+∼w
4λ2 3(N

2−1)+2`(`+1)
12 , then σ∼ 0

⇒V (β) ∼ 5σ̃6

κ4+
;

• E� 1, κ2≡κ2−∼w
4λ2 3(N

2−1)−2`(`+1)
12 ; for this case

we get σ ∼ 0⇒ V (β) ∼ 5σ̃6

κ4−
;

this means that we have a Neumann boundary condition with
relative fluctuations at small σ (Fig. 6).

Now, if σ is too large the equation of motion (42) be-
comes
[

−∂2σ + (1− λE)
`(`+ 1)

σ2

]

f i` =
1− λE
1 + λE

w2f i` . (51)

We see, the associated potential V (σ)=(1−λE) `(`+1)
σ2

goes to −ε in the case of E � 1 and to +ε if E � 1 since σ
is too large with ε ∼ 0, (Fig. 6). We get the same remark as
before by dealing with the fluctuations for small and large σ
(50) and solving (51) respectively, at the presence of electric
field that we have two separated regions depending on the
electric field (Fig. 7).

We discussed quite explicitly through this section the flu-
ctuation of the funnel solution of D1⊥D3 branes by treating
different modes and different directions of the fluctuation.
We found that the system got an important property because
of the presence of electric field; the system has Neumann
boundary condition.
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Fig. 6: As we saw in high mode of overall fluctuations, also for
relative case we get high potential at some stage of σ where the
tow curves meet representing potentials for small and large σ at the
absence of electric field E in the left figure. Right figure shows again
a singularity this time in relative case because of the presence of E.

Fig. 7: The presence of electric field E causes a discontinuity of
the wave in high mode of relative case meaning free boundary
condition.

4 Conclusion

We have investigated the intersecting D1-D3 branes through
a consideration of the presence of electric field. We have
treated the fluctuations of the funnel solutions and we have
discussed explicitly the potentials in both systems. We found
a specific feature of the presence of electric field. When the
electric field is going up and down the potential of the system
is changing and the fluctuations of funnel solutions as well
which cause the division of the system to tow regions. Con-
sequently, the end point of the dyonic strings move on the
brane which means we have Neumann boundary condition.

The present study is in flat background and there is
another interesting investigation is concerning the perturba-
tions propagating on a dyonic string in the supergravity back-
ground [12, 5] of an orthogonal 3-brane. Then we can deal
with this important case and see if we will get the same
boundary conditions by treating the dyonic fluctuations.
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