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We attempt to present a classical theoretical framework in which the gravitational and
electromagnetic fields are unified as intrinsic geometric objects in the space-time mani-
fold. For this purpose, we first present the preliminary geometric considerations dealing
with the metric differential geometry of Cartan connections. The unified field theory is
then developed as an extension of the general theory of relativity based on a semi-
symmetric Cartan connection which is meant to be as close as possible structurally to
the symmetric connection of the Einstein-Riemann space-time.

1 Introduction

It is now well-known that there are various paths available,
provided by geometry alone, to a unified description of phys-
ical phenomena. The different possibilities for the interpre-
tation of the underlying nature and fabric of the Universe in
a purely geometric fashion imply that there is a deep under-
lying structural reason for singular harmony that lies in the
depths of Nature’s unity. It appears that the Universe is a
self-descriptive continuum which connects what seem to be
purely intrinsic mathematical objects to physical observables.
It is the belief that analytical geometry alone is able to pro-
vide the profoundest description of the complexity and har-
mony of our structured Universe that has led generations of
mathematicians and physicists to undertake the task of ge-
ometrizing the apparently systematic laws of Nature. Indeed
this is, as Einstein once described, the effect of the sense of
universal causation on the inquisitive mind.

The above-mentioned wealth of the inherent mathemati-
cal possibility for the geometrization of physics has resulted
in the myriad forms of unified field theory which have been
proposed from time to time, roughly since 1918 when H.
Weyl’s applied his so-called purely infinitesimal geometry
which was a relaxation of the geometry of Riemann spaces to
the task of geometrizing the electromagnetic field in the hope
to unify it with the already geometrized gravitational field of
general relativity [6]. However, often for want of simplicity,
this fact which basically gives us a vision of a solid, reified
reality may also lead us to think that the Universe of phenom-
ena must be ultimately describable in the somewhat simplest
and yet perhaps most elegant mathematical (i.e., geometric)
formalism. Furthermore, when one is exposed to the different
forms of unified field theory, especially for the first time, I
believe it is better for one to see a less complicated version,
otherwise one might get overloaded mentally and it follows
that there is a chance that such a thing will just prevent one
from absorbing the essence of our desired simplicity which

is intuitively expected to be present in any objective task of
unification.

Given the freedom of choice, we do not attempt, in this
work, to speak about which version of unified field theory out
of many is true, rather we shall present what I believe should
qualify among the logically simplest geometric descriptions
of the classical fields of gravity and electromagnetism. In-
deed, for the reason that we may not still be fully aware of
the many hidden aspects of the Universe on the microscopic
(quantum) scales, at present we shall restrict our attention
to the unification and geometrization of the classical fields
alone.

As we know, there are many types of differential geome-
try, from affine geometry to non-affine geometry, from met-
ric (i.e., metric-compatible) geometry to non-metric geom-
etry. However, the different systems of differential geome-
try that have been developed over hundreds of years can be
most elegantly cast in the language of Cartan geometry. The
geometric system I will use throughout this physical part of
our work is a metric-compatible geometry endowed with a
semi-symmetric Cartan connection. It therefore is a variant of
the so-called Riemann-Cartan geometry presented in Sections
1.1-1.6. As we know, the standard form of general relativity
adopts the symmetric, twist-free, metric-compatible Christof-
fel connection. We are also aware that the various extensions
of standard general relativity [7] tend to employ more gen-
eral connections that are often asymmetric (e.g., the Sciama-
Kibble theory [8, 9]) and even non-metric in general (e.g.,
the Weyl theory [6]). However, in the present work, we shall
insist on logical simplicity and on having meaningful physi-
cal consequences. Once again, we are in no way interested
in pointing out which geometric system is most relevant to
physics, rather we are simply concerned with describing in
detail what appears to be among the most consistent and ac-
curate views of the physical world. We only wish to construct
a unified field theory on the common foundation of beauty,
simplicity, and observational accuracy without having to deal
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with unnecessarily complex physical implications that might
dull our perspective on the workings of Nature. I myself have
always been fond of employing the most general type of con-
nection for the purpose of unification. However, after years of
poring over the almost universally held and (supposedly) ob-
jectively existing physical evidence, I have come to the con-
clusion that there is more reason to impose a simpler geomet-
ric formulation than a more general type of geometry such as
non-metric geometry. In this work, it is my hope to dovetail
the classical fields of gravity and electromagnetism with the
conventional Riemann-Cartan geometry in general and with a
newly constructed semi-symmetric Cartan connection in par-
ticular. Our resulting field equations are then just the distilla-
tion of this motive, which will eventually give us a penetrating
and unified perspective on the nature of the classical fields of
gravity and electromagnetism as intrinsic geometric fields, as
well as on the possible interaction between the translational
and rotational symmetries of the space-time manifold.

I believe that the semi-symmetric nature of the present
theory (which keeps us as close as possible to the profound,
observable physical implications of standard general relativ-
ity) is of great generality such that it can be applied to a large
class of problems, especially problems related to the more
general laws of motion for objects with structure.

2 A comprehensive evaluation of the differential geome-
try of Cartan connections with metric structure

The splendid, profound, and highly intuitive interpretation of
differential geometry by E. Cartan, which was first applied to
Riemann spaces, has resulted in a highly systematic descrip-
tion of a vast range of geometric and topological properties
of differentiable manifolds. Although it possesses a some-
what abstract analytical foundation, to my knowledge there
is no instance where Riemann-Cartan geometry, cast in the
language of differential forms (i.e., exterior calculus), gives a
description that is in conflict with the classical tensor analysis
as formalized, e.g., by T. Levi-Civita. Given all its successes,
one might expect that any physical theory, which relies on
the concept of a field, can be elegantly built on its rigorous
foundation. Therefore, as long as the reality of metric struc-
ture (i.e., metric compatibility) is assumed, it appears that
a substantial modified geometry is not needed to supersede
Riemann-Cartan geometry.

A common overriding theme in both mathematics and
theoretical physics is that of unification. And as long as
physics can be thought of as geometry, the geometric objects
within Riemann-Cartan geometry (such as curvature for grav-
ity and twist for intrinsic spin) certainly help us visualize and
conceptualize the essence of unity in physics. Because of its
intrinsic unity and its breadth of numerous successful appli-
cations, it might be possible for nearly all the laws govern-
ing physical phenomena to be combined and written down
in compact form via the structural equations. By the intrin-

sic unity of Riemann-Cartan geometry, I simply refer to its
tight interlock between algebra, analysis, group representa-
tion theory, and geometry. At least in mathematics alone, this
is just as close as one can get to a “final” unified description
of things. I believe that the unifying power of this beautiful
piece of mathematics extends further still.

I’m afraid the title I have given to this first part of our
work (which deals with the essential mathematics) has a
somewhat narrow meaning, unlike the way it sounds. In writ-
ing this article, my primary goal has been to present Riemann-
Cartan geometry in a somewhat simpler, more concise, and
therefore more efficient form than others dealing with the
same subject have done before [1, 4]. I have therefore had to
drop whatever mathematical elements or representations that
might seem somewhat highly counterintuitive at first. After
all, not everyone, unless perhaps he or she is a mathemati-
cian, is familiar with abstract concepts from algebra, analy-
sis, and topology, just to name a few. Nor is he or she ex-
pected to understand these things. But one thing remains es-
sential, namely, one’s ability to catch at least a glimpse of
the beauty of the presented subject via deep, often simple,
real understanding of its basics. As a non-mathematician (or
simply a “dabbler” in pure mathematics), I do think that pure
mathematics as a whole has grown extraordinarily “strange”,
if not complex (the weight of any complexity is really rela-
tive of course), with a myriad of seemingly separate branches,
each of which might only be understood at a certain level of
depth by the pure mathematicians specializing in that partic-
ular branch themselves. As such, a comparable complexity
may also have occurred in the case of theoretical physics itself
as it necessarily feeds on the latest formalism of the relevant
mathematics each time. Whatever may be the case, the real
catch is in the essential understanding of the basics. I believe
simplicity alone will reveal it without necessarily having to
diminish one’s perspectives at the same time.

2.1 A brief elementary introduction to the Cartan
(-Hausdorff) manifold C1

Let !a = @Xi

@xa Ei = @aXiEi (summation convention employ-
ed throughout this article) be the covariant (frame) basis span-
ning the n-dimensional base manifold C1 with local coordi-
nates xa =xa

�
Xk�. The contravariant (coframe) basis �b is

then given via the orthogonal projection


�b; !a

�
= �ba, where

�ba are the components of the Kronecker delta (whose value is
unity if the indices coincide or null otherwise). Now the set of
linearly independent local directional derivatives Ei = @

@Xi =
= @i gives the coordinate basis of the locally flat tangent
space Tx(M) at a point x2C1. HereM denotes the topolog-
ical space of the so-called n-tuples h (x) =h

�
x1; : : : ; xn

�
such that relative to a given chart

�
U; h (x)

�
on a neighbor-

hood U of a local coordinate point, our C1-differentiable
manifold itself is a topological space. The dual basis to Ei
spanning the locally flat cotangent space T�x(M) will then
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be given by the differential elements dXk via the relation

dXk; @i

�
= �ki . In fact and in general, the one-forms dXk

indeed act as a linear map Tx(M) ! IR when applied to
an arbitrary vector field F 2Tx(M) of the explicit form F =
=F i @

@Xi = fa @
@xa . Then it is easy to see that F i =FXi and

fa =Fxa, from which we obtain the usual transformation
laws for the contravariant components of a vector field, i.e.,
F i = @aXifa and f i = @ixaF i, relating the localized com-
ponents of F to the general ones and vice versa. In addition,
we also see that



dXk; F

�
=FXk =F k.

The components of the metric tensor g= gab�a
 �b of
the base manifold C1 are readily given by

gab = h!a; !bi :
The components of the metric tensor g (xN ) = �ikdXi


dXk describing the locally flat tangent space Tx(M) of rigid
frames at a point xN =xN (xa) are given by

�ik = hEi; Eki = diag (�1;�1; : : : ;�1) :

In four dimensions, the above may be taken to be the com-
ponents of the Minkowski metric tensor, i.e., �ik =hEi; Eki=
= diag (1;�1;�1;�1).

Then we have the expression

gab = �ik @aXi@bXk

satisfying
gac gbc = �ba

where gab =


�a; �b

�
.

The manifold C1 is a metric space whose line-element in
this formalism of a differentiable manifold is directly given
by the metric tensor itself, i.e.,

ds2 = g = gab
�
@ixa@kxb

�
dXi 
 dXk;

where the coframe basis is given by the one-forms �a =
= @ixadXi.

2.2 Exterior calculus in n dimensions

As we know, an arbitrary tensor field T 2C1 of rank (p; q)
is the object

T = T i1i2:::iqj1j2:::jp!i1 
 !i2 
 : : :
 !iq 
 �j1 
 �j2 
 : : :
 �jp :
Given the existence of a local coordinate transformation

via xi =xi (�x�) in C1, the components of T 2C1 transform
according to

T ij:::skl:::r = T��:::���:::� @�x
i@�xj : : : @�xs@k�x�@l�x� : : : @r�x�:

Taking a local coordinate basis �i = dxi, a Pfaffian p-form
! is the completely anti-symmetric tensor field

! = !i1i2:::ipdx
i1 ^ dxi2 ^ : : : ^ dxip ;

where

dxi1^dxi2^: : :^dxip � 1
p!
�i1i2:::ipj1j2:::jpdx

j1
dxj2
: : :
dxjp :

In the above, the �i1i2:::ipj1j2:::jp are the components of the gen-
eralized Kronecker delta. They are given by

�i1i2:::ipj1j2:::jp =2j1j2:::jp2i1:::ip= det

0BBB@
�i1j1 �i2j1 : : : �ipj1
�i1j2 �i2j2 : : : �ipj2
: : : : : : : : : : : :
�i1jp �i2jp : : : �ipjp

1CCCA
where 2j1j2:::jp =

p
det (g) �j1j2:::jp and 2i1i2:::ip = �i1i2:::ipp

det(g)
are the covariant and contravariant components of the com-
pletely anti-symmetric Levi-Civita permutation tensor, res-
pectively, with the ordinary permutation symbols being given
as usual by �j1j2:::jq and �i1i2:::ip .

We can now write

! =
1
p!
�i1i2:::ipj1j2:::jp!i1i2:::ipdx

j1 ^ dxj2 ^ : : : ^ dxjp :
such that for a null p-form != 0 its components satisfy the
relation �i1i2:::ipj1j2:::jp!i1i2:::ip = 0.

By meticulously moving the dxi from one position to an-
other, we see that

dxi1 ^ dxi2 ^ : : : ^ dxip�1 ^ dxip ^ dxj1 ^ dxj2 ^ : : :
: : : ^ dxjq = (�1)pdxi1 ^ dxi2 ^ : : : ^ dxip�1 ^ dxj1^
^ dxj2 ^ : : : ^ dxjq ^ dxip

and

dxi1 ^ dxi2 ^ : : : ^ dxip ^ dxj1 ^ dxj2 ^ : : : ^ dxjq =
= (�1)pqdxj1 ^ dxj2 ^ : : : ^ dxjq ^ dxi1 ^ dxi2 ^ : : :
: : : ^ dxip :
Let ! and � be a p-form and a q-form, respectively. Then,

in general, we have the following relations:

! ^ � = (�1)pq� ^ ! = !i1i2:::ip�j1j2:::jqdx
i1^ dxi2^ : : :

: : : ^ dxp^ dxj1^ dxj2^ : : : ^ dxjq
d (! + �) = d! + d�

d (! ^ �) = d! ^ � + (�1)p ! ^ d�
Note that the mapping d : != d! is a (p+ 1)-form. Ex-

plicitly, we have

d! =
(�1)p

(p+ 1)!
�i1i2:::ipj1j2:::jp

@!i1i2:::ip
@xip+1

dxj1 ^ dxj2 ^ : : :
: : : ^ dxjp ^ dxip+1 :
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For instance, given a (continuous) function f , the one-
form df = @ifdxi satisfies d2f � ddf = @k@ifdxk ^ dxi = 0.
Likewise, for the one-form A=Aidxi, we have dA=
= @kAidxk ^ dxi and therefore d2A= @l@kAidxl ^ dxk ^^ dxi = 0, i.e., �iklrst@l@kAi = 0 or @l@kAi + @k@iAl +
+ @i@lAk = 0. Obviously, the last result holds for arbitrary
p-forms �ij:::s

kl:::r, i.e.,

d2�ij:::s
kl:::r = 0 :

Let us now consider a simple two-dimensional case. From
the transformation law dxi = @�xid�x�, we have, upon em-
ploying a positive definite Jacobian, i.e., @ (xi; xj)

@ (�x�; �x�)
> 0, the

following:

dxi ^ dxj = @�xi@�xjd�x�^ d�x� =
1
2
@
�
xi; xj

�
@ (�x�; �x�)

d�x�^ d�x� :

It is easy to see that

dx1 ^ dx2 =
@
�
x1; x2�

@ (�x1; �x2)
d�x1 ^ d�x2:

which gives the correct transformation law of a surface ele-
ment.

We can now elaborate on the so-called Stokes theorem.
Given an arbitrary function f , the integration in a domain D
in the manifold C1 is such that
"

D

f
�
xi
�
dx1 ^ dx2 =

"

D

f
�
xi (�x�)

� @ �x1; x2�
@ (�x1; �x2)

d�x1d�x2:

Generalizing to n dimensions, for any  i = i (xk) we
have

d 1 ^ d 2 ^ : : : ^ d n =

=
@
�
 1;  2; : : : ;  n

�
@ (x1; x2; : : : ; �xn)

dx1 ^ dx2 ^ : : : ^ dxn:
Therefore (in a particular domain)

"
: : :
Z
fd 1 ^ d 2 ^ : : : ^ d n =

"
: : :

: : :
Z
f
�
xi
� @ � 1;  2; : : : ;  n

�
@ (x1; x2; : : : ; xn)

dx1 ^ dx2 ^ : : : ^ dxn:
Obviously, the value of this integral is independent of

the choice of the coordinate system. Under the coordinate
transformation given by xi =xi (�x�), the Jacobian can be ex-
pressed as

@
�
 1;  2; : : : ;  n

�
@ (x1; x2; : : : ; xn)

=

=
@
�
 1;  2; : : : ;  n

�
@ (�x1; �x2; : : : ; �xn)

@
�
�x1; �x2; : : : ; �xn

�
@ (x1; x2; : : : ; xn)

:

If we consider a (n�m)-dimensional subspace (hyper-
surface) S2C1 whose local coordinates uA parametrize the

coordinates xi, we have
"

: : :
Z
fd 1 ^ d 2 ^ : : : ^ d n =

=
"

: : :
Z
f
�
xi
�
uA
���

� @
�
 1 �xi �uA�� ;  2 �xi �uA�� ; : : : ;  n �xi �uA���

@ (u1; u2; : : : ; un�m)
�

� du1du2 : : : dun�m:

2.3 Geometric properties of a curved manifold

Let us recall a few concepts from conventional tensor analysis
for a while. Introducing a generally asymmetric connection
� via the covariant derivative

@b!a = �cab!c
i.e.,

�cab = h�c; @b!ai= �c(ab) + �c[ab]

where the round index brackets indicate symmetrization and
the square ones indicate anti-symmetrization, we have, by
means of the local coordinate transformation given by xa =
=xa (�x�) in C1

@be�a = �cab e
�
c � �����e

�
ae
�
b ;

where the tetrads of the moving frames are given by e�a=@a�x�
and ea� = @�xa. They satisfy ea�e�b = �ab and e�aea� = ��� . In
addition, it can also be verified that

@� ea� = ����� ea� � �abc eb� ec� @b ea� = ea� ����� e
�
b � �acb ec� :

From conventional tensor analysis, we know that � is a
non-tensorial object, since its components transform as

�cab = ec�@b e
�
a + ec� ����� e

�
a e

�
b :

However, it can be described as a kind of displacement
field since it is what makes possible a comparison of vectors
from point to point in C1. In fact the relation @b!a = �cab!c
defines the so-called metricity condition, i.e., the change (dur-
ing a displacement) in the basis can be measured by the basis
itself. This immediately translates into

rc gab = 0 ;

where we have just applied the notion of a covariant derivative
to an arbitrary tensor field T :

rkT ij:::slm::::r = @kT
ij:::s
lm:::r + �ipkT

pj:::s
lm:::r + �jpkT

ip:::s
lm:::r + : : :

+ �spkT
ij:::p
lm:::r � �plkT

ij:::s
pm:::r � �pmkT

ij:::s
lp:::r � : : :� �prkT

ij:::s
lm:::p

such that (@kT )ij:::slm:::r =rkT ij:::slm:::r.
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The condition rc gab = 0 can be solved to give

�cab =
1
2
gcd (@bgda � @dgab + @agbd) + �c[ab]�

� gcd �gae�e[db] + gbe�e[da]

�
from which it is customary to define

�c
ab =

1
2
gcd (@bgda � @dgab + @agbd)

as the Christoffel symbols (symmetric in their two lower in-
dices) and

Kc
ab = �c[ab] � gcd

�
gae�e[db] + gbe�e[da]

�
as the components of the so-called contwist tensor (anti-
symmetric in the first two mixed indices).

Note that the components of the twist tensor are given by

�a[bc] =
1
2
ea�
�
@c e�b � @b e�c + e�b ����c � e�c ����b

�
where we have set ����c = ����� e�c , such that for an arbitrary
scalar field � we have

(rarb �rbra) � = 2�c[ab]rc� :
The components of the curvature tensorR of C1 are then

given via the relation

(rqrp �rprq)T ab:::scd:::r = T ab:::swd:::rR
w
cpq + T ab:::scw:::rR

w
dpq +

: : :+ T ab:::scd:::wR
w
rpq � Twb:::scd:::r R

a
wpq � T aw:::scd:::r R

b
wpq � : : :

�T ab:::wcd:::r R
s
wpq � 2�w[pq]rwT ab:::scd:::r

where

Rdabc = @b�dac � @c�dab + �eac�
d
eb � �eab�

d
ec =

= Bdabc (�) +r̂bKd
ac�r̂cKd

ab+Ke
acKd

eb�Ke
abKd

ec

where r̂ denotes covariant differentiation with respect to the
Christoffel symbols alone, and where

Bdabc (�) = @b�d
ac � @c�d

ab + �e
ac�

d
eb ��e

ab�
d
ec

are the components of the Riemann-Christoffel curvature ten-
sor of C1.

From the components of the curvature tensor, namely,
Rdabc, we have (using the metric tensor to raise and lower
indices)

Rab � Rcacb = Bab (�) + r̂cKc
ab �Kc

adK
d
cb�

� 2r̂b�c[ac] + 2Kc
ab�

d
[cd]

R � Raa = B (�)� 4gabr̂a�c[bc]�
� 2gac�b[ab]�

d
[cd] �KabcKacb

where Bab (�) �Bcacb (�) are the components of the sym-
metric Ricci tensor and B (�) �Baa (�) is the Ricci scalar.
Note that Kabc� gadKd

bc and Kacb� gcdgbeKa
de.

Now since

�bba = �b
ba = �b

ab = @a
�

ln
p

det (g)
�

�bab = @a
�

ln
p

det (g)
�

+ 2�b[ab]

we see that for a continuous metric determinant, the so-called
homothetic curvature vanishes:

Hab � Rccab = @a�ccb � @b�cca = 0

Introducing the traceless Weyl tensor C, we have the fol-
lowing decomposition theorem:

Rdabc =Cdabc+
1

n�2
�
�dbRac+gacR

d
b��dcRab�gabRdc�+

+
1

(n�1) (n�2)
�
�dc gab � �db gac�R

which is valid for n> 2. For n= 2, we have

Rdabc = KG
�
�db gac � �dc gab�

where
KG =

1
2
R

is the Gaussian curvature of the surface. Note that (in this
case) the Weyl tensor vanishes.

Any n-dimensional manifold (for which n> 1) with con-
stant sectional curvature R and vanishing twist is called an
Einstein space. It is described by the following simple rela-
tions:

Rdabc =
1

n(n� 1)
�
�db gac � �dc gab�R

Rab =
1
n
gabR :

In the above, we note especially that

Rdabc = Bdabc (�) ;

Rab = Bab (�) ;

R = B (�) :

Furthermore, after some elaborate (if not tedious) alge-
bra, we obtain, in general, the following generalized Bianchi
identities:

Rabcd +Racdb +Radbc = �2
�
@d�a[bc] +

+ @b�a[cd] + @c�a[db] + �aeb�
e
[cd] + �aec�

e
[db] + �aed�

e
[bc]
�

reRabcd +rcRabde +rdRabec =

= 2
�

�f[cd]R
a
bfe + �f[de]R

a
bfc + �f[ec]R

a
bfd

�
ra
�
Rab � 1

2
gabR

�
= 2gab�c[da]R

d
c + �a[cd]R

cdb
a
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for any metric-compatible manifold endowed with both cur-
vature and twist.

In the last of the above set of equations, we have intro-
duced the generalized Einstein tensor, i.e.,

Gab � Rab � 1
2
gabR :

In particular, we also have the following specialized iden-
tities, i.e., the regular Bianchi identities:

Babcd +Bacdb +Badbc = 0 ;

r̂eBabcd + r̂cBabde + r̂dBabec = 0

r̂a
�
Bab � 1

2
gabB

�
= 0 :

In general, these hold in the case of a symmetric, metric-
compatible connection. Non-metric differential geometry is
beyond the scope of our present consideration. We will need
the identities presented in this section in the development of
our semi-symmetric, metric-compatible unified field theory.

2.4 The structural equations

The results of the preceding section can be expressed in the
language of exterior calculus in a somewhat more compact
form.

In general, we can construct arbitrary p-forms !ab:::ecd:::f
through arbitrary (p� 1) forms �ab:::ecd:::f , i.e.,

!ab:::ecd:::f = d�ab:::ecd:::f =
@�ab:::ecd:::f

@xh
^ dxh:

The covariant exterior derivative is then given by

D!ab:::ecd:::f = rh!ab:::ecd:::f ^ dxh
i.e.,

D!ab:::ecd::::f = d!ab:::ecd:::f + (�1)p
�
!hb:::ecd:::f ^ �ah +

+ !ah:::ecd:::f ^ �bh + : : :+ !ab:::hcd:::f ^ �eh � !ab:::ehd:::f ^ �hc �
� !ab:::ech:::f ^ �hd � : : :� !ab:::ecd:::h ^ �hf

�
where we have defined the connection one-forms by

�ab � �abc �
c

with respect to the coframe basis �a.
Now we write the twist two-forms �a as

�a = D�a = d�a + �ab ^ �b:
This gives the first structural equation. With respect to

another local coordinate system (with coordinates �x�) in C1
spanned by the basis �� = e�a�a, we see that

�a = �ea����[��]"
� ^ "�:

We shall again proceed to define the curvature tensor. For
a triad of arbitrary vectors u, v, w, we may define the follow-
ing relations with respect to the frame basis !a:

rurvw � ucrc �vbrbwa�!a
r[u;v]w � rbwa �ucrcvb � vcrcub�

where ru and rv denote covariant differentiation in the di-
rection of u and of v, respectively.

Then we have

(rurv �rvru)w = �Rabcdwbucvd!a :
Note that
�Rabcd = @c�abd � @d�abc + �ebd�

a
ec � �ebc�

a
ed +

+ 2�e[cd]�
a
be = Rabcd + 2�e[cd]�

a
be

are the components of the extended curvature tensor �R.
Define the curvature two-forms by

�Rab � 1
2
�Rabcd �c ^ �d:

The second structural equation is then

�Rab = d�ab + �ac ^ �cb :

The third structural equation is given by

d2�ab = d�Rab � �Rac ^ �cb + �ac ^ �Rcb = D�Rab
which is equivalent to the generalized Bianchi identities given
in the preceding section.

In fact the second and third structural equations above can
be directly verified using the properties of exterior differenti-
ation given in Section 1.2.

Now, as we have seen, the covariant exterior derivative
of arbitrary one-forms �a is given by D�a = d�a + �ab ^ �b.
Then

DD�a = d (D�a) + �ab ^D�b =

= d
�
d�a + �ab ^ �b�+ �ac ^ �d�c + �cd ^ �d� =

= d�ab ^ �b � �ab ^ �bc ^ �c =

= (d�ab + �ac ^ �cb) ^ �b
where we have used the fact that the D�a are two-forms.
Therefore, from the second structural equation, we have

DD�a = �Rab ^ �b:
Finally, taking �a = �a, we give the fourth structural

equation as
DD�a = D�a = �Rab ^ �b

or,
d�a = �Rab ^ �b � �ab ^ � b:

Remarkably, this is equivalent to the first generalized
Bianchi identity given in the preceding section.
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2.5 The geometry of distant parallelism

Let us now consider a special situation in which our n-
dimensional manifold C1 is embedded isometrically in a flat
n-dimensional (pseudo-)Euclidean space En (with coordina-
tes v �m) spanned by the constant basis e �m whose dual is de-
noted by s�n. This embedding allows us to globally cover the
manifold C1 in the sense that its geometric structure can be
parametrized by the Euclidean basis e �m satisfying

� �m�n = he �m; e�ni = diag (�1;�1; : : : ;�1) :

It is important to note that this situation is different from
the one presented in Section 1.1, in which case we may refer
the structural equations of C1 to the locally flat tangent space
Tx(M). The results of the latter situation (i.e., the localized
structural equations) should not always be regarded as glob-
ally valid since the tangent space Tx(M), though ubiquitous
in the sense that it can be defined everywhere (at any point) in
C1, cannot cover the whole structure of the curved manifold
C1 without changing orientation from point to point.

One can construct geometries with special connections
that will give rise to what we call geometries with paral-
lelism. Among others, the geometry of distant parallelism
is a famous case. Indeed, A. Einstein adopted this geometry
in one of his attempts to geometrize physics, and especially
to unify gravity and electromagnetism [5]. In its application
to physical situations, the resulting field equations of a uni-
fied field theory based on distant parallelism, for instance, are
quite remarkable in that the so-called energy-momentum ten-
sor appears to be geometrized via the twist tensor. We will
therefore dedicate this section to a brief presentation of the
geometry of distant parallelism in the language of Riemann-
Cartan geometry.

In this geometry, it is possible to orient vectors such that
their directions remain invariant after being displaced from a
point to some distant point in the manifold. This situation is
made possible by the vanishing of the curvature tensor, which
is given by the integrability condition

Rdabc = ed�m (@b@c � @c@b) e �m
a = 0

where the connection is now given by

�cab = ec�m@be
�m
a

where e �m
a = @a� �m and ea�m = @ �mxa.

However, while the curvature tensor vanishes, one still
has the twist tensor given by

�a[bc] =
1
2
ea�m
�
@c e �m

b � @b e �m
c
�

with the e �m
a acting as the components of a spin “potential”.

Thus the twist can now be considered as the primary geomet-
ric object in the manifold C1p endowed with distant paral-
lelism.

Also, in general, the Riemann-Christoffel curvature ten-
sor is non-vanishing as

Bdabc = r̂cKd
ab � r̂bKd

ac +Ke
abK

d
ec �Ke

acK
d
eb :

Let us now consider some facts. Taking the covariant
derivative of the tetrad e �m

a with respect to the Christoffel sym-
bols alone, we have

r̂b e �m
a = @b e �m

a � e �m
d �d

ab = e �m
c K

c
ab

i.e.,
Kc
ab = ec�mr̂b e �m

a = �e �m
a r̂b ec�m :

In the above sense, the components of the contwist tensor
give the so-called Ricci rotation coefficients. Then from

r̂cr̂b e �m
a = e �m

d

�r̂cKd
ab +Ke

abK
d
ec

�
it is elementary to show that�r̂cr̂b � r̂br̂c� e �m

a = e �m
d B

d
abc :

Likewise, we have

~rb e �m
a = @b e �m

a � e �m
d Kd

ab = e �m
c �c

ab

�c
ab = ec�m ~rb e �m

a = �e �m
a

~rb ec�m
where now ~r denotes covariant differentiation with respect
to the Ricci rotation coefficients alone. Then from

~rc ~rbe �m
a = e �m

d

�
~rc�d

ab + �e
ab�

d
ec

�
we get�

~rc ~rb � ~rb ~rc
�
e �m
a = �e �m

d
�
Bdabc � 2�d

ae�
e
[bc]�

��e
abK

d
ec + �e

acK
d
eb �Ke

ab�
d
ec +Ke

ac�
d
eb
�
:

In this situation, one sees, with respect to the coframe ba-
sis �a = ea�ms �m, that

d�a = ��ab ^ �b � T a
i.e.,

T a = �a[bc]�
b ^ �c:

Thus the twist two-forms of this geometry are now given
by T a (instead of �a of the preceding section). We then real-
ize that

D�a = 0 :
Next, we see that

d2�a = dT a = �d�ab ^ �b + �ab ^ d�b =

= � (d�ab + �ac ^ �cb) ^ �b =

= ��Rab ^ �b:
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But, as always, d2�a = 0, and therefore we have

�Rab ^ �b = 0

Note that in this case, �Rab , 0 (in general) as

�Rabcd = 2�e[cd]�
a
be

will not vanish in general. We therefore see immediately that

�Rabcd + �Racdb + �Radbc = 0

giving the integrability condition

�e[cd]�
a
be + �e[db]�

a
ce + �e[bc]�

a
de = 0 :

Meanwhile, the condition

dT a = 0

gives the integrability condition

@d�a[bc] + @b�a[cd] + @c�a[db] = 0 :

Contracting, we find

@c�c[ab] = 0 :

It is a curious fact that the last two relations somehow
remind us of the algebraic structure of the components of the
electromagnetic field tensor in physics.

Finally, from the contraction of the components Bdabc of
the Riemann-Christoffel curvature tensor (the Ricci tensor),
one defines the regular Einstein tensor by

Ĝab � Bab � 1
2
gabB � kEab

where k is a physical coupling constant and Eab are the com-
ponents of the so-called energy-momentum tensor. We there-
fore see that

Eab =
1
k

�
Kc
adK

d
cb � r̂cKc

ab + 2r̂b�c[ac] � 2Kc
ab�

d
[cd]

��
� 1

2k
gab
�

4gcdr̂c�e[de] + 2gce�d[cd]�
f
[ef ] +KcdeKced

�
:

In addition, the following two conditions are satisfied:

E[ab] = 0 ;

r̂aEab = 0 :

We have now seen that, in this approach we have applied
here, the energy-momentum tensor (matter field) is fully ge-
ometrized. This way, gravity arises from twistal (spin) inter-
action (possibly, on the microscopic scales) and becomes an
emergent phenomenon rather than a fundamental one. This
seems rather speculative. However, it may have profound
consequences.

2.6 Spin frames

A spin frame is described by the anti-symmetric tensor
product


ik =
1
2
�
�i 
 �k � �k 
 �i� = �i ^ �k � 1

2
�
�i; �k

�
:

In general, then, for arbitrary vector field fields A and B,
we can form the commutator

[A;B] = A
B �B 
 A :
Introducing another vector field C, we have the so-called

Jacobi identity

[A; [B;C]] + [B; [C;A]] + [C; [A;B]] = 0 :

With respect to the local coordinate basis elements
Ei = @i of the tangent space Tx(M), we see that, astonish-
ingly enough, the anti-symmetric product [A;B] is what de-
fines the Lie (exterior) derivative of B with respect to A:

LAB � [A;B] =
�
Ai@iBk �Bi@iAk� @

@Xk :

(Note that LAA= [A;A] = 0.) The terms in the round brack-
ets are just the components of our Lie derivative which can
be used to define a diffeomorphism invariant (i.e., by taking
Ai = �i where � represents the displacement field in a neigh-
borhood of coordinate points).

Furthermore, for a vector fieldU and a tensor field T , both
arbitrary, we have (in component notation) the following:

LUT
ij:::s
kl:::r = @mT

ij:::s
kl:::rU

m + T ij:::sml:::r@kU
m +

+ T ij:::skm:::r@lU
m + : : :+ T ij:::skl:::m@rU

m � Tmj:::skl:::r @mU
i�

� T im:::skl:::r @mU
j � : : :� T ij:::mkl:::r @mU

s

It is not immediately apparent whether these transform as
components of a tensor field or not. However, with the help
of the twist tensor and the relation

@kU i = rkU i � �imkU
m = rkU i �

�
�ikm � 2�i[km]

�
Um

we can write

LUT
ij:::s
kl:::r = rmT ij:::skl:::rU

m + T ij:::sml:::rrkUm +

+ T ij:::skm:::rrlUm + : : :+ T ij:::skl:::mrrUm � Tmj:::skl:::r rmU i�
� T im:::skl::::r rmU j � : : :� T ij:::mkl:::r rmUs +

+ 2�i[mp]T
mj:::s
kl:::r U

p + 2�j[mp]T
im:::s
kl:::r U

p + : : :

+ 2�s[mp]T
ij:::m
kl:::r U

p � 2�m[kp]T
ij::s
ml:::rU

p�
� 2�m[lp]T

ij:::s
km:::rU

p � : : :� 2�m[rp]T
ij:::s
kl:::mU

p:

Hence, noting that the components of the twist tensor,
namely, �i[kl], indeed transform as components of a tensor
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field, it is seen that the LUT
ij:::s
kl:::r do transform as components

of a tensor field. Apparently, the beautiful property of the
Lie derivative (applied to an arbitrary tensor field) is that it is
connection-independent even in a curved manifold.

If we now apply the commutator to the frame basis of the
base manifold C1 itself, we see that (for simplicity, we again
refer to the coordinate basis of the tangent space Tx(M))

[!a; !b] =
�
@aXi @i@bXk � @bXi @i@aXk� @

@Xk :

Again, writing the tetrads simply as eia=@aXi; eai =@ixa,
we have

[!a; !b] =
�
@aekb � @beka� @

@Xk

i.e.,
[!a; !b] = �2�c[ab]!c :

Therefore, in the present formalism, the components of
the twist tensor are by themselves proportional to the so-
called structure constants 	c

ab of our rotation group:

	c
ab = �2�c[ab] = �eci �@a eib � @b eia� :

As before, here the tetrad represents a spin potential.
Also note that

	d
ab	

e
dc + 	d

bc	
e
da + 	d

ca	
e
db = 0 :

We therefore observe that, as a consequence of the present
formalism of differential geometry, spin fields (objects of an-
holonomicity) in the manifold C1 are generated directly by
the twist tensor.

3 The new semi-symmetric unified field theory of the
classical fields of gravity and electromagnetism

In this part, we develop our semi-symmetric unified field the-
ory on the foundations of Riemann-Cartan geometry present-
ed in Sections 1.1–1.6. We shall concentrate on physical
events in the four-dimensional space-time manifold S4 with
the usual Lorentzian signature. As we will see, the choice
of a semi-symmetric Cartan twist will lead to a set of phys-
ically meaningful field equations from which we will obtain
not only the generally covariant Lorentz equation of motion
of a charged particle, but also its generalizations.

We are mainly concerned with the dynamical equations
governing a cluster of individual particles and their multiple
field interactions and also the possibility of defining geomet-
rically and phenomenologically conserved currents in the the-
ory. We will therefore not assume dimensional (i.e., struc-
tural) homogeneity with regard to the particles. Classically,
a point-like (i.e., structureless) particle which characterizes
a particular physical field is only a mere idealization which
is not subject, e.g., to any possible dilation when interacting
with other particles or fields. Still within the classical context,
we relax this condition by assigning a structural configuration

to each individual particle. Therefore, the characteristic prop-
erties of the individual particles allow us to describe a parti-
cle as a field in a physically meaningful sense. In this sense,
the particle-field duality is abolished on the phenomenolog-
ical level as well. In particular, this condition automatically
takes into account both the rotational and reflectional symme-
tries of individual particles which have been developed sep-
arately. As such, without having to necessarily resort to par-
ticle isotropy, the symmetry group in our theory is a general
one, i.e., it includes all rotations about all possible axes and
reflections in any plane in the space-time manifold S4.

The presence of the semi-symmetric twist causes any lo-
cal (hyper)surface in the space-time manifold S4 to be non-
orientable in general. As a result, the trajectories of individ-
ual particles generally depend on the twisted path they trace
in S4. It is important to note that this twist is the genera-
tor of the so-called microspin, e.g., in the simplest case, a
spinning particle is simply a point-rotation in the sense of the
so-called Cosserat continuum theory [10]. As usual, the semi-
symmetric twist tensor enters the curvature tensor as an inte-
gral part via the general (semi-symmetric) connection. This
way, all classical physical fields, not just the gravitational
field, are intrinsic to the space-time geometry.

3.1 A semi-symmetric connection based on a semi-
simple (transitive) rotation group

Let us now work in four space-time dimensions (since this
number of dimensions is most relevant to physics). For a
semi-simple (transitive) rotation group, we can show that

[!a; !b] = �
 2abcd 'c �d
where 2abcd=

p
det (g) �abcd are the components of the com-

pletely anti-symmetric four-dimensional Levi-Civita permu-
tation tensor and ' is a vector field normal to a three-
dimensional space (hypersurface)

P
(t) defined as the time

section ct=x0 = const. (where c denotes the speed of light in
vacuum) of S4 with local coordinates zA. It satisfies 'a'a =
= 
= � 1 and is given by

'a =
1
6

 2abcd2ABC �bA�cB�dC

where
�aA � @Axa; �Aa � @azA;
�bA�

A
a = �ba � 
'a'b;

�aA�
B
a = �BA :

More specifically,

2ABC 'd =2abcd �aA�bB�cC
from which we find

2abcd =2ABC �Aa �Bb �Cc 'd + �abcd
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where

�abcd = 
 (2ebcd 'a + 2aecd 'b + 2abed 'c)'e:
Noting that �abcd'd = 0, we can define a completely anti-

symmetric, three-index, four-dimensional “permutation” ten-
sor by

�abc �2abcd 'd = 
 2ABC �Aa �Bb �Cc :
Obviously, the hypersurface

P
(t) can be thought of as

representing the position of a material body at any time t. As
such, it acts as a boundary of the so-called world-tube of a
family of world-lines covering an arbitrary four-dimensional
region in S4.

Meanwhile, in the most general four-dimensional case,
the twist tensor can be decomposed according to

�c[ab] =
1
3

�
�cb �d[ad] � �ca�d[bd]

�
+

+
1
6
2cabd2dpqr gqsgrt�p[st] + gcdQdab ;

Qabc +Qbca +Qcab = 0 ;

Qaab = Qaba = 0 :

In our special case, the twist tensor becomes completely
anti-symmetric (in its three indices) as

�c[ab] = �1
2

 gce 2abed 'd

from which we can write

'a = �1
3
2abcd �b[cd]

where, as usual, �b[cd] = gbe�e[cd]. Therefore, at this point,
the full connection is given by (with the Christoffel symbols
written explicitly)

�cab =
1
2
gcd (@bgda � @d gab + @agbd)� 1

2

 2cabd 'd:

We shall call this special connection “semi-symmetric”.
This gives the following simple conditions:

�c(ab) = �c
ab =

1
2
gcd (@bgda � @dgab + @agbd) ;

Kc
ab = �c[ab] = �1

2

 2cabd 'd;

�b[ab] = 0 ;

�bab = �bba = @a
�

ln
p

det (g)
�
:

Furthermore, we can extract a projective metric tensor $
from the twist (via the structure constants) as follows:

$ab = gab � 
'a'b = 2�c[ad]�
d
[cb]:

In three dimensions, the above relation gives the so-called
Cartan metric.

Finally, we are especially interested in how the existence
of twist affects a coordinate frame spanned by the basis !a
and its dual �b in a geometry endowed with distant paral-
lelism. Taking the four-dimensional curl of the coframe basis
�b, we see that

[r; �a] = 2d�a = 2T a

= �
 2 �m�n�p�q (@ �mea�n)'�pe�q

where r= �brb = s �m @ �m and 2abcd = 1p
det(g)

�abcd. From

the metricity condition of the tetrad (with respect to the basis
of En), namely,rbe �m

a = 0, we have

@b e �m
a = �cab e

�m
c ;

@�ne �m
a = ��n�p eb�p@b e

�m
a = e �m

c �cab e
�nb:

It is also worthwhile to note that from an equivalent met-
ricity condition, namely,raeb�m = 0, one finds

@�n ea�m = ��abc e
b
�m e

c
�n :

Thus we find

[r; �a] = �
 2bcde �a[bc]'d !e :

In other words,

T a = d�a = �1
2

 2bcde �a[bc]'d !e :

For the frame basis, we have

[r; !a] = �
 2bcde �a[bc]'d !e :

At this point it becomes clear that the presence of twist
in S4 rotates the frame and coframe bases themselves. The
basics presented here constitute the reality of the so-called
spinning frames.

3.2 Construction of the semi-symmetric field equations

In the preceding section, we have introduced the semi-
symmetric connection

�cab =
1
2
gcd (@b gda � @d gab + @a gbd)� 1

2

 2cabd 'd

based on the semi-simple rotation group

[!a; !b] = �
 2abcd 'c �d:
Now we are in a position to construct a classical uni-

fied field theory of gravity and electromagnetism based on
this connection. We shall then call the resulting field equa-
tions semi-symmetric, hence the name semi-symmetric uni-
fied field theory. (Often the terms “symmetric” and “asym-
metric” refer to the metric rather than the connection.)
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Using the results we have given in Section 1.3, we see
that the curvature tensor built from our semi-symmetric con-
nection is given by

Rdabc = Bdabc � 1
2


�2dace r̂b'e� 2dabe r̂c'e�+

+
3
2


�
geb �defacg � gec �defabg

�
'f 'g:

As before, the generalized Ricci tensor is then given by
the contraction Rab =Rcacb, i.e.,

Rab = Bab � 1
2

(gab � 
'a'b)� 1
2

 2cdab r̂c'd :

Then we see that its symmetric and anti-symmetric parts
are given by

R(ab) = Bab � 1
2

(gab � 
'a'b)
R[ab] = �1

2

 2cdab Fcd

where
Fab =

1
2

(@a'b � @b'a)
are the components of the intrinsic spin tensor of the first kind
in our unified field theory. Note that we have used the fact that
r̂a'b�r̂b'a = @a'b� @b'a.

Note that if
'a = 
 �a0

then the twist tensor becomes covariantly constant throughout
the space-time manifold, i.e.,

rd �c[ab] = r̂d �c[ab] = 0 :

This special case may indeed be anticipated as in the pre-
sent theory, the two fundamental geometric objects are the
metric and twist tensors.

Otherwise, in general let us define a vector-valued gravo-
electromagnetic potential A via

'a = �Aa

where

� =
�



AaAa

�1=2
:

Letting 2 =�2
, we then have

Rab = Bab � 1
2

(gab� 2 AaAb)� 1
2

 2cdab �� �F +Hcd

�
where

�Fab =
1
2

(@aAb � @bAa) ;
Hab = �1

2
(Aa@b�� Ab@a�) :

We may call �Fab the components of the intrinsic spin ten-
sor of the second kind. The components of the anti-symmetric
field equation then take the form

R[ab] = �1
2

 2cdab �� �Fcd +Hcd

�
:

Using the fact that

@aFbc + @bFca + @cFab = 0

we obtain
raR[ab] = 0 :

The dual of the anti-symmetric part of the generalized
Ricci tensor is then given by

~R[ab] =
1
2
2abcd R[cd] = �1

2
(@a'b � @b'a)

i.e.,
~R[ab] = � �� �Fab +Hab

�
:

We therefore see that

@a ~R[bc] + @b ~R[ca] + @c ~R[ab] = 0 :

At this point, the components of the intrinsic spin tensor
take the following form:

�Fab = � 1
2�

�2abcd R[cd] + 2Hab
�
:

The generalized Einstein field equation is then given by

Gab = Rab � 1
2
gabR = kTab

where k is a coupling constant, R=Raa =B� 3
2 (in our ge-

ometrized units) is the generalized Ricci scalar, and Tab are
the components of the energy-momentum tensor of the cou-
pled matter and spin fields. Taking the covariant divergence
of the generalized Einstein tensor with the help of the rela-
tions

raRab = r̂aRab � �b[ac]R
[ac] ;

raR = @aR = @aB ;

Fab'b = �1
2
'b r̂b 'a ;

we obtain
raGab = r̂aGab � 
F ba'a:

On the other hand, using the integrability condition

2abcd r̂br̂c'd =2abcd @b@c'd = 0

we have

r̂aRab = r̂aBab � 1
2

 r̂a �'a'b� :
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Therefore

raGab = r̂a Ĝab +
1
2


�
'b r̂a 'a + 'a r̂a 'b

�� 
F ba'a
where, as before, Ĝab =Bab� 1

2 gabB. But as r̂a Ĝab = 0,
we are left with

raGab =
1
2


�
'b r̂a 'a + 'a r̂a 'b

�� 
F ba'a:
We may notice that in general the above divergence does

not vanish.
We shall now seek a possible formal correspondence be-

tween our present theory and both general relativistic gravit-
omagnetism and Maxwellian electrodynamics. We shall first
assume that particles do not necessarily have point-like struc-
ture. Now let the rest (inertial) mass of a particle and the
speed of light in vacuum (again) be denoted by m and c, re-
spectively. Also, let � represent the scalar gravoelectromag-
netic potential and let ga and Ba denote the components of
the gravitational spin potential and the electromagnetic four-
potential, respectively. We now make the following ansatz:

� = const = � �g
2mc2

;

Aa = @a�+ vg0a = @a�+ ga +Ba ;

where v is a constant and

�g = (1 +m)n+ 2 (1 + s�) e

is the generalized gravoelectromagnetic charge. Here n is the
structure constant (i.e., a volumetric number) which is differ-
ent from zero for structured particles, s� is the spin constant,
and e is the electric charge (or, more generally, the electro-
magnetic charge).

Now let the gravitational vorticity tensor be given by

!ab =
1
2

(@a gb � @b ga)
which vanishes in spherically symmetric (i.e., centrally sym-
metric) situations. Next, the electromagnetic field tensor is
given as usual by

fab = @bBa � @aBb :
The components of the intrinsic spin tensor can now be

written as
�Fab = !ab � 1

2
fab :

As a further consequence, we have Hab = 0 and therefore

�Fab = � 1
2�
2abcd R[cd] =

mc2

�g
2cdab R[cd] :

The electromagnetic field tensor in our unified field the-
ory is therefore given by

fab = �2
�
mc2

�g
2cdab R[cd] � !ab

�
:

Here we see that when the gravitational spin is present,
the electromagnetic field does interact with the gravitational
field. Otherwise, in the presence of a centrally symmetric
gravitational field we have

fab = �2mc2

�g
2cdab R[cd]

and there is no physical interaction between gravity and elec-
tromagnetism.

3.3 Equations of motion

Now let us take the unit vector field ' to represent the unit
velocity vector field, i.e.,

'a = ua =
dxa

ds
where ds is the (infinitesimal) world-line satisfying

1 = gab
dxa

ds
dxb

ds
:

This selection defines a general material object in our
unified field theory as a hypersurface

P
(t) whose world-

velocity u is normal to it. Indeed, we will soon see some
profound physical consequences.

Invoking this condition, we immediately obtain the fol-
lowing equation of motion:

raGab =
1
2


�
ubra ua +

Dub

Ds

�
� 
 F ba 'a

where we have used the following relations:

�c(ab) = �c
ab

�c[ab] = �1
2

 2cabd ud

Dua

Ds
= ubrb ua =

dua

ds
+ �a(bc)u

buc =

=
dua

ds
+ �a

bcu
buc = ub r̂a ua :

What happens now if we insist on guaranteeing the con-
servation of matter and spin? Letting

raGab = 0

and inserting the value of �, we obtain the equation of motion

Dua

Ds
= � �g

mc2
�F abu

b � uarb ub
i.e., the generalized Lorentz equation of motion

Dua

Ds
=

�g
2mc2

(fab � 2!ab)u
b � uarbub:

From the above equation of motion we may derive special
equations of motion such as those in the following cases:

58 I. Suhendro. A New Semi-Symmetric Unified Field Theory of the Classical Fields of Gravity and Electromagnetism



October, 2007 PROGRESS IN PHYSICS Volume 4

1. For an electrically charged, non-spinning, incompress-
ible, structureless (point-like) particle moving in a stat-
ic, centrally symmetric gravitational field, we have
m, 0, e, 0, s� = 0, n= 0,raua = 0, fab , 0, !ab = 0.
Therefore its equation of motion is given by

Dua

Ds
=

e
mc2

fabu
b

which is just the standard, relativistically covariant Lo-
rentz equation of motion.

2. For an electrically charged, spinning, incompressible,
structureless particle moving in a non-static, spinning
gravitational field, we have m, 0, e, 0, s� , 0, n= 0,
raua = 0, fab , 0, !ab , 0. Therefore its equation of
motion is given by

Dua

Ds
=

(1 + s�)
mc2

e (fab � 2!ab)u
b:

3. For a neutral, non-spinning, incompressible, structure-
less particle moving in a static, centrally symmetric
gravitational field, we havem, 0, e= 0, s� = 0, n= 0,
raua = 0, fab = 0, !ab = 0. Therefore its equation of
motion is given by the usual geodesic equation of mo-
tion Dua

Ds
= 0 :

In general, this result does not hold for arbitrary incom-
pressible bodies with structure.

4. For a neutral, static, non-spinning, compressible body
moving in a static, non-spinning, centrally symmetric
gravitational field, we havem, 0, e= 0, s� = 0, n, 0,
raua , 0, fab = 0, !ab = 0. Therefore its equation of
motion is given by

Dua

Ds
= �uarb ub

which holds for non-Newtonian fluids in classical hy-
drodynamics.

5. For an electrically charged, non-spinning, compress-
ible body moving in a static, non-spinning, centrally
symmetric gravitational field, we have m, 0, e, 0,
s� = 0, n, 0, raua , 0, fab , 0, !ab = 0. Therefore
its equation of motion is given by

Dua

Ds
=
n (1 +m)
mc2

efabu
b � uarbub

which holds for a variety of classical Maxwellian flu-
ids.

6. For a neutral, spinning, compressible body moving in a
non-static, spinning gravitational field, the parametric
(structural) condition is given by m, 0, e= 0, s�;, 0,
n, 0, raua , 0, fab = 0, !ab , 0. Therefore its equa-
tion of motion is given by

Dua

Ds
= �n (1 +m)

mc2
!abu

b � uarbub:

Note that the exact equation of motion for massless, neu-
tral particles cannot be directly extracted from the general
form of our equation of motion.

We now proceed to give the most general form of the
equation of motion in our unified field theory. Using the gen-
eral identity (see Section 1.3)

raGab = 2gab�c[da]R
d
c + �a[cd]R

cdb
a

we see that

raGab = 

�
2bcda R[cd] +

1
2
2cdea Rcdeb

�
ua:

After some algebra, we can show that the above relation
can also be written in the form

Dua

Ds
= � 2abcd R[bc]ud:

Note that the above general equation of motion is true
whether the covariant divergence of the generalized Einstein
tensor vanishes or not. Otherwise, let �a =rbGba represent
the components of the non-conservative vector of the coupled
matter and spin fields. Our equation of motion can then be
written alternatively as

Dua

Ds
=

1
2
2bcde Rbcdaue � 
�a:

Let us once again consider the conservative case, in which
�a = 0. We now have the relation

1
2
2bcde Rbcdaue = � 2�g

mc2
�F abu

b � uarbub
i.e.,

1
2

�
2cdhb Rcdha +

4�g
mc2

�F ab

�
ub = �uarbub:

For a structureless spinning particle, we are left with�
2cdhb Rcdha +

4 (1 + s�)
mc2

e �F ab

�
ub = 0

for which the general solution may read

�Fab = e
mc2

4 (1 + s�)
�2acde R cde

b � 2bcde R cde
a
�

+ Sab

where Sab , 0 are the components of a generally asymmetric
tensor satisfying

Sabub = � e mc2

4 (1 + s�)
2acde R cde

b ub:

In the case of a centrally symmetric gravitational field,
this condition should again allow us to determine the electro-
magnetic field tensor from the curvature tensor alone.

Now, with the help of the decomposition

Rdabc = Cdabc +
1
2
�
�dbRac+gacR

d
b��dcRab�gabRdc�+

+
1
6
�
�dc gab � �db gac�R
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we obtain the relation

2bcde Rbcda =2bcde
�
Cbcda +

1
2

�
gacR[bd] � gabR[cd]

��
:

However, it can be shown that the last two terms in the
above relation cancel each other, since

2bcde gacR[bd] =2bcde gabR[cd] = �
 gac (@euc � @cue)
therefore we are left with the simple relation

2bcde Rbcda =2bcde Cbcda:
If the space-time under consideration is conformally flat

(i.e., Cdabc = 0), we obtain the following integrability condi-
tion for the curvature tensor:

2bcde Rbcda = 0 :

It is easy to show that this is generally true if the compo-
nents of the curvature tensor are of the form

Rabcd =
1
12

(gac gbd � gad gbc)B + Pabcd

where
Pabcd = " (gac gbd � gad gbc) �Frs �F rs

with � being a constant of proportionality. In this case, the
generalized Ricci tensor is completely symmetric, i.e.,

R(ab) =
1
4
gab
�
B + 12 " �Frs �F rs

��
R[ab] = 0 :

We also have

R = B + 12 " �Fab �F ab

such that the variation �S= 0 of the action integral

S =
& p

det(g)R d4x =

=
& p

det(g)
�
B + 12 " �Fab �F ab

�
d4x

where dV =
p

det(g)dx0dx1dx2dx3 =
p

det(g)d4x defines
the elementary four-dimensional volume, gives us a set of
generalized Einstein-Maxwell equations. Note that in this
special situation, the expression for the curvature scalar is
true irrespective of whether the Ricci scalar B is constant
or not. Furthermore, this gives a generalized Einstein space
endowed with a generally non-vanishing spin density. Elec-
tromagnetism, in this case, appears to be inseparable from
the gravitational vorticity and therefore becomes an emer-
gent phenomenon. Also, the motion then becomes purely
geodesic:

dua

ds
+ �a

bcu
buc = 0 ;

�Fabub = 0 :

3.4 The conserved gravoelectromagnetic currents of
the theory

Interestingly, we can obtain more than one type of conserved
gravoelectromagnetic current from the intrinsic spin tensor of
the present theory.

We have seen in Section 2.2 that the intrinsic spin tensor
in the present theory is given by

�Fab =
mc2

�g
2cdab R[cd] :

We may note that bja � brb �F ba = 0

which is a covariant “source-free condition” in its own right.
Now, we shall be particularly interested in obtaining the

conservation law for the gravoelectromagnetic current in the
most general sense.

Define the absolute (i.e., global) gravoelectromagnetic
current via the total covariant derivative as follows:

ja � rb �F ba =
mc2

�g
2abcd rdRbc :

Now, with the help of the relation

rc �Fab+ra �Fbc+rb �Fca=�2
�
�d[ab] �Fcd+�d[bc] �Fad+�d[ca]

�Fbd
�

we see that

ja = �6mc2

�g
gce�abcdR[be]ud:

Simplifying, we have

ja =
6mc2

�g
R[ab]ub :

At this moment, we have nothing definitive to say about
gravoelectromagnetic charge confinement. We cannot there-
fore speak of a globally admissible gravoelectromagnetic cur-
rent density yet. However, we can show that our current is
indeed conserved. As a start, it is straightforward to see that
we have the relative conservation law

r̂aja = 0 :

Again, this is not the most desired conservation law as we
are looking for the most generally covariant one.

Now, with the help of the relations

2abcd rcFab = � 2abcd ��e[ac]Feb + �e[bc]Fae
�

�a[bc] = �1
2

 2abcd ud

we obtain
raR[ab] = �2F abua :
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Therefore
ubraR[ab] = 0 :

Using this result together with the fact that

R[ab]raub = �1
2

 2abcd FabFcd = 0

we see that

raja =
6mc2

�g

�
ubraR[ab] +R[ab]raub

�
= 0

i.e., our gravoelectromagnetic current is conserved in a fully
covariant manner.

Let us now consider a region in our space-time mani-
fold in which the gravoelectromagnetic current vanishes. We
have, from the boundary condition ja = 0, the governing
equation

R[ab]ub = 0

which is equivalent to the following integrability condition:

2abcd ua (@cud � @duc) = 0 :

In three dimensions, if in general curlu, 0, this gives the
familiar integrability condition

u � curlu = 0

where the dot represents three-dimensional scalar product.
We are now in a position to define the phenomenologi-

cal gravoelectromagnetic current density which shall finally
allow us to define gravoelectromagnetic charge confinement.
However, in order to avoid having extraneous sources, we do
not in general expect such confinement to hold globally. From
our present perspective, what we need is a relative (i.e., local)
charge confinement which can be expressed solely in geomet-
ric terms.

Therefore we first define the spin tensor density (of
weight +2) as

�fab � det (g) �F ab =
mc2

�g
p

det (g) "abcdR[cd] :

The phenomenological (i.e., relative) gravoelectromag-
netic current density is given here by

�ja = @b �fab =
mc2

�g

�
@b
p

det (g)
�
"abcdR[cd]

i.e.,
�ja =

mc2

2�g
"abcdgrs (@b grs)R[cd] :

Meanwhile, using the identity

@a gbc = �gbrgcs@a grs
we see that

(@a grs) (@b grs) = (@a grs) (@b grs) :

Using this result and imposing continuity on the metric

tensor, we finally see that

@a �ja =
mc2

2�g
"abcd�

�
�

1
2
grsgpq (@agrs) (@bgpq)� (@agrs) (@bgrs)

�
R[cd] = 0

which is the desired local conservation law. In addition, it is
easy to show that

r̂a �ja = 0 :

Unlike the geometric current represented by ja, the phe-
nomenological current density given by �ja corresponds di-
rectly to the hydrodynamical analogue of a gravoelectromag-
netic current density if we set

�ja = det (g) �ua

which defines charge confinement in our gravoelectrodynam-
ics. Combining this relation with the previously given equiv-
alent expression for ja, we obtain

� =
mc2

2�g
2abcd ua grs (@b grs) R[cd]

i.e.,
� =

mc2

�g
2abcd ua�hhbR[cd]

for the gravoelectromagnetic charge density. Note that this is
a pseudo-scalar.

At this point, it becomes clear that the gravoelectromag-
netic charge density is generated by the properties of the curv-
ed space-time itself, i.e., the non-unimodular character of the
space-time geometry, for which

p
det(g) = 1 and �hhb , 0,

and the twist (intrinsic spin) of space-time which in general
causes material points (whose characteristics are given by �g)
to rotate on their own axes such that in a finite region in the
space-time manifold, an “individual” energy density emerges.
Therefore, in general, a material body is simply a collection
of individual material points confined to interact gravoelec-
trodynamically with each other in a finite region in our curved
space-time. More particularly, this can happen in the absence
of either the electromagnetic field or the gravitational vor-
ticity, but not in the absence of both fields. To put it more
simply, it requires both local curvature and twist to generate
a material body out of an energy field.

4 Final remarks

At this point, we may note that we have not considered the
conditions for the balance of spin (intrinsic angular momen-
tum) in detail. This may be done, in a straightforward man-
ner, by simply expressing the anti-symmetric part of the gen-
eralized Ricci tensor in terms of the so-called spin density
tensor as well as the couple stress tensor. This can then be
used to develop a system of equations governing the balance
of energy-momentum in our theory. Therefore, we also need
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to obtain a formal representation for the energy-momentum
tensor in terms of the four-momentum vector. This way, we
obtain a set of constitutive equations which characterize the
theory.

This work has simply been founded on the feeling that it
could be physically correct as a unified description of physi-
cal phenomena due to its manifest simplicity. Perhaps there
remains nothing more beyond the simple appreciation of that
possibility. It is valid for a large class of particles and (space-
time) continua in which the coordinate points themselves are
allowed to rotate and translate. Since the particles are directly
related to the coordinate points, they are but intrinsic objects
in the space-time manifold, just as the fields are.

It remains, therefore, to consider a few physically mean-
ingful circumstances in greater detail for the purpose of find-
ing particular solutions to the semi-symmetric field equations
of our theory.
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3. Cartan E. Formes différentielles. Hermann, Paris, 1967.

4. Greub W., Halperin S. and Vanstone R. Connections, curvature
and cohomology. Vol. I. Academic Press, New York, 1972.

5. Einstein A. Zür enheitlichen Feldtheorie. Prussian Academy,
Berlin, 1929.

6. Weyl H. Gravitation and electricity. Sitz. Berichte d. Preuss.
Akad d. Wissenschaften, 1918.

7. Hehl F. W., von der Heyde P., Kerlick G. D. and Nester
J. M. General relativity with spin and twist: foundations and
prospects. Rev. Mod. Phys., 1976, v. 48, 393–416.

8. Kibble T. W. B. Lorentz invariance and the gravitational field.
J. Math. Phys., 1961, v. 2, 212–221.

9. Sciama D. W. On the analogy between charge and spin in gen-
eral relativity. In: Recent Developments in General Relativity,
Pergamon Press, Oxford, 1962, 415–439.

10. Forest S. Mechanics of Cosserat media — an introduction.
Ecole des Mines de Paris, Paris, 2005.

62 I. Suhendro. A New Semi-Symmetric Unified Field Theory of the Classical Fields of Gravity and Electromagnetism


