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Some Remarks on Ricci Flow and the Quantum Potential
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We indicate some formulas connecting Ricci flow and Perelman entropy to Fisher in-
formation, differential entropy, and the quantum potential. There is a known relation
involving the Schroedinger equation in a Weyl space where the Weyl-Ricci curvature is
proportional to the quantum potential. The quantum potential in turn is related to Fisher
information which is given via the Perelman entropy functional arising from a differ-
ential entropy under Ricci flow. These relations are written out and seem to suggest
connections between quantum mechanics and Ricci flow.

1 Formulas involving Ricci flow

Certain aspects of Perelman’s work on the Poincaré conjec-
ture have applications in physics and we want to suggest a
few formulas in this direction; a fuller exposition will appear
in a book in preparation [8]. We go first to [13, 24–28, 33, 39]
and simply write down a few formulas from [28, 39] here with
minimal explanation. Thus one has Perelman’s functional
( _R is the Riemannian Ricci curvature)

F =
Z
M

( _R+ jrf j2) exp(�f)dV (1.1)

and a so-called Nash entropy (1A) N(u) =
R
M u log(u)dV

where u = exp (�f). One considers Ricci flows with
�g� @tg=h and for (1B) ��u=�@tu��u+ _Ru= 0
(or equivalently @tf + �f � jrf j2 + _R= 0) it follows thatR
M exp(�f)dV =1 is preserved and @tN=F. Note the Ricci

flow equation is @t g=�2Ric. Extremizing F via �F�
� @tF= 0 involves Ric+Hess(f) = 0 or Rij +rirjf = 0
and one knows also that

@tN =
Z
M

(jrf j2 + _R) exp(�f)dV = F ;

@tF = 2
Z
M
jRic+Hess(f)j2 exp(�f)dV:

(1.2)

2 The Schrödinger equation and WDW

Now referring to [3–5, 7–12, 15, 16, 18–23, 29–32, 35–38, 40]
for details we note first the important observation in [39] that
F is in fact a Fisher information functional. Fisher informa-
tion has come up repeatedly in studies of the Schrödinger
equation (SE) and the Wheeler-deWitt equation (WDW) and
is connected to a differential entropy correspondingto the
Nash entropy above (cf. [4, 7, 18, 19]). The basic ideas
involve (using 1-D for simplicity) a quantum potential Q such
that

R
M P Qdx �F arising from a wave function  =

=R exp(iS=~) where Q=�(~2=2m)(�R=R) and P � j j2

is a probability density. In a WDW context for example one
can develop a framework

Q = cP�1=2 @(GP 1=2);Z
QP = c

Z
P 1=2@(GP 1=2)Dhdx !

! � c
Z
@P 1=2G@P 1=2Dhdx

9>>>>>>=>>>>>>;
(2.1)

where G is an expression involving the deWitt metric
Gijk`(h). In a more simple minded context consider a SE in
1-D i~@t =�(~2=2m)@2

x +V  where  =R exp(iS=~)
leads to the equations

St +
1

2m
S2
x +Q+ V = 0;

@tR2 +
1
m

(R2Sx)x = 0 : Q = � ~2

2m
Rxx
R

:

9>>=>>; (2.2)

In terms of the exact uncertainty principle of Hall and
Reginatto (see [21, 23, 34] and cf. also [4, 6, 7, 31, 32])
the quantum Hamiltonian has a Fisher information term
c
R
dx(rP � rP=2mP ) added to the classical Hamiltonian

(where P =R2� j j2) and a simple calculation givesZ
PQd3x � � ~2

8m

Z �
2�P � 1

P
jrP j2

�
d3x =

=
~2

8m

Z
1
P
jrP j2 d3x :

(2.3)

In the situation of (2.1) the analogues to Section 1 involve
(@ � @x)

P � e�f ; P 0 � Px � �f 0e�f ;

Q� ef=2@(G@e�f=2); PQ� e�f=2@(G@e�f=2);Z
PQ! �

Z
@e�f=2G@e�f=2 � �

Z
@P 1=2G@P 1=2:

9>>>>>>=>>>>>>;
(2.4)
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In the context of the SE in Weyl space developed in [1, 2,
4, 7, 10, 11, 12, 35, 36, 40] one has a situation j j2�R2�
�P � �̂ = �=pg with a Weyl vector ~� =�r log(�̂) and a
quantum potential

Q � � ~2

16m

�
_R+

8p
�̂

1pg @i
�p

g gik@k
p
�̂
��

=

= � ~2

16m

�
_R+

8p
�̂

�
p
�̂
� (2.5)

(recall divgrad(U) = �U= (1=pg)@m(pggmn@nU). Here
the Weyl-Ricci curvature is (2A) R = _R+Rw where

Rw = 2 j~�j2 � 4r � ~� = 8
�
p
�̂p
�̂

(2.6)

and Q = �(~2=16m)R. Note that

�r � ~� � �� log(�̂) � ���̂
�̂

+
jr�̂j2
�̂2 (2.7)

and for exp(�f) = �̂ = uZ
�̂r � ~� dV =

Z �
���̂+

jr�̂j2
�̂

�
dV (2.8)

with the first term in the last integral vanishing and the second
providing Fisher information again. Comparing with Sec-
tion 1 we have analogues (2B) G� (R+ j~�j2) with ~�=
=�r log(�̂)�rf to go with (2.4). Clearly �̂ is basically a
probability concept with

R
�̂ dV = 1 and Quantum Mechan-

ics (QM) (or rather perhaps Bohmian mechanics) seems to
enter the picture through the second equation in (2.2), namely
(2C) @t �̂ + (1=m) div(�̂rS) = 0 with p = mv =rS,
which must be reconciled with (1B) (i.e. (1=m) div(urS) =
= �u� _Ru). In any event the termG= _R+ j~�j2 can be writ-
ten as (2D) _R+Rw + (j~�j2�Rw) =�Q+ (4r � ~�� j~�j2)
which leads to (2E) F�� RM QP dV +�

R j~�j2PdV put-
ting Q directly into the picture and suggesting some sort of
quantum mechanical connection.

REMARK 2.1. We mention also that Q appears in a fascinat-
ing geometrical role in the relativistic Bohmian format fol-
lowing [3, 15, 37, 38] (cf. also [4, 7] for survey material).
Thus e.g. one can define a quantum mass field via

M2 = m2 exp(Q) � m2(1 +Q);

Q � �~2

c2m2
�(p�)p� � �

6
Rw

(2.9)

where � refers to an appropriate mass density andM is in fact
the Dirac field � in a Weyl-Dirac formulation of Bohmian
quantum gravity. Further one can change the 4-D Lorentzian
metric via a conformal factor 
2 =M2=m2 in the form ~g�� =
= 
2g�� and this suggests possible interest in Ricci flows etc.

in conformal Lorentzian spaces (cf. here also [14]). We refer
to [3, 15] for another fascinating form of the quantum poten-
tial as a mass generating term and intrinsic self energy. �

NOTE. Publication information for items below listed by
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