
Volume 3 PROGRESS IN PHYSICS July, 2007

The Algebraic Rainich Conditions
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Sección de Estudios de Posgrado e Investigación, Escuela Superior de Ingenierı́a
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In the literature, the algebraic Rainich conditions are obtained using special methods
such as spinors, duality rotations, an eigenvalue problem for certain 4× 4 matrices or
artificial tensors of 4th order. We give here an elementary procedure for deducing an
identity satisfied by a determined class of second order tensors in arbitrary <4, from
which the Rainich expressions are immediately obtained.

1 Introduction

Rainich [1–5] proposed a unified field theory for the geomet-
rization of the electromagnetic field, whose basic relations
can be obtained from the Einstein-Maxwell field equations:
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where Rac=Rca, R=Rb∙∙b and Fac=−Fca are the Ricci
tensor, scalar curvature and Faraday tensor [6], respectively.

If in (1) we contract i with j we find that:

R = 0 (2)

then (1) adopts the form:
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used by several authors [1, 2, 5, 7, 8] to obtain the identity:
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If Far is known, then (3) is an equation for gij and our
situation belongs to general relativity. The Rainich theory
presents the inverse process: To search for a solution of
(2) and (4) (plus certain differential restrictions), and after
with (3) to construct the corresponding electromagnetic field;
from this point of view Far is a consequence of the spacetime
geometry.

In the next Section we give an elementary proof of (4),
without resorting to duality rotations [2], spinors [7], eigen-
value problems [8] or fourth order tensors [9, 10].

2 The algebraic Rainich conditions

The structure of (3) invites us to consider tensors with the
form:
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where A is a scalar and Bac, Fij are arbitrary antisymmetric

tensors. Then from (5) it is easy to deduce the expression:
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with C =C r ∙∙r and
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But in four dimensions we have the following identities
between antisymmetric tensors and their duals [11–13]:
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With (7) and (8) it is simple to prove that Dij =0. There-
fore (6) implies the identity:
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If now we consider the particular case:

A = 2πFabF
ab, Bij = −8πFij , (10)

then (5) reproduces (3) and C =R=0, and thus (9) leads to
(4), q.e.d.

Our procedure shows that the algebraic Rainich condi-
tions can be deduced without special techniques.
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