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In this work the mathematical methods of General Relativity are used to answer the
following questions: if a microwave background originates from the Earth, what would
be its density and associated dipole measured at the altitude of a U2 aeroplane (25 km),
the COBE satellite (900 km), and the 2nd Lagrange point (1.5 million km, the posi-
tion of the WMAP and PLANCK satellites)? The first problem is solved via Einstein’s
equations for the electromagnetic field of the Earth. The second problem is solved using
the geodesic equations for light-like particles (photons) which are mediators for electro-
magnetic radiation. We have determined that a microwave background that originates at
the Earth (the Earth microwave background) decreases with altitude so that the density
of the energy of such a background at the altitude of the COBE orbit (900 km) is 0.68
times less than that at the altitude of a U2 aeroplane. The density of the energy of the
background at the L2 point is only �10�7 of the value detected by a U2 aeroplane or at
the COBE orbit. The dipole anisotropy of the Earth microwave background, due to the
rapid motion of the Earth relative to the source of another field which isn’t connected
to the Earth but is located in depths of the cosmos, doesn’t depend on altitute from the
surface of the Earth. Such a dipole will be the same irrespective of the position at which
measurements are taken.

1 Problem statement: the space of the Earth and the
Earth microwave background

Here we solve two theoretical problems related to the mea-
surement of the microwave background:

(1) What is the density of the Earth microwave background
which one will observe at the COBE orbit and at the L2
point?

(2) What is the anisotropy of the Earth microwave back-
ground, due to a drift of the whole space of the Earth,
which one will observe in the COBE orbit and at the
L2 point?

In a sense, the anisotropy we are treating is the sum of the
dipole and all other multipoles.

According to General Relativity, the result of an observa-
tion depends on the velocity of the observer relative to the ob-
ject he observes, and also on the properties of the local space
(such as the space rotation, gravitation, deformation, curva-
ture, etc.) where the observation is made. Therefore, we are
looking for a theoretical solution of the aforementioned prob-
lems using the mathematical methods, which are specific to
General Relativity.

We solve the first problem using Einstein’s equations, ma-
nifest in the energy and momentum of a field of distributed
matter (an electromagnetic field, for instance), depending on
the distance from the field’s source, and also on the properties
of the space e.g. the space rotation, gravitation, etc.

We solve the second problem using the geodesic equa-
tions for light-like particles (photons, which are mediators for
microwave radiation, and for any electromagnetic radiation in
general). The geodesic equations give a possibility of finding

a preferred direction (anisotropy) in such a field due to the
presence of a linear drift of the whole reference space of the
observer relative to the source of another field, which isn’t
connected to the observer’s space, but moves with respect to
it [1, 2]. In the present case, such a linear drift is due to the
motion of the observer, in common with the microwave back-
ground’s source, the Earth, relative to the source of another
field such as the common field of a group of galaxies or that
of the Universe as a whole (a weak microwave background).
Then we compare our theoretical result from General Relativ-
ity to the experimental data for the microwave background,
obtained in space near the Earth by the COBE satellite, lo-
cated in a 900 km orbit, and also by the WMAP satellite, lo-
cated at the L2 point, as far as 1.5 million km from the Earth.

In order to obtain a theoretical result expressed in quan-
tities measurable in practice, we use the mathematical appa-
ratus of chronometric invariants — the projections of four-
dimensional quantities on the time line and spatial section of
a real observer, which are the physical observable quatities in
General Relativity [3, 4].

First, we introduce a space where all the mesurements are
taken. Both locations, of the COBE satellite and the L2 point,
are connected, by gravitation, to the gravitational field of the
Earth, so both observers are connected to the space of the
Earth, whose properties (e.g. rotation, gravitation, deforma-
tion, etc.) affect the observations. We therefore consider dif-
ferent locations of an observer in the space of the Earth.

We construct the metric for the Earth’s space, which is the
superposition of the metric of a non-holonomic (self-rotating)
space and a gravitating space.

The space of the Earth rotates with a frequency of one
revolution per day. By the theory of non-holonomic spaces
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[5], a non-holonomic space (space-time) has inclinations be-
tween the times lines and the three-dimensional spatial sec-
tion, cosines of which are represent by the three-dimensional
linear velocity of the rotation. The metric of a non-holonomic
space (space-time), which rotation is given by a linear veloc-
ity v at a given point, is described at this point by

ds2 = c2dt2+
2v
c
cdt (dx+dy+dz)�dx2�dy2�dz2: (1)

For clarity of further calculation, we change to the cylin-
drical coordinates r, ', z, where

x = r cos' ; y = r sin' ; z = z ; (2)

so the metric (1) takes the form

ds2 = c2dt2 +
2v
c

(cos'+ sin') cdtdr+

+
2vr
c

(cos'� sin') cdtd'+
2v
c
cdtdz�

� dr2 � r2d'2 � dz2:

(3)

The metric of a space, where gravitation is due to a body
of a mass M , in quasi-Newtonian approximation and in the
cylindrical coordinates, is

ds2 =
�

1� 2GM
c2r

�
c2dt2 �

�
1 +

2GM
c2r

�
dr2�

� r2d'2 � dz2;
(4)

where G is the Newtonian gravitational constant. We con-
sider a satellite which rotates in the metric (4) around the
gravitating body. Both observers, located on board the COBE
satellite (a 900 km orbit) and the WMAP satellite (the L2
point) respectively, are in a state of weightlessness, which is
described by the weightlessness condition

GM
r

= !2r2; (5)

where r is the radius of the satellite’s orbit, while ! is the
angular velocity of the rotation of the observer (in common
with the satellite on which he is located) around the gravitat-
ing body. So the metric (4) is

ds2 =
�

1� 2GM
c2r

� !2r2

c2

�
c2dt2 � 2!r2

c
cdtd'�

�
�

1 +
2GM
c2r

�
dr2 � r2d'2 � dz2;

(6)

where GM
r = !2r2. The weightless state is common to all

planets and their satellites. So the Earth’s space from the
point of an observer located on board the COBE satellite and
the WMAP satellite is in the weightless state.

We use the cylindrical coordinates, because such an ob-
server is located on board of a satellite which orbits the Earth.

The metric of the Earth’s space at the point of location of
such an observer is a superposition of the metric with rotation
(3) and the metric with a gravitational field (6), which is

ds2 =
�

1� 2GM
c2r

� !2r2

c2

�
c2dt2 +

+
2v (cos'+ sin')

c
cdtdr+

+
2r [v (cos'� sin')� !r]

c
cdtd'+

2v
c
cdtdz�

�
�

1 +
2GM
c2r

�
dr2 � r2d'2 � dz2:

(7)

Because the Earth, in common with its space, moves rel-
ative to the source of the weak microwave background, this
drift should also be taken into account in the metric. This is
accomplished by choosing this motion to be in the z-direction
and then applying Lorentz’ transformations to the z coordi-
nate and time t

~t =
t+ vz

c2q
1� v2

c2

; ~z =
z + vtq
1� v2

c2

; (8)

so the resulting metric of the space of the Earth, where such
a drift is taken into account, is

ds2 =
�

1� 2GM
c2r

� !2r2

c2
+

2vv
c2

�
c2dt2 +

+
2v (cos'+ sin')

c
cdtdr+

+
2r [v (cos'� sin')� !r]

c
cdtd'+

2v
c
cdtdz�

�
�

1+
2GM
c2r

�
dr2+

2vv (cos'+ sin')
c2

drdz�r2d'2 +

+
2rv [v (cos'� sin')�!r]

c2
d'dz�

�
1� 2vv

c2

�
dz2;

(9)

where we mean 1� v2

c2 ' 1, because the Earth’s velocity v
relative to the source of the weak microwave background is
small to the velocity of light c.

This is the metric of the real physical space of the Earth,
where we process our observations.

Now we apply this metric to the reference frames of two
observers, one of which is located on board the COBE satel-
lite, in an orbit with an altitude of 900 km, while the second
observer is located on board of WMAP satellite, at the L2
point, which is far as 1.5 million km from the Earth.

2 The density of the Earth microwave background at
the COBE orbit and at the L2 point

Here we answer the question: what is the density of the Earth
microwave background that one will observe at the COBE
orbit and at the L2 point? Using the main observable char-
acteristics of the space of the Earth, pervaded by an electro-
magnetic field (the microwave background, for instance), we
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derive Einstein’s equations for the space. Einstein’s equations
describe the energy and momentum of distributed matter, in
this case the microwave background. So we will know pre-
cisely, through Einstein’s equations, the density of the energy
of the Earth microwave background which will be observed
at the COBE orbit and at the L2 point.

2.1 The Earth space. Its physical properties manifest in
observations of the Earth microwave background

In this particular problem we are interested in the distribu-
tion of the Earth microwave background with altitude, giving
the difference in the measurement of the background at the
COBE orbit and at the L2 point. We therefore neglect terms
like vv

c2 , which take into account the drift of the whole space
of the Earth. The quantity 2GM

c2r has its maximum numerical
value �10�9 at the Earth’s surface, and the value substatially
decreases with altitude. We therefore neglect the last terms
in g11 =� �1+ 2GM

c2r

�
, but we do not neglect the last terms in

g00 =1� 2GM
c2r � !2r2

c2 , because they will be multiplied by c2
later. In such a case the Earth space metric takes the simpli-
fied form

ds2 =
�

1� 2GM
c2r

� !2r2

c2

�
c2dt2 +

+
2v (cos'+ sin')

c
cdtdr+

+
2r [v (cos'� sin')� !r]

c
cdtd'+

2v
c
cdtdz�

� dr2 � r2d'2 � dz2:

(10)

We will use this metric to determine the density of the en-
ergy of the Earth microwave background at the COBE orbit
and at the L2 point. We are loooking for the main observ-
able characteristics of the space. By the theory of physical
observable quantities in General Relativity [3, 4], the observ-
able properties of a space are determined within the fixed
three-dimensional spatial section of an observer. Those are
the quatities invariant within the spatial section (the so-called
chronometric invariants): the gravitational potential w, the
linear velocity of the space rotation vi, the gravitational iner-
tial force Fi, the angular velocity of the space rotation Aik,
the three-dimensional metric tensor hik, the space deforma-
tionDik, the three-dimensional Christoffel symbols �i

kn, and
the three-dimensional curvature Ciklj . These characteristics
can be calculated through the components of the fundamen-
tal metric tensor g�� , which can be easily obtained from a
formula for the space metric (see [3, 4] for the details).

The substantially non-zero components of the character-
istics of the space of the Earth, calculated though the compo-
nents g�� of the metric (10), are

w =
GM
r

+
!2r2

2
; (11)

v1 = �v (cos'+ sin')

v2 = �r [v (cos'� sin')� !r]
v3 = �v

9>=>; (12)

F1 = (cos'+ sin') vt + !2r � GM
r2

F2 = r (cos'� sin') vt ; F3 = vt

9=; (13)

A12 = !r +
1
2
�
(cos'+ sin') v'�

� r (cos'� sin') vr
�

A23 = �v'
2
; A13 = �vr

2

9>>>>=>>>>; (14)

h11 = h33 = 1 ; h22 = r2; h11 = h33 = 1

h22 =
1
r2 ; h = r2;

@ ln
p
h

@r
=

1
r

�1
22 = �r ; �2

12 =
1
r

9>>>>=>>>>; (15)

while all components of the tensor of the space deformation
Dik and the space curvature Ciklj are zero, in the framework
of our assumptions. Here we assume the plane in cylindri-
cal coordinates wherein the space of the Earth rotates: we
assume that v doesn’t depend from the z-coordinate. This as-
sumption is due to the fact that the Earth, in common with
its space, moves relative to a weak (cosmic) microwave back-
ground in the direction of its anisotropy. The quantities vr,
v', and vt denote the partial derivatives of v by the respective
coordinates and time.

2.2 Einstein’s equations in the Earth space. The density
of the energy of distributed matter

Einstein’s general covariant equations

R�� � 1
2
g��R = ��T�� + �g�� ; (16)

in a reference frame of the fixed spatial section of an ob-
server, are represented by their projections onto the observer’s
time line and spatial section [3, 4]. We omit the �-term, the
space deformation Dik, and the space curvature, Ciklj , be-
cause they are zero in the framework of our problem. In
such a case the projected Einstein equations, according to
Zelmanov [3, 4], are

@F i

@xi
+
@ ln
p
h

@xi
F i � AikAik = ��

2
�
�c2 + U

�
@Aik

@xk
+
@ ln
p
h

@xk
Aik = ��J i

2AijA
�j
k� +

1
2

�
@Fi
@xk

+
@Fk
@xi
� 2�m

ikFm
�

=

=
�
2
�
�c2hik + 2Uik � Uhik�

9>>>>>>>>>>>>=>>>>>>>>>>>>;
(17)
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�2!2 � 2! (cos'+ sin')
v'
r

+ 2! (cos'� sin') vr + (cos'+ sin') vtr + (cos'� sin')
vt'
r

+

+
�
cos2 '� sin2 '

� vrv'
r

+ cos' sin'
�
v2
r � v2

'

r2

�
� v2

r � v2
'

r2 = ���c2
1
2

h
(cos'+ sin')

�vr
r

+
v''
r2

�
+ (cos'� sin')

�v'
r2 � vr'

r

�i
= ��J1

1
2

h
(cos'+ sin')

�v'
r3 � vr'

r2

�� (cos'� sin')
vrr
r

i
= ��J2

1
2

�
vrr +

vr
r

+
v''
r2

�
= ��J3

v2
r +

v2
'

2r3 + 3!2 +
2GM
r3 + 2! (cos'+ sin')

v'
r
� 2! (cos'� sin') vr + (cos'+ sin') vtr �

� �cos2 '� sin2 '
� vrv'

r
� cos' sin'

�
v2
r � v2

'

r2

�
= �U11

r2

2

hvrv'
r2 + (cos'+ sin')

vt'
r2 + (cos'� sin')

vtr
r

i
= �U12

1
2

"
2!
v'
r

+ vtr + (cos'+ sin')
v2
'

r2 � (cos'� sin')
vrv'
r

#
= �U13

2!2 + 2! (cos'+ sin')
v'
r
� 2! (cos'� sin') vr + (cos'� sin')

vt'
r

+
v2
r
2

+
v2
'

r2 �
� �cos2 '� sin2 '

� vrv'
r

+ cos' sin'
�v2

'

r2 � v2
r

�
= �

U22

r2

r2

2

�
vt'
r2 � 2!

vr
r
� (cos'+ sin')

vrv'
r2 + (cos'� sin')

v2
r
r

�
= �U23

v2
r
2

+
v2
'

2r2 = �U33

9>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>=>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>;

(18)

where �= T00
g00

, J i = c T i0pg00
, and U ik = c2T ik are the respec-

tive projections of the energy-momentum tensor T�� of dis-
tributed matter on the right side of the equations: � is the
density of the energy of the matter field, J i is the density of
the field momentum, and U ik is the stress-tensor of the field.

We substitute here the formulae obtained for the space of
the Earth. In this deduction we take into account the weight-
lessness condition !2r2 = GM

r . (This is because we calcu-
late the equations for a satellite-bound observer.) We also
apply the condition �c2 =U , which is specific to any electro-
magnetic field; so we mean only an electromagnetic field dis-
tributed in the space. As a result, after some algebra, we ob-
tain the projected Einstein equations for the Earth space filled
with a background field of matter. The resulting Einstein
equations, the system of 10 equations with partial derivatives,
are given in formula (18).

(Obvious substitutions such as cos2'� sin2'= cos 2'
and cos' sin'= 1

2 sin 2' can be used herein.)
We are looking for a solution of the scalar Enstein equa-

tion, the first equation of the system (18). In other words, we

are looking for the density of the field’s energy, �, which orig-
inates in the Earth, expressed through the physical properties
of the space of the Earth (which decrease with distance from
the Earth as well).

As seen, the quantity � is expressed through the distribu-
tion function of the linear velocity of the space rotation v (see
the first equation of the system), which are unknown yet. A
great help to us is that fact that we have only an electromag-
netic field distributed in the space. This means that with use
of the condition �c2 =U we equalize �c2 and U taken from
the Einstein equations (18) so that we get an equation con-
taining the distribution functions of v without the properties
of matter (an electromagnetic field, in our case). With such
an equation, we find a specific correlation between the distri-
bution functions.

First we calculate is the trace of the stress-tensor of dis-
tributed matter

U = U11 +
U22

r2 + U33 (19)

which comes from the 5th, 8th, and 10th equations of the
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(cos'� sin')
�vtr'

r
� vt'
r2

�
+ ! (cos'+ sin')

�vr'
r
� v'
r2

�� ! (cos'� sin') vrr + 2vrvrr +
v'vr'
r2 +

� v
2
'

r3 + (cos'+ sin') vtrr � 1
2

cos 2'
�v'vrr

r
+
vrvr'
r
� vrv'

r2

�
+

1
2

sin 2'
�
v'vr'
r2 � v2

'

r3 � vrvrr
�

= 0

(cos'+ sin')
�vtr'
r2 � vt'

r3

�
+ (cos'� sin')

�vt''
r3 +

vtr
r2

�
+ ! (cos'+ sin')

�vr
r2 +

v''
r3

�
+

+! (cos'� sin')
�v'
r3 � vr'

r2

�
+
v'v''
r4 +

vrvr'
r2 +

1
2

cos 2'
�v2

'

r4 � v2
r
r2 � vrv''

r3 � v'vr'
r3

�
+

+
1
2

sin 2'
�

2vrv'
r3 +

v'v''
r4 � vrvr'

r2

�
= 0

9>>>>>>>>>>>>>>>>>>=>>>>>>>>>>>>>>>>>>;

(24)

Einstein equations (18). We obtain

�U = 4!2 + 4! (cos'+ sin')
v'
r
�

� 4! (cos'� sin') vr + 2v2
r +

2v2
'

r2 +

+ sin 2'
�v2

'

r2 � v2
r

�
� cos 2'

vrv'
r

+

+ (cos'+ sin') vtr + (cos'� sin')
vt'
r
:

(20)

Equalizing it to ��c2 of the first equation of the Einstein
equations (18), we obtain

2!2 + 2! (cos'+ sin')
v'
r
� 2! (cos'� sin') vr +

+ v2
r +

v2
'

r2 +
1
2

sin 2'
�v2

'

r2 � v2
r

�
� cos 2'

vrv'
r

+

+2 (cos'+ sin') vtr + 2 (cos'� sin')
vt'
r

= 0 :

(21)

Thus we have all physically observable components of
T�� expressed in only the physical observable properties of
the space. Substituting the components into the conservation
law for the common field of distributed matter in the space,
we look for the formulae of the distribution functions of the
space rotation velocity v.

The conservation law r� T�� = 0, expressed in terms of
the physical observed quantities�, is [3, 4]

�@�
@t

+D�+
1
c2
DijU ij +

+
�
�ri � 1

c2
Fi
�
J i � 1

c2
FiJ i = 0

�@Jk
@t

+ 2
�
Dk
i + A�ki�

�
J i +

+
�
�ri � 1

c2
Fi
�
U ik � �F k = 0

9>>>>>>>>>>=>>>>>>>>>>;
(22)

�The asterisk denotes the chronometrically invariant differential opera-
tors, e.g.

�@
@t

= 1pg00

@
@t

and
�@
@xi

= @
@xi

+ 1
c2
vi
�@
@t

; see [3, 4].

which, under the specific conditions of our problem, become

@J i

@xi
+
@ ln
p
h

@xi
J i = 0

@Jk

@t
+ 2A�ki� J i +

@U ik

@xi
+ �k

imU
im +

+
@ ln
p
h

@xi
U ik � �F k = 0

9>>>>>>>=>>>>>>>;
(23)

The first, a scalar equation of conservation, means
riJ i= 0, i.e. the flow of the common field of distributed
matter is conserved in the space of the Earth. The second, a
vector equation of conservation, after substituting the compo-
nents of J i and U ik from the Einstein equations (18), and also
Aik (14) and �i

kn (15), give the system (24) of two non-linear
differential equations with partial derivatives with respect to
v (while the third equation vanishes becoming the identity
“zero equals zero”).

The exact solution of the system, i.e. a function which
when substituted into the equations makes them identities, is

v = T (t) rei'; (25)

where i is the imaginary unit, while T is a function of time
(its dimension is sec�1).

Substituting the derivatives

vr = T ei' ; v' = ir T ei' ; vt = _T rei'

vt' = i _T rei'; vtr = T ei'

9=; (26)

into (21), we obtain, after transformations,

Tt (i+ 1) + !T (i� 1)� iT 2

2
+ !2 = 0 ; (27)

where _Tt = @T
@t . We obtain, for the real part of the equation

_T � !T + !2 = 0 ; (28)

which is a linear differential equation of the first order

_T + f(t)T = g(t) ; (29)
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whose exact solution is

T = e�F
�
T0 +

Z t

t0=0
g(t)eF dt

�
; (30)

F (t) =
Z
f(t)dt : (31)

Substituting f =�!, g=�!2 and integrating the result-
ing expression within the limits from t to t0 = 0, we obtain
the solution for the real part of the function T (t):

T (t) = e!t (T0 � !) + ! ; (32)

where T0 is the initial value of T .
The imaginary part of the (27) satisfies the differential

equation

Tt + !T � 1
2
T 2 = 0 ; (33)

which is Bernoulli’s equation

Tt + f T 2 + gT = 0 ; (34)

where f =� 1
2 and g=! are constant coefficients. Such a

Bernoulli equation has the solution

1
T

= E(t)
Z

fdt
E(t)

; E(t) = e
R
gdt : (35)

Integrating this expression, we obtain

T (t) =
2!

1 + Ce!t
; (36)

which is the imaginary part of T . Here C is a constant of
integration. Assuming the initial value t0 = 0, we obtain

C =
2!
T0
� 1 ; (37)

where T0 is the initial value of T . Because, by definition
v=T rei' (25), T has a dimension of sec�1, we consider T0
to be the initial frequency of the vibrations of the distributed
matter (background).

So we obtain the final formula for the imaginary part of
the solution for T :

T (t) =
2!T0

T0 + (2! � T0) e!t
: (38)

We therefore write the full solution for T as a complex
function, which is

T (t) = e!t (T0 � !) + ! + i
2!T0

(2! � T0) e!t + T0
: (39)

We see that the imaginary part of T is zero if T0 = 0.
Hence the imaginary part of T originates in the presence of
the initial non-zero value of T .

Assuming T0 = 0, we obtain: the full solution for T has
only the real solution

T = !
�
1� e!t� (40)

when T0 = 0. Substituting this solution into the expression for
�c2, i.e. the first equation of the system (18), and taking into
account the geometrization condition 21 we have obtained for
electromagnetic field, we obtain the real component of the
density of the energy, which is

�c2 =
3!
�

(! � T ) =
3!2

�
�
1� �1� e!t�� : (41)

This is the final formula for the observable density of
the energy W = �c2 of distributed matter in the space of the
Earth, where the matter is represented by an electromagnetic
field which originates in the Earth, with an additional compo-
nent due to the complete rotation of the Earth’s space.

2.3 Calculation of the density of the Earth microwave
background at the COBE orbit and at the L2 point

We simplify formula (41) according to the assumptions of our
problem. The quantity !=

p
GM�=R3, the frequency of the

rotation of the Earth space for an observer existing in the
weightless state, takes its maximum numerical value at the
equator of the Earth’s surface, where != 1.24�10�3 sec�1.
Obviously, the numerical value of ! decreases with altitude
above the surface of the Earth. Since ! is a small value, we
expand e!t into the series

e!t � 1 + !t+
1
2
!2t2 + : : : (42)

where we omit the higher order terms from consideration. As
a result, we obtain, for the density of the energy of distributed
matter (41) in the space of the Earth (we mean an electromag-
netic field originating in the Earth as above),

�c2 =
3!2

�
; (43)

where !=
p
GM�=R3. (In derivation of this formula we

neglected the orders of ! higher than !2.) It should be noted
that the quantity ! is derived from the weightless condition
in the space, depending on the mass of the Earth M�, and the
distance R from the centre of the Earth.

Because microwave radiation is related to an electromag-
netic field, our theoretical result (43) is applicable to a mi-
crowave background originating from the Earth.

Now, with formula (43), we calculate the ratio between
the density of the energy of the Earth microwave background
at the L2 point (R L2 = 1.5 million km) and at the COBE orbit
(R COBE = 6,370 + 900 = 7,270 km)

� L2

�COBE

=
R3

COBE

R3
L2

' 1.1�10�7: (44)
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At the altitude of a U2 aeroplane (25 km altitude, which
almost coincides with the location at the Earth’s surface
(within the framework of the precision of our calculation),
we have RU2 = 6,370 + 25 = 6,395 km. So, we obtain the ra-
tio between the density of the Earth microwave background at
the L2 point, at the COBE orbit, and that at the U2 altitude is

� L2

�U2

=
R3

U2

R3
L2

' 7.8�10�8;
�COBE

�U2

=
R3

U2

R3
COBE

' 0.68: (45)

We see, concerning a microwave background field which
originates in the Earth (the Earth microwave background),
that a measurement of the background by an absolute instru-
ment will give almost the same result at the position of a U2
aeroplane and the COBE satellite. However, at the L2 point
(as far as 1.5 million km from the Earth, the point of location
of the WMAP satellite and the planned PLANCK satellite),
PLANCK, with its ability to function as an absolute instru-
ment, should sense only �10�7 of the field registered either
by the U2 aeroplane or by the COBE satellite.

3 The anisotropy of the Earth microwave background
in the COBE orbit and at the L2 point

It is also important to understand what is the anisotropy of
the Earth microwave background due to a drift of the whole
space of the Earth which would one observe at the COBE
orbit and at the L2 point. We solve this problem by using
the equations of motion of free light-like particles (photons),
which are mediators transferring electromagnetic radiation,
including those in the microwave region. When treating the
photons which originate in the Earth’s field (the Earth mi-
crowave background, for instance), the equations of motion
should manifest an anisotropy in the directions of motion of
the photon due to the presence of a linear drift in the Earth’s
space as a whole, relative to the source of another field such
as the common field of a compact group of galaxies or that
of the Universe as a whole [1, 2] (a weak microwave back-
ground).

The equations of motion of free particles are the geodesic
equations.

A light-like free particle, e.g. a free photon, moves along
isotropic geodesic trajectories whose four-dimensional equa-
tions are [3, 4]

dK�

d�
+ ����K

� dx�

d�
= 0 ; (46)

whereK� = 

c
dx�
d� is the four-dimensional wave vector of the

photon (the vector satisfies the condition K�K� = 0), while

 is the proper cyclic frequency of the photon. The three-
dimensional observable interval equals the interval of observ-
able time d�= cd� along isotropic trajectories, so ds2 =
= c2d� 2� d�2 = 0. In terms of the physical observable quan-
tities, the isotropic geodesic equations are represented by

their projections on the time line and spatial section of an
observer [1, 2]

d

d�
� 

c2
Fi ci +



c2
Dik cick = 0 ;

d
d�
�

ci
�

+ 2

�
Di
k + A�ik�

�
ck�

�
F i + 
�i
knc

kcn = 0 ;

9>>>>=>>>>; (47)

where ci = dxi
d� is the three-dimensional vector of the observ-

able velocity of light (the square of ci satisfies ckck = c2 in
the fixed spatial section of the observer). The first of the equa-
tions (the scalar equation) represents the law of energy for the
particle, while the vectorial equation is the three-dimensional
equation of its motion.

We apply the isotropic geodesic equations to the space
metric (9), which includes a linear drift of the reference space
in the z-direction with a velocity v. Because the dipole-
fit velocity of the Earth, extracted from the experimentally
obtained anisotropy of the microwave background, is only
v = 365�18 km/sec, we neglect the relativistic square in the
metric (9) so that it is

ds2 =
�

1� 2GM
c2r

� !2r2

c2
+

2vv
c2

�
c2dt2 +

+
2v (cos'+ sin')

c
cdtdr+

+
2r [v (cos'� sin')� !r]

c
cdtd'+

2v
c
cdtdz�

�
�

1+
2GM
c2r

�
dr2+

2vv (cos'+ sin')
c2

drdz�r2d'2 +

+
2rv [v (cos'� sin')�!r]

c2
d'dz�

�
1� 2vv

c2

�
dz2;

(48)

We use the metric with the approximation specific to an
observer located on board the COBE satellite or the WMAP
satellite: the observer exists in the weightless state, so !2r2 =
= GM

r ; the linear velocity v of the Earth’s space rotation
doesn’t depend on the z-coordinate, the direction of the drift
of the whole space. We neglect the terms v2

c2 and also higher
order terms, but retain the term vv

c2 which takes into account
the drift of the whole space of the Earth: the value of v
is determined in the weightless state of the observer; it is
'7.9 km/sec close to the surface of the Earth, and hence we
have, near the surface, v

2

c2 � 7�10�10 and vv
c2 � 3�10�8. Both

values decrease with distance (altitude) from the Earth’s sur-
face, but the term vv

c2 remains two orders higher than v2

c2 . We
also neglect GMc2r which is �10�9 at the Earth’s surface.

Due to the fact that the terms vv
c2 are small corrections in

the metric (48), it is easy to show that the exact solution of
the conservation equations v=T (t)rei', obtained earlier in
the framework of such a metric without a drift of the whole
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space (10), satisfies the present metric (48) where the drift is
taken into account.

Using the solution for T (t) (40), and expanding e!t into
series e!t� 1 +!t+ : : :, we obtain

T = �!2t ; (49)
then

v = �!2trei': (50)

We assume ' to be small. We calculate the observable
characteristics of the Earth space where the drift of the whole
space is taken into account, i.e. the space of the metric (48).
Using the components of the fundamental metric tensor g��
taken from the metric (48), we obtain

v1 = !2trei' (cos'+ sin')

v2 = !r2 �!tei' (cos'� sin') + 1
�

v3 = !2rtei'

9>>=>>; (51)

F1 = �!2rei' (cos'+ sin') + !2vtei'

F2 = �!2r2ei' (cos'� sin')� i!2rvtei'

F3 = �!2rei'

9>>=>>; (52)

A12 = !r
�
1 +

!t
2

(1� i)
�

A23 =
i!2trei'

2
; A13 =

!2tei'

2

9>>=>>; (53)

h11 = 1 ; h13 =
!2vtr (cos'+ sin') ei'

c2

h22 = r2; h23 =
!r2v

�
!tei' (cos'� sin') +1

�
c2

h33 = 1� 2!2vtrei'

c2

h = r2
�

1 +
2!2vtrei'

c2

�
h11 = 1 ; h13 = �!2vtr (cos'+ sin') ei'

c2

h22 =
1
r2 ; h

23 = �!v
�
!tei' (cos'� sin') +1

�
c2

h33 = 1 +
2!2vtrei'

c2

9>>>>>>>>>>>>>>>>>>>>>>>>>=>>>>>>>>>>>>>>>>>>>>>>>>>;

(54)

Because the components h13 and h23 of the tensor hik de-
pend on the time coordinate t, we obtain two non-zero com-
ponents of the tensor of the space deformation Dik

D13 =
!2rv (cos'+ sin') ei'

2c2

D23 =
!2r2v (cos'� sin') ei'

2c2

D33 =
!2rvei'

c2

9>>>>>>>=>>>>>>>;
(55)

the scalar D = hikDik is

D =
!2rvei'

c2
: (56)

We now calculate the chronometric Christoffel symbols
of the second kind

�1
22 = �r ; �1

23 =
!2rvt (i� 1)

2c2
� !rv

c2

�1
33 =

!2vtei'

c2

�2
12 =

1
r
; �2

13 =
!2vt (1� i)

2c2r
+
!v
c2r

�2
33 =

i!2vtei'

c2r

�3
11 =

!2vt (cos'+ sin') ei'

c2

�3
12 =

!2rvt (i+ 1) e2i'

2c2
; �3

13 = �!2vtei'

c2

�3
22 =

i!2r2vt (cos'� sin') ei'

c2

�3
23 =

i!2rvtei'

c2

9>>>>>>>>>>>>>>>>>>>>>>>>>>>>>=>>>>>>>>>>>>>>>>>>>>>>>>>>>>>;

(57)

We use the above characteristics of the Earth’s space to
write the isotropic geodesic equations (47) in component
form. We neglect the terms proportional to 1

c2 in the equa-
tions. Besides, in the framework of our asumptions, the dif-
ferential with respect to proper time � , i.e.

d
d�

=
�@
@t

+ vi
�@
@xi

; (58)

can be removed with the regular partial derivative d
d� = @

@t .
(The starred derivatives become the regular derivatives, and
also the observable velocity of light ci doesn’t depend on the
z coordinate in our case where the whole space has a drift in
the z direction.)

The vectorial isotropic geodesic equations, written in
component notation, are

dc1

d�
+2
�
D1
k+A

�1
k�
�
ck�F 1+�1

22c
2c2 +

+ 2�1
23c

2c3 + �1
33c

3c3 = 0

dc2

d�
+2
�
D2
k+A

�2
k�
�
ck�F 2+2�2

12c
1c2 +

+ 2�2
13c

1c3 + �2
33c

3c3 = 0

dc3

d�
+2
�
D3
k+A

�3
k�
�
ck�F 3+�3

11c
1c1+2�3

12c
1c2 +

+ 2�3
13c

1c3 + �3
22c

2c2 + 2�3
23c

2c3 = 0

9>>>>>>>>>>>>>>=>>>>>>>>>>>>>>;
(59)

and after substituting the observable characteristics of the
space, take the form (60–62), where dot denotes differenti-
ation with respect to time.
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�r � 2!r
�
1 +

!t (1� i)
2

�
_'� !2ei'

�
t� vr (cos'+ sin')

c2

�
_z + !2�r (cos'+ sin')� vt

�
ei'�

� r _'2 +
2!rv
c2

�
!t(i� 1)

2
� 1
�

_' _z +
!2vtei'

c2
_z2 = 0 ;

(60)

�'+
2!
r

�
1 +

!t (1� i)
2

�
_r � !2ei'

r

�
it� vr (cos'� sin')

c2

�
_z +

!2

r
�
r (cos'� sin') + ivt

�
ei' +

+
2
r

_r _'� 2!v
c2r

�
!t(i� 1)

2
� 1
�

_r _z � i!2vt
c2

_z2 = 0 ;
(61)

�z + !2ei'
�
t+

vr (cos'+ sin')
c2

�
_r + !2rei'

�
it+

vr (cos'� sin')
c2

�
_'+

2!2rvei'

c2
_z+

+!2rei' +
!2vtei' (cos'+ sin')

c2
_r2 +

!2rvt (i+ 1) e2i'

c2
_r _'+

2!2vtei'

c2
_r _z+

+
i!2r2vt (cos'� sin') ei'

c2
_'2 +

2i!2rvtei'

c2
_' _z = 0;

(62)

_r2 +
2!2rvt (cos'+ sin') ei'

c2
_r _z + r2 _'2 +

2!r2v
�
!tei' (cos'� sin') + 1

�
c2

_' _z+

+
�

1� 2!2rvtei'

c2

�
_z2 = c2:

(63)

The space-time interval ds along isotropic geogesics sat-
isfies the condition ds2 = 0. This condition, in the terms of
physical observed quantities, implies constancy of the square
of the three-dimensional observable velocity of light cici =
=hik cick = c2 along the trajectory. This condition, for the
metric (48), takes the form (63).

A system of the differential equations (60–63) describes
the motion of light-like particles completely, in the given
space-time of the metric (48).

Earlier in this study we considered only the real part
v=T (t)rei' of the solution of the conservation equations
in an electromagnetic field. Because we study the motion
of photons in such an electromagnetic field (in the sample
of a microwave background) we only use the real solution
in the system of the equations (60–63). After the function
v=T (t)rei' is substituted into (60–63), we have, after trans-
formations, the formulae (64–67) (see Page 93).

We assume that a light-like signal (photon) of the Earth
microwave radiation moves along the radial direction r. Be-
cause the space of the Earth at the location of a satellite (the
space of the weightless state) rotates with an angular veloc-
ity ! which depends upon r, we have _'= 0. Two satellites
which measure the Earth microwave background are located
at the altitudes r1 = 900 km and r2 = 1.5 million km respec-
tively. Calculation of !2 = GM�

r3 , where M�= 6�1027g is
the mass of the Earth, gives the values: !1 = 10�3 sec�1 and
!2 = 3.5�10�6 sec�1. Because both values are small, we use
cos'' 1 +!t and sin''!t. Substituting these into the
system of equations (64–67), and neglecting the terms of or-

der higher than !2 (and also the other higher order terms), we
obtain, finally,

�r�!2
�
t� rv

c2
�

_z+!2 (r�vt) +
!2vt
c2

_z2 = 0 ; (68)

�'+ 2!
�

1 +
2!t
2

�
_r
r

+
!2v
c2

_z + 4!2 + 2!
_r
r

+

+
2!v

�
1 + !t

2

�
c2r

_r _z = 0 ;
(69)

�z + !2
�
t+

rv
c2
�

_r +
2!2vr
c2

_z + !2r+

+
!2vt
c2

_r2 +
2!2vt
c2

_r _z = 0 ;
(70)

_r2 +
2!2rvt
c2

_r _z +
2!2r2v
c2

_z+

+
�

1� 2!2rvt
c2

�
_z2 = c2:

(71)

We do choose the coordinate axes so that the z-axis is
directed along the motion of the Earth, in common with its
own electromagnetic field, relative to the source of another
feld such as the common feld of a compact group of galaxies
or that of the Universe as a whole (a weak microwave back-
ground). We also assume, for simplicity, that the orbit of the
satellite, on board of which an observer is located, lies in the
plane orthogonal to the z-direction. In such a case, we have
_z0 = 0. We obtain, assuming _z0 = 0,

_r2
0 = c2; (72)
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�r � !2
�
t cos'� rv (1 + cos 2'+ sin 2')

c2

�
_z � 2!r

�
1 +

!t
2

�
_'+ 2!2r (1 + cos 2'+ sin 2') +

+!2vt cos'� r _'2 � 2!rv
�!t

2 + 1
�

c2
_' _z +

!2vt cos'
c2

_z2 = 0 ;
(64)

�'+ 2!
�

1 +
!t
2

�
_r
r

+
!2

r

�
t sin'+

vr (1 + cos 2'� sin 2')
c2

�
_z + 2!2 (1 + cos 2'� sin 2') �

� !2

r
vt sin'+

2 _r _'
r

+
2!v

�!t
2 + 1

�
c2r

_r _z = 0 ;
(65)

�z + !2
�
t cos'+

rv (1 + cos 2'+ sin 2')
c2

�
_r � 2!2r

�
2t sin'� rv (1 + cos 2'� sin 2')

c2

�
_'+

+
2!2rv cos'

c2
_z + !2r cos'+

!2vt (1 + cos 2'+ sin 2')
2c2

_r2 +
!2vt (cos 2'� sin 2')

c2
_r _'+

+
2!2vt cos'

c2
_r _z +

2!2r2vt (1� cos 2'� sin 2')
c2

_'2 � 2!2rvt sin'
c2

_' _z = 0 ;

(66)

_r2 +
2!2rvt (1 + cos 2'+ sin 2')

c2
_r _z + r2 _'2 +

2!r2v
�!t

2 (1 + cos 2'� sin 2') +1
�

c2
_' _z+

+
�

1� 2!2rvt cos'
c2

�
_z2 = c2:

(67)

hence we assume _r' c. So we have r' ct. Substituting these
into the equation of motion of a photon in the z-direction
(70), and taking the weightless condition into account, we
obtain the equation of motion in the z direction for a photon
associated with the Earth’s electromagnetic field, the Earth
microwave background in particular. The equation is

�z +
2GM�
c2t2

�
1 +

v
c

�
= 0 : (73)

Integrating the equation with the conditions _z0 = 0 and
r' ct taken into account, we obtain

_z =
2GM�
cr

�
1 +

v
c

�
= _z0 + �z0; (74)

where the first term shows that such a photon, initially
launched in the r-direction in the rotating space (gravitational
field) of the Earth, is carried into the z-direction by the rota-
tion of the space of the Earth. The second term shows car-
riage into the z-direction due to the motion of the Earth in
this direction relative to another source such as a local group
of galaxies or the whole Universe.

Denoting the first term in this formula as _z0= 2GM�
cr and

the second term as � _z0= 2GM�v
c2r , we obtain the relative car-

riage of the three-dimensional vector of the light velocity
from the initial r-direction to the z-direction, due to the mo-
tion of the Earth, as

� _z0
_z0 =

v
c
: (75)

Such a relative carriage of a photon radiated from the
Earth’s surface, applied to the field of photons of the Earth

microwave background radiated in the radial directions, re-
veals the anisotropy associated with the dipole component of
the background.

Such a relative carriage of a photon, associated with the
Earth’s electromagnetic field, into the z-direction, doesn’t de-
pend on the path travelled by such a photon in the radial di-
rection r from the Earth. This means that the anisotropy as-
sociated with the dipole component of the Earth microwave
background shouldn’t be dependent on altitude: it should be
the same be it measured on board a U2 aeroplane (25 km), at
the orbit of the COBE satellite (900 km), and at the L2 point
(the WMAP satellite and PLANCK satellite, 1.5 million km
from the Earth).

4 Comparing the theoretical results to experimental
data. Conclusions

We have obtained, from General Relativity, two fundamental
results:

• A microwave background which originates in the Earth
(the EMB) decreases with altitude, such that the den-
sity of the energy of this background at the height of
the COBE satellite (900 km) is just 0.68 times less that
that at the height of a U2 aeroplane (25 km). The en-
ergy of the background at the L2 point (which is up to
1.5 million km from the Earth) is only �10�7 that ex-
perienced at the location either of a U2 aeroplane or of
the COBE satellite;

• The anisotropy of the Earth microwave background,
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due to the fast motion of the Earth relative to the source
of another field, which isn’t connected to the Earth but
located in depths of the cosmos, does not depend on
the position relative to the Earth’s surface. The dipole
anisotropy is therefore independent of altitude; the an-
isotropy will be the same be it measured at the alti-
tude of a U2 aeroplane (25 km), the COBE satellite
(900 km), or the WMAP satellite located at the L2 point
(1.5 million km).

These purely theoretical conclusions, from General Rela-
tivity, cause us to consider an Earth origin of the microwave
background, the monopole 2.7 K component of which was
discovered in 1965 by Penzias and Wilson, in a ground-based
observation [6], while the dipole 3.35 mK component was
first observed in 1969 by Conklin, also via a ground-based ob-
servation [7], then studied by Henry [8], Corey [9], and also
Smoot, Gorenstein, and Muller, who organized a stratosphere
observation on board a U2 aeroplane [11]. (See the history of
the observations in detail in Lineweaver’s paper [10].)

There are many problems in the observation of the mi-
crowave background. The monopole component, at low fre-
quencies, is easy to observe at the Earth’s surface [6]. The
dipole component is best observed at the altitude of a U2
aeroplane [11], at the altitude of 900 km (the COBE satellite)
and also at 1.5 million km (the WMAP satellite located at the
L2 point) where its anisotropy is clearly indicated [12–17].
Conversely, the monopole observed on Earth and in COBE
orbit, has yet to be recorded at the L2 point: the WMAP satel-
lite has only differential instruments on board, which are able
to indicate only the anisotropy of the background, not its ab-
solute value.

On the other hand, as shown by Robitaille [18–22], such
a phenomenology of the observations has a clear explanation
as an Earth microwave background which originates not in a
cosmic source, but the oceans of the Earth, which produce mi-
crowave signals, in particular, with an apparent temperature
of 2.7 K. Besides, as pointed out in [21, 23], the observed
anisotropy of the microwave background can be explained as
a relativistic effect of the motion of the observer, in common
with the source of the background (the Earth), relative to the
source of a noise microwave field, which has no specific tem-
perature, and a source of which is located in depths of the
cosmos (i.e. the distance from the many sources).

According to our theory, which supports the phenomenol-
ogy of the Earth microwave background, proposed by Ro-
bitaille [18–22], we have four new specific terms, namely:

1. The EMB (the Earth Microwave Background);
2. The EMBM (the monopole associated with the Earth

Microwave Background);
3. The EMBD (the dipole associated with the Earth Mi-

crowave Background);
4. The EMBA (the anisotropy of the Earth Microwave

Background, associated with the dipole).

The PLANCK satellite (which has an absolute instrument
on board), will soon be launched to the L2 point, on 31st
July 2008, and should find an experimental verification of
our theory.
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