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Because of the pseudo-theorem of Birkhoff, the important problem related to the dy-
namical gravitational field of a non-stationary spherical mass is ignored by the rel-
ativists. A clear formulation of this problem appears in the paper [5], which deals
also with the establishment of the appropriate form of the spacetime metric. In the
present paper we establish the corresponding equations of gravitation and bring out
their solutions.

1 Introduction

As is shown in the paper [5], the propagation of gravitation
from a spherical pulsating source is governed by a function
�(t; �), termed propagation function, satisfying the following
conditions

@�(t; �)
@t

> 0;
@�(t; �)
@�

6 0; �(t; �(t)) = t;

where �(t) denotes the time-dependent radius of the sphere
bounding the matter. The propagation function is not unique-
ly defined. Any function fulfilling the above conditions char-
acterizes the propagation of gravitation according to the fol-
lowing rule: If the gravitational disturbance reaches the
sphere kxk = � at the instant t, then � = �(t; �) is the instant
of its radial emission from the entirety of the sphere bounding
the matter. Among the infinity of possible choices of �(t; �),
we distinguish principally the one identified with the time co-
ordinate, namely the propagation function giving rise to the
canonical �(4)-invariant metric
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� (1.1)

(here � denotes the time coordinate instead of the notation u
used in the paper [5]).

Any other �(4)-invariant metric results from (1.1) if we
replace � by a conveniently chosen propagation function
�(t; �). Consequently the general form of a �(4)-invariant
metric outside the matter can be written as
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(1.2)

The equations of gravitation related to (1.2) are very com-
plicated, but we do not need to write them explicitly, because
the propagation function occurs in them as an arbitrary func-
tion. So their solution results from that of the equations re-
lated to (1.1) if we replace � by a general propagation func-
tion �(t; �). It follows that the investigation of the �(4)-
invariant gravitational field must by based on the canonical
metric (1.1). The metric (1.2) indicates the dependence of
the gravitational field upon the general propagation function
�(t; �), but it is of no interest in dealing with specific prob-
lems of gravitation for the following reason. Each allowable
propagation function is connected with a certain conception
of time, so that the infinity of allowable propagation functions
introduces an infinity of definitions of time with respect to the
general �(4)-invariant metric. This is why the notion of time
involved in (1.2) is not clear.

On the other hand, the notion of time related to the canon-
ical metric, although unusual, is uniquely defined and concep-
tually easily understandable.

This being said, from now on we will confine ourselves to
the explicit form of the canonical metric, namely

ds2 =
�
f(�; �)

�2d� 2 + 2f(�; �) `(�; �)
(xdx)
�

d� �

�
�
g(�; �)
�

�2
dx2 +

�
g(�; �)
�

�2 (xdx)2

�2

(1.3)

which brings out its components:

g00 =
�
f(�; �)

�2; g0i = f(�; �) `(�; �)
xi
�
;

gii = �
�
g(�; �)
�

�2
+
�
g(�; �)
�

�2 x2
i
�2 ;

gij =
�
g(�; �)
�

�2 xixj
�2 ; (i; j = 1; 2; 3; i , j) :

Note that, since the canonical metric, on account of its
own definition, is conceived outside the matter, we have not
to bother ourselves about questions of differentiability on the
subspace R � f(0; 0; 0)g of R � R3. It will be always un-
derstood that the spacetime metric is defined for (�; �) 2 U ,
� = kxk, U being the closed set f(�; �) 2 R2j� � �(� )g.
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2 Summary of auxiliary results

We recall that the Christoffel symbols of second kind related
to a given �(4)-invariant spacetime metric [3] are the com-
ponents of a �(4)-invariant tensor field and depend on ten
functions B� = B�(t; �), (� = 0; 1; : : : ; 9), according to the
following formulae

�0
00 = B0; �0

0i = �0
i0 = B1xi ; �i00 = B2xi ;

�0
ii = B3 +B4x2

i ; �0
ij = �0

ji = B4xixj ;

�ii0 = �i0i = B5 +B6x2
i ; �ij0 = �i0j = B6xixj ;

�iii = B7x3
i + (B8 + 2B9)xi ;

�ijj = B7xix2
j +B8xi ; �jij = �jji = B7xix2

j +B9xi ;

�ijk = B7xixjxk ; (i; j; k = 1; 2; 3; i , j , k , i) :

We recall also that the corresponding Ricci tensor is a
symmetric �(4)-invariant tensor defined by four functions
Q00, Q01, Q11, Q22, the computation of which is carried
out by means of the functions B� occurring in the Christoffel
symbols:
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3 The Ricci tensor related to the canonical metric (1.3)

In order to find out the functions B�, (� = 0; 1; : : : ; 9), re-
sulting from the metric (1.3), we have simply to write down
the explicit expressions of the Christoffel symbols �0

00, �0
01,

�1
00, �0

11, �1
01, �1

12, �1
22, thus obtaining
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The conditions B1 = 0, B3 + �2B4 = 0 imply several
simplifications. Moreover an easy computation gives

Q11 + �2Q22 = 2�
@B9

@�
�

� 2(1 + �2B9)(B8 +B9 + �2B7) + 4B9:

Replacing now everywhere the functions B�,
(� = 0; 1; : : : ; 9), by their expressions, we obtain the four
functions defining the Ricci tensor.

Proposition 3.1 The functions Q00, Q01, Q11, Q22 related
to (1.3) are defined by the following formulae.
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Note that from (3.1) and (3.2) we deduce the following
useful relation
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:
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4 Reducing the system of the equations of gravitation

In order to clarify the fundamental problems with a minimum
of computations, we will assume that the spherical source
is not charged and neglect the cosmological constant. The
charge of the source and the cosmological constant do not
add difficulties in the discussion of the main problems, so that
they may be considered afterwards.

Of course, the equations of gravitation outside the pulsat-
ing source are obtained by writing simply that the Ricci tensor
vanishes, namely

Q00 = 0 ; Q01 = 0 ; Q11 = 0 ; Q11 + �2Q22 = 0 :

The first equation Q00 = 0 is to be replaced by the equa-
tion

`Q00 � f�Q01 = 0

which, on account of (3.5), is easier to deal with.
This being said, in order to investigate the equations of

gravitation, we assume that the dynamical states of the gravi-
tational field alternate with the stationary ones without diffu-
sion of gravitational waves.

We begin with the equation Q11 + �2Q22 = 0, which, on
account of (3.4), can be written as

@
@�

�
1
f`
@g
@�

�
= 0

so that
@g
@�

= �f`

where � is a function depending uniquely on the time � .
Let us consider a succession of three intervals of time,

[�1; �2] ]�2; �3[ [�3; �4];

such that the gravitational field is stationary during
[�1; �2] and [�3; �4] and dynamical during ]�2; �3[.

When � describes [�1; �2] and [�3; �4], the functions f , `,
g depend uniquely on �, so that � reduces then necessarily
to a constant, which, according to the known theory of the
stationary vacuum solutions, equals 1

c , c being the classical
constant (which, in the present situation, does not represent
the velocity of propagation of light in vacuum). It follows

that, if � depends effectively on � during ]�2; �3[, then it ap-
pears as a boundary condition at finite distance, like the ra-
dius and the curvature radius of the sphere bounding the mat-
ter. However, we cannot conceive a physical situation related
to such a boundary condition. So we are led to assume that
� is a universal constant, namely 1

c , keeping this value even
during the dynamical states of the gravitational field. How-
ever, before accepting finally the universal constancy of �, it
is convenient to investigate the equations of gravitation under
the assumption that � depends effectively on time during the
interval ]�2; �3[.

We first prove that � = �(� ) does not vanish in ]�2; �3[.
We argue by contradiction, assuming that �(�0) = 0 for some
value �02 ]�2; �3[. Then @g

@� and @2g
@�2 = � @(f`)

@� vanish for

� = �0, whereas @2g
@�@�=(f`)�0+� @(f`)

@� reduces to (f`)�0(�0)
for � = �0. Consequently the equation �2Q11 = 0 reduces
to the condition 1 + 2g�0(�0) = 0 whence �0(�0)< 0 (since
g > 0). It follows that �(� ) is strictly decreasing on a certain
interval [�0� "; �0 + "]� ]�2; �3[, " > 0, so that �(� ) < 0 for
every � 2 ]�0; �0 + "]. Let �00 be the least upper bound of the
set of values � 2 ]�0 + "; �3[ for which �(� ) = 0 (This value
exists because �(� ) = 1

c > 0 on [�3; �4]). Then �(�00) = 0
and �(� ) > �00 for � > �00. But, according to what has just
been proved, the condition �(�00) = 0 implies that �(� ) < 0
on a certain interval ]�00; �00 + �], � > 0, giving a contra-
diction. It follows that the function �(� ) is strictly positive
on ]�2; �3[, hence also on any interval of non-stationarity, and
since �(� ) = 1

c on the intervals of stationarity, it is strictly
positive everywhere. Consequently we are allowed to intro-
duce the inverse function � = �(� ) = 1

�(�) and write

f` = �
@g
@�

(4.1)

and
f =

�
`
@g
@�
: (4.2)

Inserting this expression of f into the equation �2Q11 = 0
and then multiplying throughout by @g

@� , we obtain an equation
which can be written as
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It follows that
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(4.4)
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and
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�
:

(4.5)

On the other hand, since f` = �@g@� , the expression (3.2)
is transformed as follows
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1�
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@�

�
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�
and replacing in it @2g

@�@� and @3g
@�@�2 by their expressions (4.4)

and (4.5), we find �Q01 = 0. Consequently the equation of
gravitation �Q01 = 0 is verified. It remains to examine the
equation `Q00� f�Q01 = 0. We need some preliminary
computations. First we consider the expression of @

2g
@�2 result-

ing from the derivation of (4.3) with respect to � , and then
replacing in it @g

@� and @2g
@�@� by their expressions (4.3) and

(4.4), we obtain
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+
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� 2�2�2
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+
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�
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@�

�2 @2g
@�2 :

(4.6)

Next, because of (4.2), we have

@f
@�

= � �
`2
@`
@�

@g
@�

+
�
`
@2g
@�2 (4.7)

and
@f
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=
1
`
d�
d�

@g
@�
� �
`2
@`
@�

@g
@�

+
�
`
@2g
@�@�

:

Lastly taking into account (4.4), we obtain

@f
@�

=
1
`
d�
d�

@g
@�
� �
`2
@`
@�

@g
@�
� �2�
`g2

@g
@�
�

� �2

`4
@`
@�

�
@g
@�

�2
+
�2

`3
@g
@�

@2g
@�2 :

(4.8)

Now inserting (4.2), (4.3), (4.4), (4.6), (4.7), (4.8) into

(3.5), we obtain, after cancelations, the very simple expres-
sion

`Q00 � f�Q01 =
2�`
g2

d�
d�

:

Consequently the last equation of gravitation, namely
`Q00� f�Q01 = 0, implies that d�

d� = 0, namely that � re-
duces to a constant.

Finally the system of the equations of gravitation is re-
duced to a system of two equations, namely (4.1) and (4.3),
where � is a constant valid whatever is the state of the field,
and � is a strictly positive function of time reducing to the
constant c during the stationary states of the field. As already
remarked, if � depends effectively on � during the dynamical
states, then it plays the part of a boundary condition the ori-
gin of which is indefinable. The following reasoning, which
is allowed according to the principles of General Relativity,
corroborates the idea that � must be taken everywhere equal
to c.

Since �(� )> 0 everywhere, we can introduce the new
time coordinate

u =
1
c

Z �

�0
�(v)dv

which amounts to a change of coordinate in the sphere bound-
ing the matter. The function

 (� ) =
1
c

Z �

�0
�(v)dv

being strictly increasing, its inverse � ='(u) is well defined
and '0= 1

 0 = c
� . Instead of `(�; �) and g(�; �) we have now

the functions L(u; �) = `('(u); �) andG(u; �) = g('(u); �),
Moreover, since fd� = f'0du, f(�; �) is replaced by the

function F (u; �) ='0(u)f('(u); �) = c
�f('(u); �).

It follows that

FL = '0f` =
c
�
�
@g
@�

= c
@G
@�

(4.9)

and

@G
@u

=
@g
@�

d�
du

=
�
2

�
� 1 +

2�
g

+
1
`2

�
@g
@�

�2� c
�

=

=
c
2

�
� 1 +

2�
G

+
1
L2

�
@G
@�

�2�
:

(4.10)

Writing again f(�; �), `(�; �), g(�; �) respectively instead
of F (u; �), L(u; �), G(u; �), we see that the equations (4.9)
and (4.10) are rewritten as

f` = c
@g
@�

(4.11)

@g
@�

=
c
2

�
� 1 +

2�
g

+
1
`2

�
@g
@�

�2�
: (4.12)

So (4.1) and (4.3) preserve their form, but the function �
is now replaced by the constant c. Finally we are allowed to
dispense with the function � and deal subsequently with the
equations (4.11) and (4.12).
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5 Stationary and non-stationary solutions

If the field is stationary during a certain interval of time, then
the derivative @g

@� vanishes on this interval. The converse
is also true. In order to clarify the situation, consider the
succession of three intervals of time ]�1; �2[, [�2; �3], ]�3; �4[
such that ]�1; �2[ and ]�3; �4[ be maximal intervals of non-
stationarity, and @g

@� = 0 on [�2; �3]. Then we have on [�2; �3]
the equation

�1 +
2�
g

+
1
`2

�
@g
@�

�2
= 0

from which it follows that ` does not depend either on � . On
account of (4.11), this property is also valid for f . Conse-
quently the vanishing of @g

@� on [�2; �3] implies the establish-
ment of a stationary state.

During the stationary state we are allowed to introduce
the radial geodesic distance

� =
Z �

0
`(v)dv

and investigate subsequently the stationary equations in ac-
cordance with the exposition appearing in the paper [4]. Since

� = �(�)

is a strictly increasing function of �, the inverse function
�= 
(�) is well defined and allows to consider as function
of � every function of �. In particular the curvature radius
G(�) = g (
(�)) appears as a function of the geodesic dis-
tance � and gives rise to a complete study of the stationary
field. From this study it follows that the constant � equals
km
c2 and that the solution G(�) possesses the greatest lower

bound 2�. Moreover G(�) is defined by the equationZ G

2�

duq
1� 2�

u

= � � �0 (5.1)

where �0 is a new constant unknown in the classical theory of
gravitation. This constant is defined by means of the radius �1
and the curvature radius �1 = G(�1) of the sphere bounding
the matter:

�0 = �1 � pG(�1)(G(�1)� 2�)�

� 2� ln

 s
G(�1)

2�
+

s
G(�1)

2�
� 1

!
:

So the values �1 and �1 =G(�1) constitute the boundary
conditions at finite distance. Regarding F =F (�) = f(
(�)),
it is defined by means of G:

F = cG0 = c
r

1� 2�
G
; (G > 2�) :

The so obtained solution does not extend beyond the in-
terval [�2; �3] and even its validity for � = �2 and � = �3 is

questionable. The notion of radial geodesic distance does not
make sense in the intervals of non-stationarity such as ]�1; �2[
and ]�3; �4[. Then the integralZ �

0
`(�; v)dv

depends on the time � and does not define an invariant length.
As a way out of the difficulty we confine ourselves to the
consideration of the radical coordinate related to the manifold
itself, namely �=kxk.

Regarding the curvature radius �(� ), it is needed in order
to conceive the solution of the equations of gravitation. The
function g(�; �) must be so defined that g (�; �(� )) = �(� ).
The functions �(� ) and �(� ) are the boundary conditions at
finite distance for the non-stationary field. They are not di-
rectly connected with the boundary conditions of the station-
ary field defined by means of the radial geodesic distance.

6 On the non-stationary solutions

According to very strong arguments summarized in the paper
[2], the relation g > 2� is always valid outside the matter
whatever is the state of the field. This is why the first attempt
to obtain dynamical solutions was based on an equation anal-
ogous to (5.1), namelyZ g

2�

duq
1� 2�

u

= 
(�; �)

where 
(�; �) is a new function satisfying certain con-
ditions. This idea underlies the results presented briefly in
the paper [1]. However the usefulness of introduction of a
new function is questionable. It is more natural to deal di-
rectly with the functions f , `, g involved in the metric. In
any case we have to do with two equations, namely (4.11)
and (4.12), so that we cannot expect to define completely the
three unknown functions. Note also that, even in the con-
sidered stationary solution, the equation (5.1) does not de-
fine completely the function G on account of the new un-
known constant �0. In the general case there is no way to
define the function g(�; �) by means of parameters and sim-
pler functions. The only available equation, namely (4.12), a
partial differential equation including the unknown function
`(�; �), is, in fact, intractable. As a way out of the difficulties,
we propose to consider the function g(�; �) as a new entity
required by the non-Euclidean structure involved in the dy-
namical gravitational field. In the present state of our knowl-
edge, we confine ourselves to put forward the main features
of g(�; �) in the closed set

U = f(�; �) 2 R2j� > �(� )g:
Since the vanishing of f or ` would imply the degeneracy
of the spacetime metric, these two functions are necessarily
strictly positive on U . Then from the equation (4.11) it fol-
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lows that
@g (�; �)
@�

> 0 (6.1)

on the closed set U . On the other hand, since (4.12) can be
rewritten as

2
c
@g
@�

+ 1� 2�
g

=
1
`2

�
@g
@�

�2
we have also

2
c
@g
@�

+ 1� 2�
g
> 0 (6.2)

on the closed set U . Now, on account of (6.1) and (6.2), the
equations (4.11) and (4.12) define uniquely the functions f
and ` by means of g:

f = c

s
2
c
@g
@�

+ 1� 2�
g

(6.3)

` =
@g=@�q

2
c
@g
@� + 1� 2�

g

: (6.4)

It is now obvious that the curvature radius g (�; �) plays
the main part in the conception of the gravitational field. Al-
though it has nothing to do with coordinates, the relativists
have reduced it to a so-called radial coordinate from the be-
ginnings of General Relativity. This glaring mistake has given
rise to intolerable misunderstandings and distorted complete-
ly the theory of the gravitational field.

Let ]�1; �2[ be a maximal bounded open interval of non-
stationarity. Then @g

@� = 0 for � = �1 and � = �2, but @g@� , 0
on an open dense subset of ]�1; �2[. So @g

@� appears as a gravi-
tational wave travelling to infinity, and it is natural to assume
that @g

@� tends uniformly to zero on [�1; �2] as �!+1. Of
course the behaviour of @g

@� depends on the boundary condi-
tions which do not appear in the obtained general solution.
They are to be introduced in accordance with the envisaged
problem. In any case the gravitational disturbance plays the
fundamental part in the conception of the dynamical gravita-
tion, but the state of the field does not follow always a simple
rule.

In particular, if the gravitational disturbance vanishes dur-
ing a certain interval of time [�1; �2], the function g(�; �) does
not depend necessarily only on � during [�1; �2]. In other
words, the gravitational field does not follow necessarily the
Huyghens principle contrary to the solutions of the classical
wave equation in R3.

We deal briefly with the case of a Huyghens type field,
namely a �(4)-invariant gravitational field such that the van-
ishing of the gravitational disturbance on a time interval im-
plies the establishment of a universal stationary state. Then
the time is involved in the curvature radius by means of the
boundary conditions �(� ), �(� ), so that g(�; �) is in fact a
function of (� (� ); � (� ); �) : g (�(� ); � (� ); �). The corres-

ponding expressions for f and ` result from (6.3) and (6.4):

f = c

s
2
c

�
@g
@�

�0(� ) +
@g
@�

� 0(� )
�

+ 1� 2�
g

` =
@g
@�r

2
c

�
@g
@� �

0(� ) + @g
@� �

0(� )
�

+ 1� 2�
g

where g denotes g(�(� ); �(� ); �).
If �0(� ) = � 0(� ) = 0 during an interval of time, the bound-

ary conditions �(� ), �(� ) reduce to positive constants �0, �0
on this interval, so that the curvature radius defining the sta-
tionary states depends on the constants �0; �0 : g(�0; �0; �). It
is easy to write down the conditions satisfied by g(�0; �0; �),
considered as function of three variables.

Submitted on June 12, 2007
Accepted on June 13, 2007

References

1. Stavroulakis N. Exact solution for the field of a pulsating
source. Abstracts of Contributed Papers for the Discussion
Groups, 9th International Conference on General Relativity
and Gravitation, July 14–19, 1980, Jena, Volume 1, 74–75.

2. Stavroulakis N. Particules et particules test en relativité
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