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In this work, we attempt to describe the classical physical fields of gravity, electromag-
netism, and the so-called intrinsic spin (chirality) in terms of a set of fully geometrized
constitutive equations. In our formalism, we treat the four-dimensional space-time con-
tinuum as a deformable medium and the classical fields as intrinsic stress and spin fields
generated by infinitesimal displacements and rotations in the space-time continuum it-
self. In itself, the unifying continuum approach employed herein may suggest a possible
unified field theory of the known classical physical fields.

1 Introduction

Many attempts have been made to incorporate the so-called
standard (Hookean) linear elasticity theory into general rela-
tivity in the hope to describe the dynamics of material bodies
in a fully covariant four-dimensional manner. As we know,
many of these attempts have concentrated solely on the treat-
ment of material bodies as linearly elastic continua and not
quite generally on the treatment of space-time itself as a lin-
early elastic, deformable continuum. In the former case, tak-
ing into account the gravitational field as the only intrinsic
field in the space-time continuum, it is therefore true that
the linearity attributed to the material bodies means that the
general consideration is limited to weakly gravitating objects
only. This is because the curvature tensor is in general quad-
ratic in the the so-called connection which can be said to
represent the displacement field in the space-time manifold.
However, in most cases, it is enough to consider an infinitesi-
mal displacement field only such that the linear theory works
perfectly well. However, for the sake of generality, we need
not assume only the linear behavior of the properly-stressed
space-time continuum (and material bodies) such that the pos-
sible limiting consequences of the linear theory can be readily
overcome whenever it becomes necessary. Therefore, in the
present work, we shall both consider both the linear and non-
linear formulations in terms of the response of the space-time
geometry to infinitesimal deformations and rotations with in-
trinsic generators.

A few past attempts at the full description of the elas-
tic behavior of the space-time geometry in the presence of
physical fields in the language of general relativity have been
quite significant. However, as standard general relativity de-
scribes only the field of gravity in a purely geometric fash-
ion, these past attempts have generally never gone beyond
the simple reformulation of the classical laws of elasticity in
the presence of gravity which means that these classical laws
of elasticity have merely been referred to the general four-

dimensional curvilinear coordinates of Riemannian geome-
try, nothing more. As such, any possible interaction between
the physical fields (e.g., the interaction between gravity and
electromagnetism) has not been investigated in detail.

In the present work, we develop a fully geometrized con-
tinuum theory of space-time and the classical physical fields
in which the actions of these physical fields contribute di-
rectly to the dynamics of the space-time geometry itself. In
this model, we therefore assume that a physical field is di-
rectly associated with each and every point in the region of
space-time occupied by the field (or, a material body in the
case of gravity). This allows us to describe the dynamics of
the space-time geometry solely in terms of the translational
and rotational behavior of points within the occupied region.
Consequently, the geometric quantities (objects) of the space-
time continuum (e.g., curvature) are directly describable in
terms of purely kinematic variables such as displacement,
spin, velocity, acceleration, and the particle symmetries them-
selves.

As we have said above, at present, for the sake of sim-
plicity, we shall assume the inherently elastic behavior of the
space-time continuum. This, I believe, is adequate especially
in most cosmological cases. Such an assumption is nothing
but intuitive, especially when considering the fact that we
do not fully know the reality of the constituents of the fab-
ric of the Universe yet. As such, the possible limitations of
the present theory, if any, can be neglected considerably until
we fully understand how the fabric of the space-time contin-
uum is actually formed and how the properties of individual
elementary particles might contribute to this formation.

2 The fundamental geometric properties of a curved
manifold

Let us present the fundamental geometric objects of an n-
dimensional curved manifold. Let !a = @Xi

@xa Ei = @aXiEi
(the Einstein summation convention is assumed throughout
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this work) be the covariant (frame) basis spanning the n-
dimensional base manifold C1 with local coordinates xa =
=xa

�
Xk�. The contravariant (coframe) basis �b is then given

via the orthogonal projection


�b; !a

�
= �ba, where �ba are the

components of the Kronecker delta (whose value is unity if
the indices coincide or null otherwise). The set of linearly in-
dependent local directional derivatives Ei = @

@Xi = @i gives
the coordinate basis of the locally flat tangent space Tx(M)
at a point x 2 C1. Here M denotes the topological space of
the so-called n-tuples h (x) =h

�
x1; : : : ; xn

�
such that rel-

ative to a given chart (U; h (x)) on a neighborhood U of a
local coordinate point, our C1-differentiable manifold itself
is a topological space. The dual basis to Ei spanning the lo-
cally flat cotangent space T�x(M) will then be given by the
differential elements dXk via the relation



dXk; @i

�
= �ki .

In fact and in general, the one-forms dXk indeed act as a
linear map Tx(M)! IR when applied to an arbitrary vector
field F 2 Tx(M) of the explicit form F =F i @

@Xi = fa @
@xa .

Then it is easy to see that F i =F Xi and fa =F xa, from
which we obtain the usual transformation laws for the con-
travariant components of a vector field, i.e., F i = @aXifa
and f i = @ixaF i, relating the localized components of F to
the general ones and vice versa. In addition, we also see that

dXk; F

�
=FXk =F k.

The components of the symmetric metric tensor g=
= gab �a
 �b of the base manifold C1 are readily given by

gab = h!a; !bi
satisfying

gac gbc = �ba

where gab =


�a; �b

�
. It is to be understood that the covari-

ant and contravariant components of the metric tensor will
be used to raise and the (component) indices of vectors and
tensors.

The components of the metric tensor

g (xN ) = �ik dXi 
 dXk

describing the locally flat tangent space Tx(M) of rigid
frames at a point xN =xN (xa) are given by

�ik = hEi; Eki = diag (�1;�1; : : : ;�1) :

In four dimensions, the above may be taken to be the com-
ponents of the Minkowski metric tensor, i.e., �ik=hEi; Eki=
= diag (1;�1;�1;�1).

Then we have the expression

gab = �ik @aXi@bXk:

The line-element of C1 is then given by

ds2 = g = gab
�
@ixa@kxb

�
dXi 
 dXk

where �a = @ixadXi.

Given the existence of a local coordinate transformation
via xi = xi (x�) in C1, the components of an arbitrary ten-
sor field T 2 C1 of rank (p; q) transform according to

T ab:::gcd:::h = T��:::���:::� @�x
a @� xb : : : @�xg @c �x� @d �x� : : : @h �x�:

Let �i1i2:::ipj1j2:::jp be the components of the generalized Kro-
necker delta. They are given by

�i1i2:::ipj1j2:::jp =2j1j2:::jp2i1:::ip= det

0BBB@
�i1j1 �i2j1 : : : �ipj1
�i1j2 �i2j2 : : : �ipj2
: : : : : : : : : : : :
�i1jp �i2jp : : : �ipjp

1CCCA
where 2j1j2:::jp =

p
det (g) �j1j2:::jp and 2i1i2:::ip = �i1i2:::ipp

det(g)
are the covariant and contravariant components of the com-
pletely anti-symmetric Levi-Civita permutation tensor, re-
spectively, with the ordinary permutation symbols being
given as usual by �j1j2:::jq and �i1i2:::ip . Again, if ! is an
arbitrary tensor, then the object represented by

�!j1j2:::jp =
1
p!
�i1i2:::ipj1j2:::jp !i1i2:::ip

is completely anti-symmetric.
Introducing a generally asymmetric connection � via the

covariant derivative

@b!a = �cab!c
i.e.,

�cab = h�c; @b!ai = �c(ab) + �c[ab]

where the round index brackets indicate symmetrization and
the square ones indicate anti-symmetrization, we have, by
means of the local coordinate transformation given by xa =
=xa (�x�) in C1

@b e�a = �cab e
�
c � ����� e

�
a e

�
b

where the tetrads of the moving frames are given by e�a =
= @a�x� and ea� = @�xa. They satisfy ea�e�b = �ab and e�aea� =
= ��� . In addition, it can also be verified that

@� ea� = ����� ea� � �abc eb� ec� ;

@b ea� = ea� ����� e
�
b � �acb ec� :

We know that � is a non-tensorial object, since its com-
ponents transform as

�cab = ec�@be
�
a + ec� ����� e

�
a e

�
b :

However, it can be described as a kind of displacement
field since it is what makes possible a comparison of vectors
from point to point in C1. In fact the relation @b!a = �cab!c
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defines the so-called metricity condition, i.e., the change (dur-
ing a displacement) in the basis can be measured by the basis
itself. This immediately translates into

rc gab = 0

where we have just applied the notion of a covariant derivative
to an arbitrary tensor field T :

rmT ab:::gcd:::h = @mT
ab:::g
cd:::h + �apmT

pb:::g
cd:::h + �bpmT

ap:::g
cd:::h + : : :

: : :+ �gpmT ab:::pcd:::h � �pcmT ab:::gpd:::h � �pdmT
ab:::g
cp:::h � : : :

: : :� �phmT
ab:::g
cd:::p

such that (@mT )ab:::gcd:::h = rm T ab:::gcd:::h .
The condition rcgab = 0 can be solved to give

�cab =
1
2
gcd (@b gda � @d gab + @a gbd) +

+ �c[ab] � gcd
�
gae�e[db] + gbe�e[da]

�
from which it is customary to define

�c
ab =

1
2
gcd (@b gda � @d gab + @a gbd)

as the Christoffel symbols (symmetric in their two lower in-
dices) and

Kc
ab = �c[ab] � gcd

�
gae�e[db] + gbe�e[da]

�
as the components of the so-called cotwist tensor (anti-
symmetric in the first two mixed indices).

Note that the components of the twist tensor are given by

�a[bc] =
1
2
ea�
�
@c e�b � @b e�c + e�b ����c � e�c ����b

�
where we have set ����c = �����e�c , such that for an arbitrary
scalar field � we have

(rarb �rbra) � = 2�c[ab]rc� :

The components of the curvature tensorR of C1 are then
given via the relation

(rqrp �rprq)T ab:::scd:::r = T ab:::swd:::rR
w
cpq + T ab:::scw:::rR

w
dpq +

+ : : :+ T ab:::scd:::wR
w
rpq � Twb:::scd:::r R

a
wpq � T aw:::scd:::r R

b
wpq �

� : : :� T ab:::wcd:::r R
s
wpq � 2�w[pq]rw T ab:::scd:::r

where

Rdabc = @b�dac � @c�dab + �eac�
d
eb � �eab�

d
ec

= Bdabc (�) + r̂bKd
ac � r̂cKd

ab +Ke
acK

d
eb �Ke

abK
d
ec ;

where r̂ denotes covariant differentiation with respect to the
Christoffel symbols alone, and where

Bdabc (�) = @b�d
ac � @c�d

ab + �e
ac�

d
eb ��e

ab�
d
ec

are the components of the Riemann-Christoffel curvature ten-
sor of C1.

From the components of the curvature tensor, namely,
Rdabc, we have (using the metric tensor to raise and lower
indices)

Rab � Rcacb = Bab (�) + r̂cKc
ab �Kc

adK
d
cb�

� 2r̂b�c[ac] + 2Kc
ab�

d
[cd]

R � Raa = B (�)� 4gab r̂a�c[bc]�
� 2gac�b[ab]�

d
[cd] �KabcKacb

where Bab (�) � Bcacb (�) are the components of the sym-
metric Ricci tensor and B (�) � Baa (�) is the Ricci scalar.
Note that Kabc � gadKd

bc and Kacb � gcdgbeKa
de.

Now since

�bba = �b
ba = �b

ab = @a
�

ln
p

det (g)
�

�bab = @a
�

ln
p

det (g)
�

+ 2�b[ab]

we see that for a continuous metric determinant, the so-called
homothetic curvature vanishes:

Hab � Rccab = @a�ccb � @b�cca = 0 :

Introducing the traceless Weyl tensorW , we have the fol-
lowing decomposition theorem:

Rdabc =W d
abc+

1
n�2

�
�dbRac+gacR

d
b��dcRab�gabRdc�+

+
1

(n� 1) (n� 2)
�
�dc gab � �db gac�R

which is valid for n > 2. For n = 2, we have

Rdabc = KG
�
�db gac � �dc gab�

where
KG =

1
2
R

is the Gaussian curvature of the surface. Note that (in this
case) the Weyl tensor vanishes.

Any n-dimensional manifold (for which n > 1) with con-
stant sectional curvature R and vanishing twist is called an
Einstein space. It is described by the following simple rela-
tions:

Rdabc =
1

n(n� 1)
�
�db gac � �dc gab�R ;

Rab =
1
n
gabR :
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In the above, we note especially that

Rdabc = Bdabc (�) ;

Rab = Bab (�) ;

R = B (�) :

Furthermore, after some lengthy algebra, we obtain, in
general, the following generalized Bianchi identities:

Rabcd +Racdb +Radbc = �2
�
@d�a[bc] + @b�a[cd] +

+ @c�a[db] + �aeb�
e
[cd] + �aec�

e
[db] + �aed�

e
[bc]
�
;

reRabcd +rcRabde +rdRabec =

= 2
�
�f[cd]R

a
bfe + �f[de]R

a
bfc + �f[ec]R

a
bfd
�
;

ra
�
Rab � 1

2
gabR

�
= 2gab�c[da]R

d
c + �a[cd]R

cdb
a

for any metric-compatible manifold endowed with both cur-
vature and twist.

In the last of the above set of equations, we have intro-
duced the generalized Einstein tensor, i.e.,

Gab � Rab � 1
2
gabR

In particular, we also have the following specialized iden-
tities, i.e., the regular Bianchi identities:

Babcd +Bacdb +Badbc = 0 ;

r̂eBabcd + r̂cBabde + r̂dBabec = 0 ;

r̂a
�
Bab � 1

2
gabB

�
= 0 :

In general, these hold in the case of a symmetric, metric-
compatible connection. Non-metric differential geometry is
beyond the scope of our present consideration.

We now define the so-called Lie derivative which can be
used to define a diffeomorphism invariant in C1. for a vec-
tor field U and a tensor field T , both arbitrary, the invariant
derivative represented (in component notation) by

LUT
ab:::g
cd:::h = @mT

ab:::g
cd:::h U

m + T ab:::gmd:::h @cU
m +

+ T ab:::gcm:::h @dU
m + : : :+ T ab:::gcd:::m @hU

m�
� Tmb:::gcd:::h @mUa � T am:::gcd::::h @mU

b � : : :� T ab:::mcd:::h @mUg

defines the Lie derivative of T with respect to U . With the
help of the twist tensor and the relation

@bUa = rbUa � �acbU
c = rbUa � ��abc � 2�a[bc]

�
Uc

we can write

LUT
ab:::g
cd:::h = rmT ab:::gcd:::h U

m + T ab:::gmd:::hrcUm +

+ T ab:::gcm:::hrdUm + : : :+ T ab:::gcd:::mrhUm � Tmb:::gcd:::h rmUa�
� T am:::gcd::::h rmU b � : : :� T ab:::mcd:::h rmUg +

+ 2�a[mp]T
mb:::g
cd:::h Up + 2�b[mp]T

am:::g
cd:::h Up +

: : : + 2�g[mp]T
ab:::m
cd:::h Up � 2�m[cp]T

ab:::g
md:::hU

p +

+ 2�m[dp]T
ab:::g
cm:::hU

p � : : :� 2�m[hp]T
ab:::g
cd:::mU

p:

Hence, noting that the components of the twist tensor,
namely, �i[kl], indeed transform as components of a tensor

field, it is seen that the LUT
ij:::s
kl:::r do transform as components

of a tensor field. Apparently, the beautiful property of the
Lie derivative (applied to an arbitrary tensor field) is that it is
connection-independent even in a curved manifold.

We will need the identities derived in this Section later on.

3 The generalized four-dimensional linear constitutive
field equations

We shall now present a four-dimensional linear continuum
theory of the classical physical fields capable of describing
microspin phenomena in addition to the gravitational and
electromagnetic fields. By microspin phenomena, we mean
those phenomena generated by rotation of points in the four-
dimensional space-time manifold (continuum) S4 with local
coordinates x� in the manner described by the so-called
Cosserat continuum theory.

We start with the following constitutive equation in four
dimensions:

T�� = C����D
�� =

1
�

�
R�� � 1

2
g��R

�
where now the Greek indices run from 0 to 3. In the above
equation, T�� are the contravariant components of the gener-
ally asymmetric energy-momentum tensor, C���� are the
mixed components of the generalized four-dimensional elas-
ticity tensor, D�� are the contravariant components of the
four-dimensional displacement gradient tensor, R�� are the
contravariant components of the generalized (asymmetric)
four-dimensional Ricci curvature tensor, �=�8� is the Ein-
stein coupling constant (in geometrized units), and R=R�� is
the generalized Ricci four-dimensional curvature scalar.

Furthermore, we can decompose our four-dimensional
elasticity tensor into its holonomic and anholonomic parts as
follows:

C���� = A���� +B����
where

A���� = A(��)
(��) = A����

B���� = B[��]
[��] = B����
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such that
C���� = C ��

�� :

Therefore, we can express the fully covariant components
of the generalized four-dimensional elasticity tensor in terms
of the covariant components of the symmetric metric tensor
g�� (satisfying, as before, g��g�� = ��� ) as

C���� = �g��g�� + �g��g�� + 
 g��g�� =

= �g��g��+� (g��g��+g��g��) + ! (g��g���g��g��)
where �, �, 
, �, and ! are constitutive invariants that are not
necessarily constant. It is therefore seen that

A���� = �g��g�� + � (g��g�� + g��g��)

B���� = ! (g��g�� � g��g��)
An infinitesimal displacement (diffeomorphism) in the

space-time manifold S4 from an initial point P to a neigh-
boring point Q is given as usual by

x� (Q) = x�(P ) + ��

where �� are the components of the four-dimensional infinite-
simal displacement field vector. The generally asymmetric
four-dimensional displacement gradient tensor is then given
by

D�� = r� �� :
The decomposition D�� = D(��) + D[��] and the sup-

plementary infinitesimal point-rotation condition ��[��]�
� = 0

allow us to define the symmetric four-dimensional displace-
ment (“dilation”) tensor by

��� = D(��) =
1
2

(r��� +r���) =
1
2
L� g��

from which the “dilation” scalar is given by

� = ��� = D�
� =

1
2
g�� L� g�� = r� ��

as well as the anti-symmetric four-dimensional intrinsic spin
(vorticity) tensor by

!�� = D[��] =
1
2

(r� �� �r� ��) :

Let us now decompose the four-dimensional infinitesimal
displacement field vector as follows:

�� = @�F +  �:

Here the continuous scalar function F represents the in-
tegrable part of the four-dimensional macroscopic displace-
ment field vector while the remaining parts are given by
 � via

 � = �� + �� + 2 �e'�

where �� are the components of the non-integrable four-

dimensional macroscopic displacement field vector, �� are
the components of the four-dimensional microscopic (micro-
polar) intrinsic spin vector, e is a constant proportional to the
electric charge, and '� are the components of the electromag-
netic four-potential vector. We assume that in general ��, ��,
and '� are linearly independent of each other.

The intrinsic four-dimensional macroscopic spin (“angu-
lar momentum”) tensor is then given by


�� =
1
2

(r� �� �r� ��) :

Likewise, the intrinsic four-dimensional microscopic (mi-
cropolar) spin tensor is given by

S�� =
1
2

(r� �� �r� ��) :

Note that this tensor vanishes when the points are not al-
lowed to rotate such as in conventional (standard) cases.

Meanwhile, the electromagnetic field tensor is given by

F�� = r� '� �r� '� :
In this case, we especially note that, by means of the con-

dition ��[��]�
� = 0, the above expression reduces to the usual

Maxwellian relation

F�� = @�'� � @�'� :
We can now write the intrinsic spin tensor as

!�� = 
�� + S�� + �eF�� :

Hence the full electromagnetic content of the theory be-
comes visible. We also see that our space-time continuum can
be considered as a dynamically polarizable medium possess-
ing chirality. As such, the gravitational and electromagnetic
fields, i.e., the familiar classical fields, are intrinsic geometric
objects in the theory.

Furthermore, from the cotwist tensor, let us define a geo-
metric spin vector via

A� � K�
�� = 2��[��]:

Now, in a somewhat restrictive case, in connection with
the spin fields represented by ��; ��; and '�, the selection

A� = c1�� + c2�� + 2 �ec3'� = 2  �
i.e.,

2 =
c1�� + c2�� + 2 �ec3'�
�� + �� + 2 �e'�

will directly attribute the cotwist tensor to the intrinsic spin
fields of the theory. However, we would in general expect the
intrinsic spin fields to remain in the case of a semi-symmetric
connection, for which A� = 0 and so we cannot carry this
proposition any further.
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At this point, we see that the holonomic part of the gen-
eralized four-dimensional elasticity tensor given by A���� is
responsible for (centrally symmetric) gravitational phenom-
ena while the anholonomic part given by B���� owes its ex-
istence to the (con)twist tensor which is responsible for the
existence of the intrinsic spin fields in our consideration.

Furthermore, we see that the components of the energy-
momentum tensor can now be expressed as

T�� = �g��� + �D�� + 
D�� :

In other words,

T(��) = �g��� + (� + 
) ��� ;

T[��] = (� � 
)!�� :

Alternatively,

T(��) =
1
2
�g��g��L� g�� +

1
2

(� + 
)L� g�� ;

T[��] = (� � 
) (
�� + S�� + �eF��) :

We may note that, in a sense analogous to that of the or-
dinary mechanics of continuous media, the generally asym-
metric character of the energy-momentum tensor means that
a material object in motion is generally subject to distributed
body couples.

We also have

T = T�� = (4�+ � + 
) � = � 1
�
R :

Let us briefly relate our description to the standard mate-
rial description given by general relativity. For this purpose,
let us assume that the intrinsic spin fields other than the elec-
tromagnetic field are negligible. If we denote the material
density and the pressure by � and p, respectively, then it can
be directly verified that

� =
�� 4p

4�+ � + 

is a solution to the ordinary expression

T(��) = �u�u� � pg�� �
� 1

4�

�
F��F �� � 1

4
g��F��F��

�
where u� are the covariant components of the unit veloc-
ity vector. This is true whether the electromagnetic field is
present or not since the (symmetric) energy-momentum ten-
sor of the electromagnetic field given by

J�� = � 1
4�

�
F��F �� � 1

4
g��F��F��

�
is traceless.

At this point, however, we may note that the covariant

divergence

r� T�� = g��r� (��) + �r�D�� +

+ 
r�D�� +D��r� � +D��r� 

need not vanish in general since

r� T�� =
1
�
r�
�
R�� � 1

2
g��R

�
=

=
1
�

�
2g�� ��[��]R

�
� + ��[��]R

���
�

�
:

In an isotropic, homogeneous Universe, for which the
constitutive invariants �; �; 
; �; and ! are constant, the
above expression reduces to

r� T�� = �g��r� � + �r�D�� + 
r�D��:

If we require the above divergence to vanish, however, we
see that the motion described by this condition is still more
general than the pure geodesic motion for point-particles.

Still in the case of an isotropic, homogeneous Universe,
possibly on large cosmological scales, then our expression
for the energy-momentum tensor relates the generalized Ricci
curvature scalar directly to the “dilation” scalar. In general,
we have

R = �� (4�+ � + 
) � = ���� = �1
2
��g��L� g�� :

Now, for the generalized Ricci curvature tensor, we obtain
the following asymmetric constitutive field equation:

R�� = �
�
T�� � 1

2
g�� T

�
= � (�g�� + �D�� + 
 )

where
� = �1

2
(2�+ � + 
) � :

In other words,

R(��) = �
�
�g�� + (� + 
) ���

�
;

R[��] = � (� � 
)!�� :

Inserting the value of �, we can alternatively write

R(��) = �8�
�
�g�� +

1
2

(� + 
)L�g��
�

R[��] = �8� (� � 
) (
�� + S�� + �eF��) :

Hence, the correspondence between the generalized Ricci
curvature tensor and the physical fields in our theory becomes
complete. The present theory shows that in a curved space-
time with a particular spherical symmetry and in a flat Min-
kowski space-time (both space-times are solutions to the
equation ��� = 0, i.e., L� g�� = 0) it is in general still pos-
sible for the spin fields to exist. One possible geometry that

I. Suhendro. A Four-Dimensional Continuum Theory of Space-Time and the Classical Physical Fields 39



Volume 4 PROGRESS IN PHYSICS October, 2007

complies with such a space-time symmetry is the geome-
try of distant parallelism with vanishing space-time curvature
(but non-vanishing Riemann-Christoffel curvature) and non-
vanishing twist.

Now let us recall that in four dimensions, with the help of
the Weyl tensor W , we have the decomposition

R���� = W���� +

+
1
2

(g��R�� + g��R�� � g��R�� � g��R��) +

+
1
6

(g��g�� � g��g��)R :

We obtain, upon setting ��= 1
2 ��, ��= 1

2 ��, �
= 1
2 �
,

and ��= 1
6 ��

R���� = W���� + 2�� (g�� g�� � g�� g��) +

+ �� (g��D�� + g��D�� � g��D�� � g��D��) +

+ �
 (g��D�� + g��D�� � g��D�� � g��D��) +

+ �� (g�� g�� � g�� g��) � :

Therefore, in terms of the anholonomic part of the gener-
alized elasticity tensor, we have

R���� = W���� + 2
��
!
B���� +

+ �� (g��D�� + g��D�� � g��D�� � g��D��) +

+ �
 (g��D�� + g��D�� � g��D�� � g��D��) +

+ �� (g�� g�� � g�� g��) � :

In the special case of a pure gravitational field, the twist
of the space-time continuum vanishes. In this situation our
intrinsic spin fields vanish and consequently, we are left
simply with

R���� = W���� +

+
1
2
� �� + �


�
(g��D�� + g��D�� � g��D�� � g��D��) +

+ �� (g�� g�� � g�� g��) � :

In standard general relativity, this gives the explicit form
of the Riemann-Christoffel curvature tensor in terms of the
Lie derivative L� g�� = 2��� . For a space-time satisfying the
symmetry L� g�� = 0, we simply have R���� =W���� , i.e.,
the space-time is devoid of material sources or “empty”. This
condition is relatively weaker than the case of a space-time
with constant sectional curvature, R= const. for which the
Weyl tensor vanishes.

4 The generalized four-dimensional non-linear constitu-
tive field equations

In reference to the preceding section, let us now present, in
a somewhat concise manner, a non-linear extension of the

formulation presented in the preceding section. The result-
ing non-linear constitutive field equations will therefore not
be limited to weak fields only. In general, it can be shown
that the full curvature tensor contains terms quadratic in the
displacement gradient tensor and this gives us the reason to
express the energy-momentum tensor which is quadratic in
the displacement gradient tensor.

We start with the non-linear constitutive field equation

T�� = C����D
��+K��

����D
��D��=

1
�

�
R���1

2
g��R

�
where

K������ = a1 g�� g�� g�� + a2 g�� g�� g�� +

+ a3g�� g�� g�� + a4 g�� g�� g�� + a5 g�� g�� g�� +

+ a6 g�� g�� g�� + a7 g�� g�� g�� + a8 g�� g�� g�� +

+ a9 g�� g�� g�� + a10 g�� g�� g�� + a11 g�� g�� g�� +

+ a12 g�� g�� g�� + a13 g�� g�� g�� + a14 g�� g�� g�� +

+ a15 g�� g�� g��

where the fifteen constitutive invariants a1, a2, . . . , a15 are
not necessarily constant.

We shall set

K������ = K������ = K������ = K������ :

Letting
K������ = P������ +Q������ ;

P������ = P(��)(��)(��) ;

Q������ = Q[��][��][��] ;
we have

P������ = P������ = P������ = P������ ;

Q������ = Q������ = Q������ = Q������ :

Introducing the eleven constitutive invariants b1, b2, . . . ,
b11, we can write

K������ = b1g��g��g�� + b2g�� (g��g�� + g�� + g��) +

+ b3g�� (g��g�� � g��g��) + b4g�� (g��g�� + g��g��) +

+ b5g�� (g��g�� � g��g��) + b6g�� (g��g�� + g��g��) +

+ b7g�� (g��g�� � g��g��) + b8g�� (g��g�� + g��g��) +

+ b9g�� (g��g�� � g��g��) + b10g�� (g��g�� + g��g��) +

+ b11g�� (g��g�� � g��g��) :

The energy-momentum tensor is therefore given by

T�� =
�
��+b1 �2 +2b2 ������+2b3!��!��

�
g�� +

+ �D�� + 
D�� + 2 (b4 + b6) ���� +

+ 2 (b5 + b7) �!�� + 2b8D
�
���� + 2b9D

�
�!�� +

+ 2b10D�
���� + 2b11D�

� !�� :
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In other words,

T(��) =
�
�� + b1�2 + 2b2������ + 2b3!��!��

�
g�� +

+ (� + 
) ���2 (b4 + b6) ���� + (b8 + b10)�
� �D�

����+D�
����

�
+ (b9 +b11)

�
D�

�!��+D�
�!��

�
;

T[��] = (� � 
)!�� + 2 (b4 + b6) �!�� + (b8 + b10)�
� �D�

�����D�
����

�
+ (b9 +b11)

�
D�

�!���D�
�!��

�
:

We also have

T = �1 � + �2 �2 + �3 ������ + �4!�� !��

where we have set

�1 = 4�+ � + 
 ;

�2 = 4b1 + 2 (b4 + b6) ;

�3 = 8b2 + 2 (b8 + b10) ;

�4 = 8b3 + 2 (b9 � b11) ;

for the sake of simplicity.
For the generalized Ricci curvature tensor, we obtain

R�� = �
n�
c1� + c2�2 + c3������ + c4!��!��

�
g�� +

+ c5D�� + c6D�� + c7���� + c8�!�� + c9D�
���� +

+ c10D�
�!�� + c11D�

���� + c12D�
�!��

o
where

c1 = �1
2

(2�+ � + 
) ; c7 = 2 (b4 + b6) ;

c2 = � (b1 + b4 + b6) ; c8 = 2 (b5 + b7) ;

c3 = � (2b2 + b8 + b10) ; c9 = 2b8 ;

c4 = � (2b3 + b9 � b11) ; c10 = 2b9 ;

c5 = � ; c11 = 2b10 ;

c6 = 
 ; c12 = 2b11 ;
i.e.,

R(��) = �
n�
c1� + c2 �2 + c3 ������ +

+ c4!��!��
�
g�� + (c5 + c6) ��� + c7���� +

+
1
2

(c9 + c11)
�
D�

���� +D�
����

�
+

+
1
2

(c10 + c12)
�
D�

�!�� +D�
� !��

�o
;

R[��] = �
n

(c5 � c6)!�� + c8 �!�� +

+
1
2

(c9 + c11)
�
D�

� ��� �D�
� ���

�
+

+
1
2

(c10+c12)
�
D�

� !�� �D�
� !��

�o
:

The generalized Ricci curvature scalar is then

R = �
�
h1 � + h2 �2 + h3 ������ + h4!�� !��

�
where

h1 = 4c1 + c5 + c6 ;

h2 = 4c2 + c5 ;

h3 = 4c3 + c9 + c11 ;

h4 = 4c4 + c10 + c12 :

Finally, we obtain, for the curvature tensor, the following
expression:

R���� = W���� +

+
�
f1 � + f2 �2 + f3 ������ + f4!��!��

��
� (g��g�� � g��g��) +

� �� + f5�
��
g����� + g������

� g����� � g������+
� �� + f6�

��
g��!�� + g��!���

� g��!�� � g��!���+ �

�
g��D�� + g��D���

� g��D�� � g��D���+ f7
�
D�

���� g�� +

+D�
���� g�� �D�

���� g�� �D�
���� g��

�
+

+ f8
�
D�

� !�� g�� +D�
�!�� g�� �D�

� !�� g�� �
�D�

�!�� g��
�

+ f9
�
D�

���� g�� +D�
���� g�� �

�D�
���� g�� �D�

����g��
�

+ f10
�
D�

�!�� g�� +

+D�
�!�� g�� �D�

�!�� g�� �D�
�!�� g��

�
where

f1 = c1 = ��+ �� ; f6 = c8 ;

f2 =
�

1� 2
3
�
�
c2 +

1
6
� c7 ; f7 = c9 ;

f3 =
�

1� 2
3
�
�
c3 +

1
6
� (c9 + c11) ; f8 = c10 ;

f4 =
�

1� 2
3
�
�
c4 +

1
6
� (c10 � c12) ; f9 = c11 ;

f5 = c7 ; f10 = c12 :

At this point, the apparent main difficulty lies in the fact
that there are too many constitutive invariants that need to be
exactly determined. As such, the linear theory is compara-
tively preferable since it only contains three constitutive in-
variants. However, by presenting the most general structure
of the non-linear continuum theory in this section, we have
acquired a quite general picture of the most general behavior
of the space-time continuum in the presence of the classical
fields.
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5 The equations of motion

Let us now investigate the local translational-rotational mo-
tion of points in the space-time continuum S4. Consider an
infinitesimal displacement in the manner described in the pre-
ceding section. Keeping the initial position fixed, the unit ve-
locity vector is given by

u� =
d��

ds
=
dx�

ds
;

1 = g��u�u� ;

such that, at any proper time given by the world-line s, the
parametric representation

d�� = u� (x�; s) ds

describes space-time curves whose tangents are everywhere
directed along the direction of a particle’s motion. As usual,
the world-line can be parametrized by a scalar & via s =
= a& + b, where a and b are constants of motion.

The local equations of motion along arbitrary curves in
the space-time continuum S4 can be described by the quadru-
plet of unit space-time vectors (u; v; w; z) orthogonal to each
other where the first three unit vectors, or the triplet (u; v; w),
may be defined as (a set of) local tangent vectors in the (three-
dimensional) hypersurface � (t) such that the unit vector z is
normal to it. More explicitly, the hypersurface � (t) is given
as the time section t=x0 = const of S4. This way, the equa-
tions of motion will be derived by generalizing the ordinary
Frenet equations of orientable points along an arbitrary curve
in three-dimensional Euclidean space, i.e., by recasting them
in a four-dimensional manner. Of course, we will also include
effects of microspin generated by the twist of space-time.

With respect to the anholonomic space-time basis !� =
= !�

�
x�(Xk)

�
= ei� @

@Xi , we can write

u = u�!� ;

v = v� !� ;

w = w� !� ;

z = z� !� ;

we obtain, in general, the following set of equations of motion
of points, i.e., point-like particles, along an arbitrary curve `
in the space-time continuum S4:

Du�

Ds
= � v� ;

Dv�

Ds
= � w� � �u� ;

Dw�

Ds
= � v� + 'z� ;

Dz�

Ds
= 'w� ;

where the operator D
Ds =u�r� represents the absolute co-

variant derivative. In the above equations we have introduced
the following invariants:

� =
�
g��

Du�

Ds
Du�

Ds

�1=2
;

� = 2���� u�v�Dv
�

Ds
z�;

' =
�
g��

Dz�

Ds
Dz�

Ds

�1=2
:

In particular, we note that, the twist scalar � measures the
twist of the curve ` in S4 due to microspin.

At this point, we see that our equations of motion describe
a “minimal” geodesic motion (with intrinsic spin) when �=0.
In other words, if

Du�

Ds
= 0 ;

Dv�

Ds
= � w�;

Dw�

Ds
= � v� + 'z�;

Dz�

Ds
= 'w�:

However, in general, any material motion in S4 will not
follow the condition � = 0. This is true especially for the
motion of a physical object with structure. In general, any
physical object can be regarded as a collection of points (with
different orientations) obeying our general equations of mo-
tion. It is therefore clear that � , 0 for a moving finite phys-
ical object (with structure) whose material points cannot be
homogeneously oriented.

Furthermore, it can be shown that the gradient of the unit
velocity vector can be decomposed according to

r� u� = ��� + ��� +
1
6
h�� �� + u�a�

where

h�� = g�� � u�u� ;

��� =
1
4
h��h

�
� (r� u� +r� u�) =

=
1
4
h��h

�
�

�r̂� u� + r̂� u�
�� 1

2
h��h

�
�K

�
(��)u� ;

��� =
1
4
h��h

�
� (r� u� �r� u�) =

=
1
4
h��h

�
�

�r̂� u� � r̂� u��� 1
2
h��h

�
�K

�
[��]u� ;

�� = r� u�;

a� =
Du�
Ds

:
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Note that

h�� u� = ��� u� = ��� u� = 0 ;

K�
(��) = �g�� �g����[��] + g����[��]

�
;

K�
[��] = ��[��] :

Meanwhile, with the help of the identities

u�r�r� u� = r� �u�r� u��� (r� u�)
�r�u�� =

= r� a� � (r� u�)
�r�u�� ;

u� (r� r� �r�r�)u� = R����u�u
� � 2��[��]u

�r�u� ;
we obtain

D��
Ds

= r�a��(r�u�)(r�u�)�R��u�u�+2��[��]u
�r�u�

for the “rate of shear” of a moving material object with re-
spect to the world-line.

6 The variational principle for the theory

Let us now derive the field equations of the present theory
by means of the variational principle. Considering thermody-
namic effects, in general, our theory can best be described by
the following Lagrangian density:

�L = �L1 + �L2 + �L3
where

�L1 =
1
�
p

det (g)�
�
�
R�� (r� �� �D��)� 1

2
�
��D�

�
�
R
�
;

�L2 =
p

det (g)
�

1
2
C����D��D

�� +

+
1
3
K��

����D��D
��D�� ��D�

��T
�
;

�L3 =
p

det (g) u� (r� ��) (f�� � �u�) ;

where � is a thermal coefficient, �T is (the change in) the
temperature, and f is a generally varying scalar entity. Note
that here we have only explicitly assumed that � = r� ��.

Alternatively, we can express �L as follows:

�L1 =
1
�
p

det (g)
�
R�� � 1

2
g��R

�
(r� �� �D��) :

Hence we have

�L =
p

det (g)
�
T�� (r� �� �D��) +

+
1
2
C����D��D

�� +
1
3
K��

����D��D
��D�� �

��D�
��T + u� (r� ��) (f�� � �u�)

�
:

We then arrive at the following invariant integral:

I =
Z
S4

�
T��

�r(� ��) � ���
�

+ T��
�r(� ��) � !���+

+
1
2
A���������� +

1
2
B����!�� !

�� +

+
1
3
P��������������� +

1
3
Q������!�� !

��!�� �
��D�

��T + u� (r� ��) (f �� � �u�)
�
d�

where d� =
p

det (g) dx0dx1dx2dx3 is the proper four-
dimensional differential volume.

Writing �L=
p

det (g)L and employing the variational
principle, we then have

�I =
Z
S4

�
@L
@T��

�T�� +
@L
@���

���� +
@L
@!��

�!�� +

+
@L

@ (r� ��)
� (r� ��)

�
d� = 0 :

NowZ
S4

@L
@ (r� ��)

� (r� ��) d� =
Z
S4

r�
�

@L
@ (r� ��)

���
�
d��

�
Z
S4

r�
�

@L
@ (r� ��)

�
���d� = �

Z
S4

r�
�

@L
@ (r� ��)

�
��� d�

since the first term on the right-hand-side of the first line is
an absolute differential that can be transformed away on the
boundary of integration by means of the divergence theorem.
Hence we have

�I =
Z
S4

�
@L
@T��

�T�� +
@L
@���

���� +
@L
@!��

�!�� �

�r�
�

@L
@ (r� ��)

�
���
�
d� = 0

where each term in the integrand is independent of the others.
We may also note that the variations �T�� , ���� , �!�� , and
��� are arbitrary.

From @L
@T�� = 0, we obtain

��� = r(� ��) ;

!�� = r[� ��] ;

i.e., the covariant components of the “dilation” and intrinsic
spin tensors, respectively.

From @L
@��� = 0, we obtain

T (��) =
1
�

�
R(��) � 1

2
g��R

�
=

= A������� + P������������ ��g���T

I. Suhendro. A Four-Dimensional Continuum Theory of Space-Time and the Classical Physical Fields 43



Volume 4 PROGRESS IN PHYSICS October, 2007

i.e., the symmetric contravariant components of the energy-
momentum tensor.

In other words,

T�� =
1
�

�
R�� � 1

2
g��R

�
=

= C����D
�� +K��

����D
��D�� ��g���T :

Finally, we now show in detail that the fourth variation
yields an important equation of motion. We first see that

@L
@ (r� ��)

= T�� + u�
�
f�

� � �u�� :
Hence

r�
�

@L
@ (r� ��)

�
= r� T�� +r� (f u�) �� +

+ f u�r� �� �r� (�u�)u� � �u�r� u� :
Let us define the “extended” shear scalar and the mass

current density vector, respectively, via

l = r� (fu�) ;

J� = �u�:

We can now readily identify the acceleration vector and
the body force per unit mass, respectively, by

a� = u� r� a� =
Du�

Ds
;

b� =
1
�
�
l �� + f (1�r� J�)u�

�
:

In the conservative case, the condition r� J� = 0 gives

D�
Ds

= ��r� u�:
In the weak-field limit for which u� =

�
1; uA

�
(where

A= 1; 2; 3) we obtain the ordinary continuity equation,

@�
@t

+rA ��uA� = 0 :

Finally, we haveZ
S4

(r� T�� + � b� � � a�) ���d� = 0

i.e., the equation of motion

r� T�� = � (a� � b�)

or

r�
�
R�� � 1

2
g��R

�
= �� (a� � b�) :

If we restrict our attention to point-like particles, the body
force vanishes since it cannot act on a structureless (zero-
dimensional) object. And since the motion is geodesic, i.e.,
a� = 0, we have the conservation law

r� T�� = 0 :

In this case, this conservation law is true regardless of
whether the energy-momentum tensor is symmetric or not.

Let us now discuss the so-called couple stress, i.e., the
couple per unit area which is also known as the distributed
moment. We denote the couple stress tensor by the second-
rank tensor field M . In analogy to the linear constitutive re-
lations relating the energy-momentum tensor to the displace-
ment gradient tensor, we write

M�� = J����L
�� +H��

����L
��L��

where
J���� = E���� + F���� ;

H������ = U������ + V������ :

These are assumed to possess the same symmetry proper-
ties as C���� and K������ , respectively, i.e., E���� have the
same symmetry properties as A���� , F���� have the same
symmetry properties as B���� , U������ have the same sym-
metry properties as P������ , and V������ have the same
symmetry properties as Q������ .

Likewise, the asymmetric tensor given by

L�� = L(��) + L[��]

is comparable to the displacement gradient tensor.
Introducing a new infinitesimal spin potential via ��, let

the covariant dual form of the intrinsic spin tensor be
given by

�!�� =
1
2
2���� !�� =

1
2

(r� �� �r� ��) :

Let us now introduce a completely anti-symmetric third-
rank spin tensor via

S��� = �1
2

(� � 
) 2���� �� :
As a direct consequence, we see that

r� S��� = (� � 
)!��

In other words,

r� S��� = T [��] �N�� =
1
�

�
R[��] � ���

�
where

N�� = 2 (b4 + b6) �!�� + (b8 + b10)�
� �D����� �D�����

�
+ (b9 + b9)

�
D��!�� �D��!��

�
;

��� = c8�!�� +
1
2

(c9 + c11)
�
D����� �D�����

�
+

+
1
2

(c10 + c11)
�
D��!�� �D��!��

�
:
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We can now form the second Lagrangian density of our
theory as

�H =
p

det (g)
�
M�� (r� �� � L��) +

1
2
J����L��L

�� +

+
1
3
H��

����L��L
��L��� 2���� (r� ��)S���u� +

+u� (r� ��) (h�� � I�s�)
�

where h is a scalar function, I is the moment of inertia, and
s� are the components of the angular velocity vector.

Letting L(��) =X�� and L[��] =Z�� , the corresponding
action integral is

J =
Z
S4

�
M�� �r(� ��)�X���+M�� �r[� ��]�Z���+

+
1
2
E����X��X

�� +
1
2
F����Z��Z

�� +

+
1
3
U������X��X

��X�� +
1
3
V ������Z��Z

��Z�� �
� 2���� (r� ��)S���u�+u� (r���) (h���I�s�)

�
d� :

As before, writing �H =
p

det (g)H and performing the
variation �J = 0, we have

�J =
Z
S4

�
@H
@M�� �M

�� +
@H
@X�� �X

�� +

+
@H
@Z��

�Z�� �r�
�

@H
@ (r� ��)

�
���
�
d� = 0

with arbitrary variations �M��, �X��, �Z��, and ��� .
From @H

@M�� = 0, we obtain

X�� = r(� ��) ;

Z�� = r[� ��] :

From @H
@X�� = 0, we obtain

M (��) = E����X
�� + U������X

��X�� :

From @H
@Z��

= 0, we obtain

M [��] = F����Z
�� + V ������Z

��Z�� :

We therefore have the constitutive relation

M�� = J����L
�� +H��

����L
��L�� :

Let us investigate the last variation

�
Z
S4

r�
�

@H
@ (r���)

�
��� d� = 0

in necessary detail.
Firstly,

@H
@ (r� ��)

= M��� 2���� S���u� + u� (h�� � I�s�) :

Then we see that

r�
�

@H
@ (r� ��)

�
= r�M�� �

� 2���� T [��]u�� 2���� S���r� u� +r� (hu�)�� +

+hu�r� �� � Ir� (�u�) s� � I�u�r� s� :
We now define the angular acceleration by

�� = u� r� s� =
Ds�

Ds
and the angular body force per unit mass by

�� =
1
�

�
�l �� + h

D��

Ds
� I (r� J�) s�

�
where �l = r� (hu�).

We haveZ
S4

�
r�M��� 2����

�
T [��]u� + S���r�u�

�
+

+ ��� � I���
�
��� d� = 0 :

Hence we obtain the equation of motion

r�M�� = 2���� �

�
��

T [��] �N��
�
u� + S���r�u�

�
+ � (I�� � ��)

i.e.,

r�M�� = 2���� �

�
�

1
�

�
R[��] � ���

�
u� + S���r�u�

�
+ � (I�� � ��) :

7 Final remarks

We have seen that the classical fields of physics can be uni-
fied in a simple manner by treating space-time itself as a
four-dimensional finite (but unbounded) elastic medium ca-
pable of undergoing extensions (dilations) and internal point-
rotations in the presence of material-energy fields. In the
present framework, the classical physical fields indeed appear
on an equal footing as they are of purely geometric character.
In addition, we must note that this apparent simplicity still
leaves the constitutive invariants undetermined. At the mo-
ment, we leave this aspect of the theory to more specialized
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attempts. However, it can be said, in general, that we ex-
pect the constitutive invariants of the theory to be functions of
the known physical properties of matter such as material den-
sity, energy density, compressibility, material symmetry, etc.
This way, we have successfully built a significant theoretical
framework that holds in all classical physical situations.

We would also like to remark that once the constitutive
invariants are determined and incorporated into the possible
equations of state, the fully non-linear formulation of the pre-
sent theory should be very satisfactory for describing the dy-
namics of astrophysical objects especially various fluids
which exhibit the characteristics of non-degenerate relativis-
tic and non-Newtonian fluids.

We have seen that the general dynamical behavior of a
material body as determined by the equations of motion given
in Section 5, is intrinsically related to the underlying geome-
try of the space-time continuum which in turn is largely deter-
mined by the constitutive relations given in Sections 3 and 4.
In Section 6, we have also constructed a framework in which
the motion of a point-like particle is always subject to the con-
servation law of matter and energy regardless of the particle’s
intrinsic spin.

We also note that a material body in our continuum
representation of space-time can be regarded as the three-
dimensional boundary of a so-called world-tube such that out-
side the world-tube the region is said to be free or empty. This
three-dimensional boundary can be represented by a time-like
hypersurface. Such hypersurfaces can be seen as disturbances
in the space-time continuum. Furthermore, such disturbances
are equivalent to three-dimensional representations of mate-
rial waves (not necessarily gravitational waves). In this con-
text, one may formulate the dynamic discontinuity conditions
as purely geometric and kinematic compatibility conditions
over the hypersurfaces.

In common with standard general relativity, a region of
the space-time continuum is said to be statical if it can be
covered by a space-time coordinate system relative to which
the components of the metric tensor are independent of time.
It may be that such a region can be covered by one or more
such coordinate systems. As such, material waves are propa-
gated into a fixed (three-dimensional) curved space along tra-
jectories normal to the family of hypersurfaces given by the
successive positions of a material body in the fixed space. In
various cases, such trajectories can be represented as curves
of zero length in the space-time continuum.

The microscopic substructure of the space-time contin-
uum provides us room for additional degrees of freedom. In
other words, there exist intrinsic length scales associated with
these additional degrees of freedom. Correspondingly, one
may define the so-called microrotational inertial field. In fact,
the internal rotation of the points in the space-time contin-
uum is seen as representing the intrinsic spin of elementary
particles. On microscopic scales, the structure of the space-
time continuum can indeed appear to be granular. Due to

possible effects arising from this consideration, it is often not
sufficient to model the space-time continuum itself as contin-
uous, isotropic, and homogeneous. Furthermore, the rather
predominant presence of twisting paths may give rise to par-
ticles exhibiting micropolar structure.

In geometrizing microspin phenomena, we emphasize
that the initial microspin variables are not to be freely chosen
to be included in the so-called elasticity scalar functional of
the space-time continuum which is equivalent to a Lagrangian
density. Rather, one must first identify them with the internal
geometric properties of the space-time continuum. In other
words, one must primarily unfold their underlying geometric
existence in the space-time continuum itself. This is precisely
what we have done in this work.

Finally, we note that geometric discontinuities can also
be incorporated into the present theory. Such discontinuities
can be seen as topological defects in the space-time contin-
uum. Holographic four-dimensional continua with cellular,
fibrous, or foamy structure may indeed represent admissible
semi-classical models of the Universe which can be realized
in the framework of the present theory. In such a case, the
metric must therefore be quantized. It remains to be seen how
this might correspond to any conventional quantum descrip-
tion of the space-time continuum.
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