
October, 2007 PROGRESS IN PHYSICS Volume 4

On the “Size” of Einstein’s Spherically Symmetric Universe

Stephen J. Crothers
Queensland, Australia

E-mail: thenarmis@yahoo.com

It is alleged by the Standard Cosmological Model that Einstein’s Universe is finite but
unbounded. Although this is a longstanding and widespread allegation, it is nonetheless
incorrect. It is also alleged by this Model that the Universe is expanding and that it
began with a Big Bang. These are also longstanding and widespread claims that are
demonstrably false. The FRW models for an expanding, finite, unbounded Universe are
inconsistent with General Relativity and are therefore invalid.

1 Historical basis

Non-static homogeneous models were first investigated theo-
retically by Friedmann in 1922. The concept of the Big Bang
began with Lemaı̂tre, in 1927, who subsequently asserted that
the Universe, according to General Relativity, came into ex-
istence from a “primaeval atom”.

Following Friedmann, the work of Robertson and
Walker resulted in the FRW line-element,

ds2 = dt2 �R2(t)
�

dr2

1� kr2 + r2 �d�2 + sin2� d'2�� ;
from which is obtained the so-called “Friedmann equation”,

_R2 + k =
8�G

3
�R2;

where � is the macroscopic proper density of the Universe and
k a constant. Applying the continuity condition T�� ;� = 0,
to the stress tensor T�� of a perfect fluid

T�� = (�+ p)u�u� � pg�� ;
where p is the pressure and u� the covariant world velocity
of the fluid particles, the equation of continuity becomes

R _�+ 3 _R(�+ p) = 0 :

With the ad hoc assumption thatR(0) = 0, the Friedmann
equation is routinely written as

_R2 + k =
A2

R
;

where A is a constant. The so-called “Friedmann models”
are:

(1) k = 0 — the flat model,
(2) k = 1 — the closed model,
(3) k = �1 — the open model,

wherein t = 0 is claimed to mark the beginning of the Uni-
verse and R(0) = 0 the cosmological singularity.

Big Bang and expansion now dominate thinking in con-
temporary cosmology. However, it is nonetheless easily prov-

ed that such cosmological models, insofar as they relate to
the FRW line-element, with or without embellishments such
as “inflation”, are in fact inconsistent with the mathematical
structure of the line-elements from which they are alleged,
and are therefore false.

2 Spherically symmetric metric manifolds

A 3-D spherically symmetric metric manifold has, in the
spherical-polar coordinates, the following form ([1, 2]),

ds2 = B(Rc)dR
2
c +R2

c(d�
2 + sin2� d'2) ; (1)

where B(Rc) and Rc = Rc(r) are a priori unknown analytic
functions of the variable r of the simple line element

ds2 = dr2 + r2(d�2 + sin2� d'2) ; (2)

0 6 r 61 :

Line elements (1) and (2) have precisely the same fun-
damental geometric form and so the geometric relations be-
tween the components of the metric tensor are exactly the
same in each line element. The quantity Rc appearing in (1)
is not the geodesic radial distance associated with the mani-
fold it describes. It is in fact the radius of curvature, in that
it determines the Gaussian curvature G = 1=R2

c (see [1, 2]).
The geodesic radial distance distance, Rp, from an arbitrary
point in the manifold described by (1) is an intrinsic geomet-
ric property of the line element, and is given by

Rp =
Z p

B(Rc) dRc + C =
Z p

B(Rc)
dRc
dr

dr + C ;

where C is a constant of integration to be determined ([2]).
Therefore, (1) can be written as

ds2 = dR2
p +R2

c(d�
2 + sin2� d'2) ;

where
dRp =

p
B(Rc) dRc ;

and
0 6 Rp <1 ;
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with the possibility of the line element being singular (unde-
fined) at Rp = 0, since B(Rc) and Rc = Rc(r) are a pri-
ori unknown analytic functions of the variable r. In the case
of (2),

Rc(r) � r; dRp � dr; B(Rc(r)) � 1 ;

from which it follows that Rc � Rp � r in the case of (2).
Thus Rc � Rp is not general, and only occurs in the special
case of (2), which describes an Efcleethean� space.

The volume V of (1), and therefore of (2), is

V =
Z Rp

0
R2
c dRp

Z �

0
sin � d�

Z 2�

0
d' =

= 4�
Z Rc(r)

Rc(0)
R2
c(r)

p
B(Rc(r)) dRc(r) =

= 4�
Z r

0
R2
c(r)

p
B(Rc(r))

dRc(r)
dr

dr ;

although, in the general case (1), owing to the a priori un-
known functions B(Rc(r)) and Rc(r), the line element (1)
may be undefined at Rp(Rc(0)) = Rp(r = 0) = 0, which is
the location of the centre of spherical symmetry of the man-
ifold of (1) at an arbitrary point in the manifold. Also, since
Rc(r) is a priori unknown, the value of Rc(0) is unknown
and so it cannot be assumed that Rc(0) = 0. In the special
case of (2), both B(Rc(r)) and Rc(r) are known.

Similarly, the surface area S of (1), and hence of (2), is
given by the general expression,

S = R2
c(r)

Z �

0
sin � d�

Z 2�

0
d' = 4�R2

c(r) :

This might not ever be zero, since, once again, Rc(r) is an a
priori unknown function and so Rc(0) might not be zero. It
all depends an the explicit form for Rc(r), if it can be deter-
mined in a given situation, and on associated boundary con-
ditions. References [1, 2] herein describe the mathematics in
more detail.

3 The “radius” of Einstein’s universe

Since a geometry is entirely determined by the form of its
line element [3], everything must be determined from it. One
cannot, as is usually done, merely foist assumptions upon it.
The intrinsic geometry of the line element and the consequent
geometrical relations between the components of the metric
tensor determine all.

Consider the usual non-static cosmological line element

ds2 = dt2 � eg(t)�
1+k

4 �r2
�2 �d�r2+�r2(d�2+ sin2� d'2)

�
; (3)

wherein it is usually simply assumed that 0 6 �r <1 [3–6].
�For the geometry due to Efcleethees, usually and abominably rendered

as Euclid.

However, the range on �r must be determined, not assumed. It
is easily proved that the foregoing usual assumption is patent-
ly false.

Once again note that in (3) the quantity �r is not a radial
geodesic distance. In fact, it is not even a radius of curvature
on (3). It is merely a parameter for the radius of curvature
and the proper radius, both of which are well-defined by the
form of the line element (describing a spherically symmetric
metric manifold). The radius of curvature, Rc, for (3), is

Rc = e
1
2 g(t)

�r
1 + k

4 �r2
: (4)

The proper radius for (3) is given by

Rp = e
1
2 g(t)

Z
d�r

1 + k
4 �r2

=

=
2e 1

2 g(t)p
k

 
arctan

p
k

2
�r + n�

!
; n = 0; 1; 2; : : :

(5)

Since Rp > 0 by definition, Rp = 0 is satisfied when �r=
= 0 =n. So �r= 0 is the lower bound on �r. The upper bound
on �r must now be ascertained from the line element and
boundary conditions.

It is noted that the spatial component of (4) has a maxi-
mum of 1p

k
for any time t, when �r= 2p

k
. Thus, as �r ! 1,

the spatial component ofRc runs from 0 (at �r= 0) to the max-
imum 1p

k
(at �r= 2p

k
), then back to zero, since

lim
�r!1

�r
1 + k

4 �r2
= 0: (6)

Transform (3) by setting

R = R(�r) =
�r

1 + k
4 �r2

; (7)

which carries (3) into

ds2 = dt2�eg(t)
�

dR2

1� kR2 +R2(d�2 + sin2� d'2)
�
: (8)

The quantity R appearing in (8) is not a radial
geodesic distance. It is only a factor in a radius of curva-
ture in that it determines the Gaussian curvatureG = 1

eg(t)R2 .
The radius of curvature of (8) is

Rc = e
1
2 g(t)R; (9)

and the proper radius of Einstein’s universe is, by (8),

Rp = e
1
2 g(t)

Z
dRp

1� kR2
=

=
e 1

2 g(t)p
k

�
arcsin

p
kR+ 2m�

�
; m = 0; 1; 2; : : :

(10)

Now according to (7), the minimum value of R is
R (�r= 0) = 0. Also, according to (7), the maximum value
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of R is R(�r= 2p
k
) = 1p

k
. R= 1p

k
makes (8) singular, al-

though (3) is not singular at �r= 2p
k

. Since by (7), �r !1)
R(�r)! 0, then if 06 �r <1 on (3) it follows that the proper
radius of Einstein’s universe is, according to (8),

Rp = e
1
2 g(t)

Z 0

0

dRp
1� kR2

� 0 : (11)

Therefore, 06 �r <1 on (3) is false. Furthermore, since
the proper radius of Einstein’s universe cannot be zero and
cannot depend upon a set of coordinates (it must be an in-
variant), expressions (5) and (10) must agree. Similarly, the
radius of curvature of Einstein’s universe must be an invariant
(independent of a set of coordinates), so expressions (4) and
(9) must also agree, in which case 06R< 1p

k
and 06�r< 2p

k
.

Then by (5), the proper radius of Einstein’s universe is

Rp = lim
�! 2p

k

e
1
2 g(t)

Z �

0

d�r
1 + k

4 �r2
=

=
2e 1

2 g(t)p
k

h��
4

+ n�
��m�i ; n;m = 0; 1; 2; : : :

n > m:

Setting p = n�m gives for the proper radius of Einstein’s
universe,

Rp =
2e 1

2 g(t)p
k

��
4

+ p�
�
; p = 0; 1; 2; : : : (12)

Now by (10), the proper radius of Einstein’s universe is

Rp = lim
�! 1p

k

e
1
2 g(t)

Z �

0

dRp
1� kR2

=

=
e 1

2 g(t)p
k

h��
2

+ 2n�
��m�i ; n;m = 0; 1; 2; : : :

2n > m:

Setting q = 2n�m gives the proper radius of Einstein’s
universe as,

Rp =
e 1

2 g(t)p
k

��
2

+ q�
�
; q = 0; 1; 2; : : : (13)

Expressions (12) and (13) must be equal for all values
of p and q. This can only occur if g(t) is infinite for all
values of t. Thus, the proper radius of Einstein’s universe
is infinite.

By (4), (7) and (9), the invariant radius of curvature of
Einstein’s universe is,

Rc

�
2p
k

�
=
e 1

2 g(t)p
k
; (14)

which is infinite by virtue of g(t) =1 8 t.

4 The “volume” of Einstein’s universe

The volume of Einstein’s universe is, according to (3),

V = e
3
2 g(t)

Z 2p
k

0

�r2d�r�
1 + k

4 �r2
�3 Z �

0
sin �d�

Z 2�

0
d' =

=
4�e 3

2 g(t)

k 3
2

��
4

+ p�
�
; p = 0; 1; 2; : : :

(15)

The volume of Einstein’s universe is, according to (8),

V = e
3
2 g(t)

Z 1p
k

0

R2dRp
1� kR2

Z �

0
sin �d�

Z 2�

0
d' =

= e
3
2 g(t)

2�
k 3

2

h�
2

+ (2n�m)�
i
; n;m = 0; 1; 2; : : :

2n > m;

and setting q = 2n�m this becomes,

V =
2�e 3

2 g(t)

k 3
2

��
2

+ q�
�
; q = 0; 1; 2; : : : (16)

Since the volume of Einstein’s universe must be an invari-
ant, expressions (15) and (16) must be equal for all values of
p and q. Equality can only occur if g(t) is infinite for all val-
ues of the time t. Thus the volume of Einstein’s universe is
infinite.

In the usual treatment (8) is transformed by setting

R =
1p
k

sin�; (17)

to get

ds2 = dt2 � eg(t)

k
�
d�2 + sin2�(d�2 + sin2� d'2)

�
; (18)

where it is usually asserted, without any proof (see e.g. [3, 4,
5, 6]), that

0 6 � 6 � (or 0 6 � 6 2�); (19)

and whereby (18) is not singular. However, according to (7),
(11), (12), and (13), � can only take the values

2n� 6 � <
�
2

+ 2n�; n = 0; 1; 2; : : :

so that the radius of curvature of Einstein’s universe is,
by (18),

Rc =
e 1

2 g(t) sin�p
k

which must be evaluated for � = �
2 + 2n�, n = 0; 1; 2; : : :,

giving

Rc =
e 1

2 g(t)p
k

as the radius of curvature of Einstein’s universe, in concor-
dance with (4), (7), and (9). The proper radius of Einstein’s
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universe is given by

Rp =
e 1

2 g(t)p
k

Z �
2 +2n�

2n�
d� =

e 1
2 g(t)p
k
�
2
; (20)

and since the proper radius of Einstein’s universe is an invari-
ant, (20) must equal (12) and (13). Expression (20) is consis-
tent with (12) and (13) only if g(t) is infinite for all values of
the time t, and so Einstein’s universe is infinite.

According to (18), the volume of Einstein’s universe is,

V =
e 3

2 g(t)

k 3
2

Z �
2 +2n�

2n�
sin2� d�

Z �

0
sin �d�

Z 2�

0
d' =

=
�2e 3

2 g(t)

k 3
2

�
2
:

(21)

Since this volume must be an invariant, expression (21)
must give the same value as expressions (15) and (16). This
can only occur for (21) if g(t) is infinite for all values of the
time t, and so Einstein’s universe has an infinite volume.

5 The “area” of Einstein’s universe

Using (3), the invariant surface area of Einstein’s universe is

S = R2
c

Z �

0
sin �d�

Z 2�

0
d' = 4�R2

c

which must be evaluated for Rc(�r = 2p
k
), according to (4),

and so

S =
4�eg(t)

k
:

By (8) the invariant surface area is

S = eg(t)R2
Z �

0
sin �d�

Z 2�

0
d' = 4�R2eg(t);

which must, according to (7), be evaluated for
R(�r = 2p

k
) = 1p

k
, to give

S =
4�eg(t)

k
:

By (18) the invariant surface area is

S =
eg(t)

k
sin2�

Z �

0
sin �d�

Z 2�

0
d' =

4�eg(t)

k
sin2� ;

and this, according to (17), must be evaluated for �=
=
��

2 + 2n�
�
, n = 0; 1; 2; : : :, which gives

S =
4�eg(t)

k
:

Thus the invariant surface area of Einstein’s universe is
infinite for all values of the time t, since g(t) is infinite for all
values of t.

In similar fashion the invariant great “circumference”,
C = 2�Rc, of Einstein’s universe is infinite at any particular
time, given by

C =
2�e 1

2 g(t)p
k

:

6 Generalisation of the line element

Line elements (3), (8) and (18) can be generalised in the fol-
lowing way. In (3), replace �r by j�r � �r0j to get

ds2 = dt2 � eg(t)�
1 + k

4 j�r � �r0j2�2 �
� �d�r2 + j�r � �r0j2(d�2 + sin2� d'2)

�
;

(22)

where �r0 2 < is entirely arbitrary. Line element (22) is
defined on

0 6 j�r � �r0j < 2p
k
8 �r0 ;

i.e. on
�r0 � 2p

k
< �r <

2p
k

+ �r0 8 �r0 : (23)

This corresponds to 06Rc< 1p
k

irrespective of the value
of �r0 , and amplifies the fact that �r is merely a parameter. In-
deed, (4) is generalised to

Rc = Rc(�r) =
j�r � �r0j

1 + k
4 j�r � �r0j2 ;

where (23) applies. Note that �r can approach �r0 from above
or below. Thus, there is nothing special about �r0 = 0. If
�r0 = 0 and �r > 0, then (3) is recovered as a special case, still
subject of course to the range 0 6 �r < 2p

k
.

Expression (7) is generalised thus,

jR�R0j = j�r � �r0j
1 + k

4 j�r � �r0j2 ;
where R0 is an entirely arbitrary real number, and so (8) be-
comes

ds2 = dt2 � eg(t)�
�
�

dR2

1� kjR�R0j2 + jR�R0j2(d�2 + sin2� d'2)
�
;

(24)

where
R0 � 1p

k
< R <

1p
k

+R0 8 R0 : (25)

Note that R can approach R0 from above or below. There
is nothing special about R0 = 0. If R0 = 0 and R > 0,
then (8) is recovered as a special case, subject of course to
the range 0 6 R < 1p

k
.

Similarly, (18) is generalised, according to (24), by set-
ting

jR�R0j = 1p
k

sin j�� �0j ;

72 S. J. Crothers. On the “Size” of Einstein’s Universe



October, 2007 PROGRESS IN PHYSICS Volume 4

where �0 is an entirely arbitrary real number, and

2n� 6 j�� �0j < �
2

+ 2n�; n = 0; 1; 2; : : :

8 �0 2 <:
Note that � can approach �0 from above or below. There is
nothing special about �0 = 0. If �0 = 0 and � > 0, then (18)
is recovered as a special case, subject of course to the range
2n� 6 � < �

2 + 2n�, n = 0; 1; 2; : : :
The corresponding expressions for the great circumfer-

ence, the surface area, and the volume are easily obtained in
like fashion.

7 Conclusions

Einstein’s universe has an infinite proper radius, an infinite
radius of curvature, an infinite surface area and an infinite
volume at any time. Thus, in relation to the Friedmann-
Robertson-Walker line-element and its variations considered
herein, the concept of the Big Bang cosmology is invalid.
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