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In the framework of the Open Quantum Relativity, we discuss the geodesic and
chronological structures related to the embedding procedure and dimensional reduction
from 5D to 4D spacetime. The emergence of an extra-force term, the deduction of the
masses of particles, two-time arrows and closed time-like solutions are considered
leading to a straightforward generalization of causality principle.

1 Introduction

Open Quantum Relativity [1] is a theory based on a dyna-
mical unification scheme [2] of fundamental interactions
achieved by assuming a 5D space which allows that the
conservation laws are always and absolutely valid as a natural
necessity. What we usually describe as violations of conser-
vation laws can be described by a process of embedding and
dimensional reduction, which gives rise to an induced-matter
theory in the 4D space-time by which the usual masses,
spins and charges of particles, naturally spring out. At the
same time, it is possible to build up a covariant symplectic
structure directly related to general conservation laws [3,
4]. Finally, the theory leads to a dynamical explanation of
several paradoxes of modern physics (e.g. entanglement of
quantum states, quantum teleportation, gamma ray bursts
origin, black hole singularities, cosmic primary antimatter
absence and a self-consistent fit of all the recently observed
cosmological parameters [2, 5, 7, 8, 9]). A fundamental rôle
in this approach is the link between the geodesic structure
and the field equations of the theory before and after the
dimensional reduction process. The emergence of an Extra
Force term in the reduction process and the possibility to re-
cover the masses of particles, allow to reinterpret the Equiv-
alence Principle as a dynamical consequence which naturally
“selects” geodesics from metric structure and vice-versa the
metric structure from the geodesics. It is worth noting that,
following Schrödinger [10], in the Einstein General Relativ-
ity, geodesic structure is “imposed” by choosing a Levi-
Civita connection [12] and this fact can be criticized consi-
dering a completely “affine” approach like in the Palatini
formalism [13]. As we will show below, the dimensional
reduction process gives rise to the generation of the masses
of particles which emerge both from the field equations and
the embedded geodesics. Due to this result, the coincidence
of chronological and geodesic structure is derived from the
embedding and a new dynamical formulation of the Equival-
ence Principle is the direct consequence of dimensional re-

duction. The dynamical structure is further rich since two
time arrows and closed time-like paths naturally emerge.
This fact leads to a reinterpretation of the standard notion of
causality which can be, in this way, always recovered, even
in the case in which it is questioned (like in entanglement
phenomena and quantum teleportation [5, 6]), because it is
generalized to a forward and a backward causation.

The layout of the paper is the following. In Sec.2, we
sketch the 5D approach while in Sec.3 we discuss the rôle
of conservation laws. Sec.4 is devoted to the discussion of
geodesic structure and to the emergence of the Extra Force
term. The field equations, the masses of the particles and
time-like solutions are discussed in Sec.5. Conclusions are
drawn in Sec.6.

2 The 5D-field equations

Open Quantum Relativity can be framed in a 5D space-time
manifold and the 4D reduction procedure induces a scalar-
tensor theory of gravity where conservation laws (i.e. Bianchi
identities) play a fundamental rôle into dynamics. The 5D-
manifold which we are taking into account is a Riemannian
space provided with a 5D-metric of the form

dS2 = gAB dx
AdxB , (1)

where the Latin indexes are A,B=0, 1, 2, 3, 4. We do not
need yet to specify the 5D signature, because, in 4D, it is
dynamically fixed by the reduction procedure as we shall see
below. The curvature invariants, the field equations and the
conservation laws in the 5D-space can be defined as follows.
In general, we ask for a space which is a singularity free,
smooth manifold, where conservation laws are always valid
[7]. The 5D-Riemann tensor is

RDABC = ∂BΓ
D
AC − ∂CΓ

D
AB + Γ

D
EBΓ

E
AC − Γ

D
ECΓ

E
AB (2)

and the Ricci tensor and scalar are derived from the contrac-
tions

RAB = R
C
ACB ,

(5)R = RAA . (3)
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The field equations can be obtained from the 5D-action

(5)A = −
1

16π (5)G

∫
d5x

√
−g(5)

[
(5)R

]
, (4)

where (5)G is the 5D-gravitational coupling and g(5) is the
determinant of the 5D-metric [2]. The 5D-field equations are

GAB = RAB −
1

2
gAB

(5)R = 0 , (5)

so that at least the Ricci-flat space is always a solution. Let
us define now a 5D-stress-energy tensor for a scalar field Φ:

TAB = ∇AΦ∇BΦ−
1

2
gAB ∇CΦ∇

CΦ , (6)

where only the kinetic terms are present. As standard, such
a tensor can be derived from a variational principle

TAB =
2

√
−g(5)

δ
(√

−g(5) LΦ
)

δgAB
, (7)

where LΦ is a Lagrangian density related to the scalar field
Φ. Because of the definition of 5D space itself, based on the
conservation laws [7], it is important to stress now that no
self-interaction potential U(Φ) has to be taken into account
so that TAB is a completely symmetric object and Φ is, by
definition, a cyclic variable. In this situation the Noether
theorem always holds for TAB . With these considerations in
mind, the field equations can assume the form

RAB = χ

(

TAB −
1

2
gAB T

)

, (8)

where T is the trace of TAB and χ = 8π (5)G.

3 The rôle of conservation laws

Eqs. (8) are useful to put in evidence the rôle of the scalar
field Φ, if we are not simply assuming Ricci-flat 5D-spaces.
Due to the symmetry of the stress-energy tensor TAB and
the Einstein field equations GAB , the contracted Bianchi
identities

∇A T
A
B = 0 , ∇AG

A
B = 0 , (9)

must always hold. Developing the stress-energy tensor, we
obtain

∇A T
A
B = ΦB

(5)2Φ , (10)

where (5)2 is the 5D d’Alembert operator defined as∇AΦA≡
≡ gABΦ,A;B ≡ (5)2Φ. The general result is that the conser-
vation of the stress-energy tensor TAB (i.e. the contracted
Bianchi identities) implies the Klein-Gordon equation which
assigns the dynamics of Φ, that is

∇A T
A
B = 0 ⇐⇒ (5)2Φ = 0 . (11)

Let us note again the absence of self-interactions due
to the absence of potential terms. The relations (11) give a
physical meaning to the fifth dimension. Splitting the 5D-
problem in a (4+1)-description, it is possible to generate
the mass of particles in 4D. Such a result can be deduced
both from Eq. (11) and from the analysis of the geodesic
structure, as we are going to show.

4 The 5D-geodesics and the Extra Force

The geodesic structure of the theory can be derived consi-
dering the action

A =
∫
dS

(

gAB
dxA

dS

dxB

dS

)1/2
, (12)

whose Euler-Lagrange equations are the geodesic equations

d2xA

dS2
+ ΓABC

dxB

dS

dxC

dS
= 0 . (13)

ΓABC are the 5D-Christoffel symbols. Eq. (13) can be split in
the (4 + 1) form

2gαμ

(
dxα

ds

)(
d2xμ

ds2
+ Γ

μ
βγ

dxβ

ds

dxγ

ds

)

+

+
∂gαβ
dx4

dx4

ds

dxα

ds

dxβ

ds
= 0 ,

(14)

where the Greek indexes are μ, ν =0, 1, 2, 3 and ds2=
= gαβdx

αdxβ . Clearly, in the 4D reduction (i.e. in the usual
spacetime) we ordinarily experience only the standard geode-
sics of General Relativity, i.e. the 4D component of Eq. (14)

d2xμ

ds2
+ Γ

μ
βγ

dxβ

ds

dxγ

ds
= 0 , (15)

so that, under these conditions, the last part of the representa-
tion given by Eq. (14) is not detectable in 4D. In other words,
for standard laws of physics, the metric gαβ does not depend
on x4 in the embedded 4D manifold. On the other hand, the
last component of Eq. (14) can be read as an “Extra Force”
which gives the motion of a 4D frame with respect to the
fifth coordinate x4. This fact shows that the fifth dimension
has a real physical meaning and any embedding procedure
scaling up in 5D-manifold (or reducing to 4D spacetime) has
a dynamical description. The Extra Force

F =
∂gαβ
dx4

dx4

ds

dxα

ds

dxβ

ds
, (16)

is related to the mass of moving particles in 4D and to
the motion of the whole 4D frame. This means that the
emergence of this term in Eq. (14), leaving the 5D-geodesic
equation verified, gives a new interpretation to the Equival-
ence Principle in 4D as a dynamical consequence. Looking at
Eqs. (14) and (15), we see that in the ordinary 4D spacetime
no term, in Eq. (15), is directly related to the masses which
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are, on the contrary, existing in Eq. (14). In other words, it is
the quantity F , which gives the masses to the particles, and
this means that the Equivalence Principle can be formulated
on a dynamical base by an embedding process. Furthermore
the massive particles are different but massless in 5D while,
for the physical meaning of the fifth coordinate, they assume
mass in 4D thanks to Eq. (16).

Let us now take into account a 5D-null path given by

dS2 = gAB dx
AdxB = 0 . (17)

Splitting Eq. (17) into the 4D part and the fifth compo-
nent, gives

dS2 = ds2 + g44
(
dx4
)2
= 0 . (18)

An inspection of Eq. (18) tells that a null path in 5D
can result, in 4D, in a time-like path, a space-like path, or
a null path depending on the sign and the value of g44. Let
us consider now the 5D-vector uA= dxA/dS. It can be split
as a vector in the ordinary 3D-space v, a vector along the
ordinary time axis w and a vector along the fifth dimension
z. In particular, for 5D null paths, we can have the velocity
v2=w2+ z2 and this should lead, in 4D, to super-luminal
speed, explicitly overcoming the Lorentz transformations.
The problem is solved if we consider the 5D-motion as a-
luminal, because all particles and fields have the same speed
(being massless) and the distinction among super-luminal,
luminal and sub-luminal motion (the standard causal motion
for massive particles) emerges only after the dynamical re-
duction from 5D-space to 4D spacetime. In this way, the
fifth dimension is the entity which, by assigning the masses,
is able to generate the different dynamics which we perceive
in 4D. Consequently, it is the process of mass generation
which sets the particles in the 4D light-cone. Specifically, let
us rewrite the expression (16) as

F =
∂gμν
∂x4

dx4

ds
uμuν . (19)

As we said, seen in 4D, this is an Extra Force generated
by the motion of the 4D frame with respect to the extra
coordinate x4. This fact shows that all the different particles
are massless in 5D and acquire their rest masses m0 in the
dynamical reduction from the 5D to 4D. In fact, considering
Eqs. (14) and (18), it is straightforward to derive

F = uμuν
∂gμν
∂x4

dx4

ds
=

1

m0

dm0

ds
=
d ln(m0)

ds
, (20)

where m0 has the rôle of a rest mass in 4D, being, from
General Relativity,

dxμ

ds
−
1

2

∂gαβ
∂xμ

uαuβ = 0 (21)

and
pμ = m0u

μ, pμp
μ = m2

0 , (22)

which are, respectively, the definition of linear momentum
and the mass-shell condition. Then, it is

d ln(m0) =
∂gμν
∂x4

uμuνdx4 (23)

that is

m0 = exp

∫ (
∂gμν
∂x4

uμuνdx4
)

= exp

∫ (
Fdx4

)
. (24)

In principle, the term
∫ (∂gμν

∂x4 u
μuνdx4

)
never gives a

zero mass. However, this term can be less than zero and, with
large absolute values, it can asymptotically produce a m0

very close to zero. In conclusion the Extra Force induced by
the reduction from the 5D to the 4D is equal to the derivative
of the natural logarithm of the rest mass of a particle with
respect to the (3 + 1) line element and the expression

∫ (
∂gμν
∂x4

uμuνdx4
)

=

∫ (
Fdx4

)
(25)

can be read as the total “work” capable of generating masses
in the reduction process from 5D to 4D.

5 The field structure and the chronological structure

The results of previous section assume a straightforward
physical meaning considering the fifth component of the
metric as a scalar field. In this way, the pure “geometric” in-
terpretation of the Extra Force can be framed in a “material”
picture. In order to achieve this goal, let us consider the
Campbell theorem [15] which states that it is always possible
to consider a 4D Riemannian manifold, defined by the line
element ds2= gαβ dxαdxβ , embedded in a 5D one with
dS2= gAB dx

AdxB . We have gAB = gAB
(
xα, x4

)
with x4

the extra coordinate. The metric gAB is covariant under
the group of 5D coordinate transformations xA→xA(xB),
but not under the restricted group of 4D transformations
xα→xα(xβ). This means, from a physical point of view,
that the choice of the 5D coordinate can be read as the
gauge which specifies the 4D physics. On the other hand, the
signature and the value of the fifth coordinate is related to
the dynamics generated by the physical quantities which we
observe in 4D (mass, spin, charge). Let us start considering
the variational principle

δ

∫
d(5)x

√
−g(5)

[
(5)R+ λ(g44 − εΦ

2)
]
= 0 , (26)

derived from (4) where λ is a Lagrange multiplier, Φ a
generic scalar field and ε=±1. This procedure allows to
derive the physical gauge for the 5D metric. The above 5D
metric can be immediately rewritten as

dS2= gAB dx
AdxB = gαβdx

αdxβ + g44
(
dx4
)2
=

= gαβ dx
αdxβ + εΦ2

(
dx4
)2
,

(27)
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where the signature ε=−1 can be interpreted as “particle
like” solutions while ε=+1 gives rise to wave-like solutions.
The physical meaning of these distinct classes of solutions, as
we will see below, is crucial. Assuming a standard signature
(+ − −−) for the 4D component of the metric, the 5D
metric can be written as the matrix

gAB =

(
gαβ 0
0 εΦ2

)

, (28)

and the 5D Ricci curvature tensor is

(5)Rαβ = Rαβ −
Φ,α;β
Φ

+
ε

2Φ2

(
Φ,4 gαβ,4

Φ
−

− gαβ,44 + g
λμgαλ,4 gβμ,4 −

gμνgμν,4 gαβ,4
2

) (29)

where Rαβ is the 4D Ricci tensor. After the projection from
5D to 4D, gαβ , derived from gAB , no longer explicitly
depends on x4, and then the 5D Ricci scalar assumes the
remarkable expression:

(5)R = R−
1

Φ
2Φ , (30)

where the 2 is now the 4D d’Alembert operator. The action
in Eq. (26) can be recast in a 4D Brans-Dicke form

A = −
1

16πGN

∫
d4x

√
−g [ΦR+ LΦ] , (31)

where the Newton constant is given by

GN =
(5)G

2πl
(32)

where l is a characteristic length in 5D. Defining a generic
function of a 4D scalar field ϕ as

−
Φ

16πGN
= F (ϕ) (33)

we get a 4D general action in which gravity is nonminimally
coupled to a scalar field [2, 16, 17]:

A =
∫

M
d4x×

×
√
−g

[

F (ϕ)R+
1

2
gμνϕ;μ ϕ;ν − V (ϕ) + Lm

] (34)

F (ϕ) and V (ϕ) are a generic coupling and a self interacting
potential respectively. The field equations can be derived by
varying with respect to the 4D metric gμν

Rμν −
1

2
gμνR = T̃μν , (35)

where

T̃μν =
1

F (ϕ)

{

−
1

2
ϕ;μϕ;ν +

1

4
gμνϕ;αϕ

;α−

−
1

2
gμνV (ϕ)− gμν2F (ϕ) + F (ϕ);μν

} (36)

is the effective stress–energy tensor containing the nonmini-
mal coupling contributions, the kinetic terms and the poten-
tial of the scalar field ϕ. By varying with respect to ϕ, we
get the 4D Klein-Gordon equation

2ϕ−RF ′(ϕ) + V ′(ϕ) = 0 , (37)

where primes indicate derivatives with respect to ϕ.
Eq. (37) is the contracted Bianchi identity demonstrating

the recovering of conservation laws also in 4D [2]. This
feature means that the effective stress-energy tensor at right
hand side of (35) is a zero-divergence tensor and this fact is
fully compatible with Einstein theory of gravity also starting
from a 5D space. Specifically, the reduction procedure from
5D to 4D preserves all the features of standard General
Relativity. In order to achieve the physical identification
of the fifth dimension, let us recast the generalized Klein-
Gordon equation (37) as

(
2+m2

eff

)
ϕ = 0 , (38)

where
m2
eff =

[
V ′(ϕ)−RF ′(ϕ)

]
ϕ−1 (39)

is the effective mass, i.e. a function of ϕ, where self-gravity
contributions RF ′(ϕ) and scalar field self interactions V ′(ϕ)
are taken into account [18]. This means that a natural way to
generate the masses of particles can be achieved starting from
a 5D picture and the concept of mass can be recovered as a
geometric derivation according to the Extra Force of previous
section. In other words, the chronological structure and the
geodesic structure of the reduction process from 5D to 4D
naturally coincide since the the masses generated in both
cases are equivalent. From an epistemological point of view,
this new result clearly demonstrates why geodesic structure
and chronological structure can be assumed to coincide in
General Relativity using the Levi-Civita connection in both
the Palatini and the metric approaches [13]. Explicitly the 5D
d’Alembert operator can be split, considering the 5D metric
in the form (27) for particle-like solutions:

(5)2 = 2− ∂4
2 . (40)

This means that we are considering ε=−1. We have then

(5)2Φ =
[
2− ∂4

2
]
Φ = 0 . (41)

Separating the variables and splitting the scalar field Φ
into two functions

Φ = ϕ(t, ~x)χ(x4) , (42)

the field ϕ depends on the ordinary space-time coordinates,
while χ is a function of the fifth coordinate x4. Inserting (42)
into Eq. (41), we get

2ϕ

ϕ
=
1

χ

[
d2χ

dx24

]

= −k2n (43)
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where kn is a constant. From Eq. (43), we obtain the two
field equations (

2+ k2n
)
ϕ = 0 , (44)

and
d2χ

dx24
+ k2n χ = 0 . (45)

Eq. (45) describes a harmonic oscillator whose general
solution is

χ(x4) = c1e
−iknx

4

+ c2e
iknx

4

. (46)

The constant kn has the physical dimension of the inverse
of a length and, assigning boundary conditions, we can derive
the eigenvalue relation

kn =
2π

l
n , (47)

where n is an integer and l a length which we have previously
defined in Eq. (32) related to the gravitational coupling. As a
result, in standard units, we can recover the physical lengths
through the Compton lengths

λn =
~

2πmnc
=
1

kn
(48)

which always assign the masses to the particles depending on
the number n. It is worth stressing that, in this case, we have
achieved a dynamical approach because the eigenvalues of
Eq. (45) are the masses of particles which are generated by
the process of reduction from 5D to 4D. The solution (46) is
the superposition of two mass eigenstates. The 4D evolution
is given by Eq. (38) or, equivalently, (44). Besides, the
solutions in the coordinate x4 give the associated Compton
lengths from which the effective physical masses can be
derived. Specifically, different values of n fix the families of
particles, while, for any given value n, different values of
parameters c1,2 select the different particles within a family.
With these considerations in mind, the effective mass can be
obtained integrating the modulus of the scalar field Φ along
the x4 coordinate. It is

meff ≡
∫
|Φ|dx4 =

∫
|Φ(dx4/ds)| ds (49)

where ds is the 4D affine parameter used in the derivation
of geodesic equation. This result means that the rest mass of
a particle is derived by integrating the Extra Force along
x4 (see Eq. 24) while the effective mass is obtained by
integrating the field Φ along x4. In the first case, the mass of
the particle is obtained starting from the geodesic structure
of the theory, in the second case, it comes out from the
field structure. In other words, the coincidence of geodesic
structure and chronological structure (the causal structure),
supposed as a principle in General Relativity, is due to the
fact that masses are generated in the reduction process.

At this point, from the condition (42), the field 5D Φ

results to be

Φ(xα, x4) =
+∞∑

n=−∞

[
ϕn(x

α)e−iknx
4

+ϕ∗n(x
α)eiknx

4
]
, (50)

where ϕ and ϕ∗ are the 4D solutions combined with the
fifth-component solutions e±iknx

4

. In general, every particle
mass can be selected by solutions of type (46). The number
knx

4, i.e. the ratio between the two lengths x4/λn, fixes the
interaction scale. Geometrically, such a scale is related to
the curvature radius of the embedded 4D spacetime where
particles can be identified and, in principle, detected. In this
sense, Open Quantum Relativity is an induced-matter theory,
where the extra dimension cannot be simply classified as
“compactified” since it yields all the 4D dynamics giving
origin to the masses. Moreover, Eq. (50) is not a simple
“tower of mass states” but a spectrum capable of explaining
the hierarchy problem [7]. On the other hand, gravitational
interaction can be framed in this approach considering as its
fundamental scale the Planck length

λP = l =

(
~GN
c3

)1/2
, (51)

instead of the above Compton length. It fixes the vacuum
state of the system ant the masses of all particles can be
considered negligible if compared with the Planck scales.
Finally, as we have seen, the reduction mechanism can select
also ε=1 in the metric (27). In this case, the 5D-Klein
Gordon equation (11), and the 5D field equations (5) have
wave-like solutions of the form

dS2 = dt2 − Ω(t, x1)
(
dx1
)2
− Ω(t, x2)

(
dx2
)2
−

−Ω(t, x3)
(
dx3
)2
+
(
dx4
)2
,

(52)

where

Ω(t, xj) = exp i(ωt+ kjx
j) , j = 1, 2, 3 . (53)

In this solution, the necessity of the existence of two
times arrows naturally emerges and, as a direct consequence,
due to the structure of the functions Ω(t, xj), closed time-
like paths (i.e. circular paths) are allowed. The existence of
closed time-like paths means that Anti-De Sitter [14] and
Gödel [11] solutions are naturally allowed possibilities in
the dynamics.

6 Discussion and conclusions

In this paper, we have discussed the reduction process which
allows to recover the 4D spacetime and dynamics starting
from the 5D manifold of Open Quantum Relativity. Such
a theory needs, to be formulated, a General Conservation
Principle. This principle states that conservation laws are
always and absolutely valid also when, to maintain such a
validity, phenomena as topology changes and entanglement
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can emerge in 4D. In this way, we have a theory without
singularities (like conventional black holes) and unphysical
spacetime regions are naturally avoided [8, 6]. The dimen-
sional reduction can be considered from the geodesic struc-
ture and the field equations points of view. In the first case,
starting from a 5D metric, it is possible to generate an
Extra Force term in 4D which is related to the rest masses
of particles and then to the Equivalence Principle. In fact,
masses can be dynamically generated by the fifth component
of the 5D space and the relation between inertial mass and
gravitational mass is not an assumed principle, as in standard
physics [10], but the result of the dynamical process of
embedding. It is worth noting that an “amount of work”
is necessary to give the mass to a particle. An effective
mass is recovered also by splitting the field equations in a
(4+1) formalism. The fifth component of the metric can
be interpreted as a scalar field and the embedding as the
process by which the mass of particles emerges. The fact that
particles acquire the mass from the embedding of geodesics
and from the embedding of field equations is the reason
why the chronological and geodesic structures of the 4D
spacetime are the same: they can be both achieved from
the same 5D metric structure which is also the solution of
the 5D field equations. By taking into account such a result
in 4D, the result itself naturally leads to understand why
the metric approach of General Relativity, based on Levi-
Civita connections, succeed in the description of spacetime
dynamics even without resorting to a more general scheme as
the Palatini-affine approach where connection and metric are,
in principle, considered distinct. The reduction process leads
also to a wide class of time solutions including two-time
arrows and closed time-like paths. As a consequence, we
can recover the concept of causality questioned by the EPR
effect [6] thanks to the necessary introduction of backward
and forward causation [1]. As a final remark, we can say
that Open Quantum Relativity is an approach which allows
to face Quantum Mechanics and Relativity under the same
dynamical standard (a covariant symplectic structure [3]):
this occurrence leads to frame several paradoxes of modern
physics under the same dynamical scheme by only an as-
sumption of the absolute validity of conservation laws and
the generalization of the causal structure of spacetime.
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