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We consider a new four-dimensional formulation of semi-classical quantum general rel-
ativity in which the classical space-time manifold, whose intrinsic geometric properties
give rise to the effects of gravitation, is allowed to evolve microscopically by means of
a conformal function which is assumed to depend on some quantum mechanical wave
function. As a result, the theory presented here produces a unified field theory of grav-
itation and (microscopic) electromagnetism in a somewhat simple, effective manner.
In the process, it is seen that electromagnetism is actually an emergent quantum field
originating in some kind of stochastic smooth extension (evolution) of the gravitational
field in the general theory of relativity.

1 Introduction

We shall show that the introduction of an external parameter,
the Planck displacement vector field, that deforms (“maps”)
the standard general relativistic space-time S1 into an evolved
space-time S2 yields a theory of general relativity whose
space-time structure obeys the semi-classical quantum me-
chanical law of evolution. In addition, an “already quan-
tized” electromagnetic field arises from our schematic evolu-
tion process and automatically appears as an intrinsic geomet-
ric object in the space-time S2. In the process of evolution, it
is seen that from the point of view of the classical space-time
S1 alone, an external deformation takes place, since, by defi-
nition, the Planck constant does not belong to its structure. In
other words, relative to S1, the Planck constant is an external
parameter. However from the global point of view of the uni-
versal (enveloping) evolution space M4, the Planck constant
is intrinsic to itself and therefore defines the dynamical evo-
lution of S1 into S2. In this sense, a point in M4 is not strictly
single-valued. Rather, a point in M4 has a “dimension” de-
pending on the Planck length. Therefore, it belongs to both
the space-time S1 and the space-time S2.

2 Construction of a four-dimensional metric-compatible
evolution manifold M4

We first consider the notion of a four-dimensional, universal
enveloping manifoldM4 with coordinates x� endowed with a
microscopic deformation structure represented by an exterior
vector field � (x� ) which maps the enveloped space-time
manifold S1 2M4 at a certain initial point P0 onto a new en-
veloped space-time manifold S2 2M4 at a certain point P1
through the diffeomorphism

x� (P1) = x� (P0) + l ��;

where l=
q

G ~
c3 � 10�33 cm is the Planck length expressed

in terms of the Newtonian gravitational constantG, the Dirac-

Planck constant ~, and the speed of light in vacuum c, in such
a way that

�� = l ��

lim
~!0

�� = 0 :

From its diffeomorphic structure, we therefore see that
M4 is a kind of strain space. In general, the space-time S2
evolves from the space-time S1 through the non-linear map-
ping

P (�) : S1 ! S2 :

Note that the exterior vector field � can be expressed as
�=��h� = ���g� (the Einstein summation convention is em-
ployed throughout this work) where h� and g� are the sets of
basis vectors of the space-times S1 and S2, respectively (like-
wise for �). We remark that S1 and S2 are both endowed with
metricity through their immersion in M4, which we shall now
call the evolution manifold. Then, the two sets of basis vec-
tors are related by

g� =
�
��� + lr� ���h�

or, alternatively, by

g� = h� + l
� �r� ���

�
g�

where ��� are the components of the Kronecker delta.
At this point, we have defined the two covariant deriva-

tives with respect to the connections ! of S1 and � of S2 as
follows:

r�A��:::��::: = @�A
��:::
��::: + !���A

��:::
��::: + !���A��:::��::: + : : :

�!���A��:::��::: � !���A��:::��::: � : : :
and

�r�B��:::��::: = @�B
��:::
��::: + ����B

��:::
��::: + ����B����::: + : : :

�����B
��:::
��::: � ����B

��:::
��::: � : : :

for arbitrary tensor fields A and B, respectively. Here
@� = @=@ x�, as usual. The two covariant derivatives above
are equal only in the limit ~! 0.

96 I. Suhendro. A New Conformal Theory of Semi-Classical Quantum General Relativity



October, 2007 PROGRESS IN PHYSICS Volume 4

Furthermore, we assume that the connections ! and � are
generally asymmetric, and can be decomposed into their sym-
metric and anti-symmetric parts, respectively, as

!��� =
�
h�; @vh�

�
= !�(��) + !�[��]

and
���� =

�
g�; @vg�

�
= ��(��) + ��[��]:

Here, by (a; b) we shall mean the inner product between
the arbitrary vector fields a and b.

Furthermore, by direct calculation we obtain the relation

@�g� =
�
!��� + l

�r����!��� + l @�
�r�����h� :

Hence, setting

F��� = !��� + l
�
(r���)!��� + @�

�r����� =

= !���+ l
�
(r���)!���+@�@���+��@�!���+ (@���)!���

�
we may simply write

@�g� = F���h� :

Meanwhile, we also have the following inverse relation:

h� =
�
��� � l �r� ���

�
g� :

Hence we obtain

@�g� =
�
!��� + l (r���)!��� + l @�@��� +

+ l ��@�!��� + l (@���)!��� � l !��� �r� ����
� l (r���)!��� �r� ��� � l (@v@���) �r� ����
� l �� �@�!���� �r� ��� �l (@���)!��� �r� ���

�
g� :

Using the relation @�g� = ����g� (similarly, @�h� =
=!���h�), we obtain the relation between the two connec-
tions � and ! as follows:

���� = !��� + l
�
(r���)!��� + @�@��� +

+ ��@�!��� (@���)!����!��� �r� ���� (r���)!��� �r� ����
� (@�@���) �r� ������ �@�!���� �r� ��� � (@���)!��� �r� ���

�
which is a general non-linear relation in the components of
the exterior displacement field �. We may now write

���� = F��� +G���

where, recalling the previous definition of F ��� , it can be re-
written as

F ��� = !��� + l
��
@�!��� + !���!���

�
�� +

+ @�@��� + (@���)!��� + (@���)!���
�

and where

G��� = �l �!��� + l
�
(r���) !���

+ @�@��� + �� @�!��� + (@� ��) !���
�� �r� ��� :

At this point, the intrinsic curvature tensors of the space-
times S1 and S2 are respectively given by

K�
��� = 2

�
h�; @[�@�]h�

�
=

= @�!��� � @� !��� + !��� !��� � !��� !���
and

R���� = 2
�
g�; @[�@�]g�

�
=

= @����� � @����� + ���� ���� � �������� :

We may also define the following quantities built from the
connections !��� and ���� :

D�
��� = @�!��� + @�!��� + !��� !

�
�� + !���!

�
��

and

E���� = @����� + @����� + ���� ���� + ��������

from which we may define two additional “curvatures”X and
P by

X�
��� = (h�; @�@�h�) =

1
2
�
K�

��� +D�
���
�

=

= @�!��� + !���!���
and

P ���� = (g�; @�@� g�) =
1
2
�
R���� + E����

�
=

= @����� + ���� ����

such that K�
��� = 2X�

�[��] and R���� = 2P ��[��].
Now, we see that

F �(��) = !�(��) + l
�

1
2
D�

��� �
� + @�@���

�
+

+ l
�
(@���) !��� + (@���) !���

�
and

F�[��] = !�[��] +
1
2
lK�

��� �
� :

In addition, we also have

G�(��) = l
�
!�(��) + l

�
1
2
D�

��� �
� + @�@���

��
�r� ��� +

+ l
�
l
�

(@���) !��� + (@���) !���
�� �r� ���

and

G�[��] = l
�
!�[��] � 1

2
lK�

��� �
�
�

�r� ���:

Now, the metric tensor g of the space-time S1 and the
metric tensor h of the space-time S2 are respectively given by

h�� = (h�; h�)

and
g�� = (g�; g�)
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where the following relations hold:

h��h�� = ���
g��g�� = ���

In general, the two conditions h�� g�� , ��� and
g�� h��,��� must be fulfilled unless l=0 (in the limit ~!0).
Furthermore, we have the metricity conditions

r� h�� = 0 ;
and �r� g�� = 0 :

However, note that in general, �r� h�� , 0 andr�g�� , 0.
Hence, it is straightforward to see that in general, the met-

ric tensor g is related to the metric tensor h by

g�� = h�� + 2 lr(���) + l2r���r���
which in the linear approximation reads

g�� = h�� + 2 lr(���) :

The formal structure of our underlying geometric frame-
work clearly implies that the same structure holds in n di-
mensions as well.

3 The conformal theory

We are now in the position to extract a physical theory of
quantum gravity from the geometric framework in the pre-
ceding section by considering the following linear conformal
mapping:

g� = e'h�

where the continuously differentiable scalar function ' (x�)
is the generator of the quantum displacement field in the evo-
lution space M4 and therefore connects the two space-times
S1 and S2.

Now, for reasons that will be apparent soon, we shall de-
fine the generator ' in terms of the canonical quantum me-
chanical wave function  (x�) as

' = ln (1 +M )
1
2

where
M = �1

2
l
�
i
m0c
~

�2
:

Here m0 is the rest mass of the electron. Note that the
sign � signifies the signature of the space-time used.

Now, we also have the following relations:

g� = e�'h�;
h� = e�'g�;
h� = e'g�;

(g�; g�) = (h�; h�) = ��� ;

(g�; h�) = e2'��� ;

(h�; g�) = e�2'��� ;

as well as the conformal transformation

g�� = e2'h�� :
Hence

g�� = e�2' h�� :

We immediately see that

g�� h�� = e2' ��� ;

h�� g�� = e�2' ��� :

At this point, we see that the world-line of the space-time
S2, s=

Rp
h�� dx�dx� , is connected to that of the space-

time S1, �=
Rp

g�� dx�dx� , through

ds = e2'd� :

Furthermore, from the relation

g� =
�
��� + lr��� �h� = e'h�

we obtain the important relation

lr��� = (e' � 1)h�� ;
which means that

��� = lr��� = ��� ;

i.e., the quantum displacement gradient tensor field � is sym-
metric. Hence we may simply call � the quantum strain ten-
sor field. We also see that the components of the quantum
displacement field, �� = l ��, can now be described by the
wave function  as

�� = l @� 
i.e.,

 =  0 +
1
l

Z
��dx�

for an arbitrary initial value  0 (which, most conveniently,
can be chosen to be 0).

Furthermore, we note that the integrability condition
��� = ��� means that the space-time S1 must now possess
a symmetric, linear connection, i.e.,

!��� = !��� =
1
2
h�� (@�h�� � @�h�� + @�h��) ;

which are just the Christoffel symbols f ��� g in the space-time
S1. Hence ! is now none other than the symmetric Levi-
Civita (Riemannian) connection. Using the metricity condi-
tion @�g�� = ���� + ����, i.e.,

@� g�� = Mh�� @� + (1 +M  ) (!��� + !���) ;

we obtain the mixed form

!��� =
1
2

(1 +M )�1 (@�g�� � @�g�� + @�g��)�
� 1

2
M (1 +M )�1 (h��@� � h��@� + h��@� )
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i.e.,

!��� =
1
2

(1 +M )�1 h�� (@�g�� � @� g�� + @� g��)�
� 1

2
M (1 +M )�1 ����@� + ��� @� � h��h��@� � :

It may be noted that we have used the customary conven-
tion in which ���� = g�� ���� and !��� =h��!

�
�� .

Now we shall see why we have made the particular choice
'= ln (1 +M  )

1
2 . In order to explicitly show that it now

possess a stochastic part, let us rewrite the components of the
metric tensor of the space-time S2 as

g�� = (1 +M )h�� :

Combining this relation with the linearized relation
g�� =h��+ 2 lr(� ��) and contracting the resulting relation,
we obtain

lD2 = 2
�
e2' � 1

�
= 2M ;

where we have defined the differential operator D2 =
= h��r�r� such that

D2 = h��
�
@�@� � !��� @� � :

ExpressingM explicitly, we obtainD2 = � �m0 c
~

�2  ,
i.e., �

D2 � �m0c
~

�2
�
 = 0

which is precisely the Klein-Gordon equation in the presence
of gravitation.

We may note that, had we combined the relation g�� =
= (1 +M  )h�� with the fully non-linear relation

g�� = h�� + 2 lr(���) + l2r���r��� ;
we would have obtained the following non-linear Klein-
Gordon equation:�
D2 � �m0 c

~

�2
�
 = l2h��h�� (r�r� ) (r�r� ) :

Now, from the general relation between the connections �
and ! given in Section 2, we obtain the following important
relation:

��[��] = �1
2
l
�
��� � l �r� ���

�
K�

����
�;

which not only connects the torsion of the space-time S2 with
the curvature of the space-time S1, but also describes the tor-
sion as an intrinsic (geometric) quantum phenomenon. Note
that

K�
��� = @�

�
�
��

�
� @�

�
�
��

�
+

+
�
�
��

��
�
��

�
�
�
�
��

��
�
��

�
are now the components of the Riemann-Christoffel curvature
tensor describing the curvature of space-time in the standard

general relativity theory.
Furthermore, using the relation between the two sets of

basis vectors g� and h�, it is easy to see that the connection
� is semi-symmetric as

���� = !��� + ��� @�'

or, written somewhat more explicitly,

���� =
1
2
h�� (@�h�� � @�h�� + @�h��) +

+
1
2
��� @�

�
ln (1 +M )

�
:

We immediately obtain

��(��) = !��� +
1
2
�
���@�'+ ��� @�'

�
and

��[��] =
1
2
�
���@�'� ��� @�'� :

Additionally, using the relation

!��� = !��� = @�
�

ln
p

det (h)
�

=

= @�
�

ln
�
e�'

p
det (g)

��
= @�

�
ln
p

det (g)
�� @�'

we may now define two semi-vectors by the following con-
tractions:

�� = ���� = @�
�

ln
p

det (h)
�

+ 4 @�'

�� = ���� = @�
�

ln
p

det (h)
�

+ @�'

or, written somewhat more explicitly,

�� = @�
�

ln
p

det (h) + ln (1 +M )2
�

�� = @�
�

ln
p

det (h) + ln
p

1 +M 
�
:

We now define the torsion vector by

�� = ��[��] =
3
2
@�' :

In other words,

�� =
3
4

M
(1 +M )

@� :

Furthermore, it is easy to show that the curvature tensors
of our two space-times S1 and S2 are now identical:

R���� = K�
���

which is another way of saying that the conformal transfor-
mation g� = e' h� leaves the curvature tensor of the space-
time S1 invariant. As an immediate consequence, we obtain
the ordinary expression

R���� =
1
2

(@�@�h��+@�@�h���@�@�h���@�@�h��) +

+h��
�
!���!

�
�� � !��� !���� :
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Hence the following cyclic symmetry in Riemannian ge-
ometry:

R���� +R���� +R���� = 0

is preserved in the presence of torsion. In addition, besides
the obvious symmetry R���� =�R����, we also have the
symmetry

R���� = �R����
which is due to the metricity condition of the space-times S1
and S2. This implies the vanishing of the so-called Homoth-
etic curvature as

H�� = R���� = 0 :

The Weyl tensor is given in the usual manner by

C���� = R���� � 1
2

(h��R�� + h��R���
�h��R�� � h��R��)� 1

6
(h��h�� � h��h��)R ;

where R�� =R���� are the components of the symmetric
Ricci tensor and R=R�� is the Ricci scalar.

Now, by means of the conformal relation g�� = e2' h��
we obtain the expression

R���� = e�2'
�
@�@�g�� + @�@�g�� � @�@�g��@�@�g�� +

+ g��
�

�������� � ��������
�

+ (@�g�� � @�g��) @�'+

+ (@�g�� � @�g��) @�'+ (@� g�� � @�g��) @�'+

+ (@�g�� � @�g��) @�'+ g��@�@�'+ g��@�@�'+

� g��@�@�'� g��@�@�'+ 2 (g��@�'@�'+

+ g��@�'@�'� g��@�'@�'� g��@�'@�'�+

+ g��
��

����@�'�����@�'
�
����

�
����@�'�����@�'

�
���
��
:

Note that despite the fact that the curvature tensor of the
space-time S2 is identical to that of the space-time S1 and
that both curvature tensors share common algebraic symme-
tries, the Bianchi identity in S2 is not the same as the ordinary
Bianchi identity in the torsion-free space-time S1. Instead, we
have the following generalized Bianchi identity:

�r�R���� + �r�R���� + �r�R���� =

= 2
�

��[��]R���� + ��[��]R���� + ��[��]R����
�
:

Contracting the above relation, we obtain

�r�
�
R�� � 1

2
g��R

�
= 2 g����[��]R

�
� + ��[��]R

���
� :

Combining the two generalized Bianchi identities above
with the relation ��[��] = 1

2

�
��� @�'� ��� @�' �, as well as re-

calling the definition of the torsion vector, and taking into
account the symmetry of the Ricci tensor, we obtain

�r�R���� + �r�R���� + �r�R���� =

= 2 (R����@�'+R����@�'+R����@� ')

and

�r�
�
R�� � 1

2
g��R

�
= � 2

�
R�� � 1

2
g��R

�
@�'

which, upon recalling the definition of the torsion vector, may
be expressed as

�r�
�
R�� � 1

2
g��R

�
= � 4

3

�
R�� � 1

2
g��R

�
�� :

Apart from the above generalized identities, we may also
give the ordinary Bianchi identities as

r�R���� +r�R���� +r�R���� = 0

and
r�
�
R�� � 1

2
h��R

�
= 0 :

4 The electromagnetic sector of the conformal theory.
The fundamental equations of motion

Based on the results obtained in the preceding section, let us
now take the generator ' as describing the (quantum) electro-
magnetic field. Then, consequently, the space-time S1 is un-
derstood as being devoid of electromagnetic interaction. As
we will see, in our present theory, it is the quantum evolution
of the gravitational field that gives rise to electromagnetism.
In this sense, the electromagnetic field is but an emergent
quantum phenomenon in the evolution space M4.

Whereas the space-time S1 is purely gravitational, the
evolved space-time S2 does contain an electromagnetic field.
In our present theory, for reasonsthat will be clear soon, we
shall define the electromagnetic field F 2S2 2M4 in terms of
the torsion of the space-time S2 by

F�� = 2
m0c2

�e
��[��]u� ;

where �e is the (elementary) charge of the electron and

u� = g��
dx�

ds
= e2'h��

dx�

ds
are the covariant components of the tangent velocity vector
field satisfying umu u� = 1.

We have seen that the space-time S2 possesses a manifest
quantum structure through its evolution from the purely grav-
itational space-time S1. This means that �e may be defined in
terms of the fundamental Planck charge ê as follows:

�e = Nê = N
p

4�"0~c ;

where N is a positive constant and "0 is the permittivity of
free space. Further investigation shows that N =

p
� where

��1� 137 is the conventional fine structure constant.
Let us now proceed to show that the geodesic equation of

motion in the space-time S2 gives the (generalized) Lorentz
equation of motion for the electron. The result of parallel-
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transferring the velocity vector field u along the world-line
(in the direction of motion of the electron) yields

�Du�

ds
=
� �r�u��u� = 0 ;

i.e., du�

ds
+ ����u

�u� = 0 ;

where, in general,

���� =
1
2
g�� (@�g�� � @�g�� + @�g��) + ��[��]�

� g�� �g����[��] + g�� ��[��]

�
:

Recalling our expression for the components of the tor-
sion tensor in the preceding section, we obtain

���� =
1
2
g�� (@�g�� � @�g�� + @�g��) +

+ g��g��@�'� ��� @�'
which is completely equivalent to the previously obtained re-
lation

���� = !��� + ��� @�' :
Note that

��
�� =

1
2
g�� (@�g�� � @�g�� + @�g��)

are the Christoffel symbols in the space-time S2. These are
not to be confused with the Christoffel symbols in the space-
time S1 given by !��� .

Furthermore, we have
du�

ds
+ ��

�� u
�u� = 2g����[��]u�u

�:

Now, since we have set F�� = 2m0 c2
�e ��[��]u�, we obtain

the equation of motion

m0c2
�
du�

ds
+ ��

��u
�u�

�
= �eF�� u

� ;

which is none other than the Lorentz equation of motion for
the electron in the presence of gravitation. Hence, it turns out
that the electromagnetic field, which is non-existent in the
space-time S1, is an intrinsic geometric object in the space-
time S2. In other words, the space-time structure of S2 inher-
ently contains both gravitation and electromagnetism.

Now, we see that

F�� =
m0c2

�e
(u�@�'� u�@�') :

In other words,

�eF�� u
� = m0c2

�
u�
d'
ds
� g��@�'

�
:

Consequently, we can rewrite the electron’s equation of
motion as

du�

ds
+ ��

��u
�u� = u�

d'
ds
� g�� @�' :

We may therefore define an asymmetric fundamental ten-
sor of the gravoelectromagnetic manifold S2 by

~g�� = g��
d'
ds
� �e
m0c2

F��

satisfying
~g��u� = @�' :

It follows immediately that�
���
d'
ds
� �e
m0c2

F��

�
u� = g�� @�'

which, when expressed in terms of the wave function  , gives
the Schrödinger-like equation

u�
d 
ds

=
1
M

�
@�'+

�e
m0c2

F��u�
�
 :

We may now proceed to show that the electromagnetic
current density given by the covariant expression

j� = � c
4�

�r�F��
is conserved in the present theory.

Let us first call the following expression for the covariant
components of the electromagnetic field tensor in terms of the
covariant components of the canonical electromagnetic four-
potential A:

F�� = �r�A� � �r�A�
such that �e �r�A� =m0c2u�@�', i.e.,

m0c2@�' = �e u� �r�A�
which directly gives the equation of motion

m0c2
d'
ds

= �e u�u� �r�A� :
Hence, we obtain the following equation of state:

m0c2
d 
ds

= 2 �e
(1 +M )

M
u�u� �r�A� :

Another alternative expression for the electromagnetic
field tensor is given by

F�� = @�A� � @�A�2��[��]A� =

= @�A� � @�A� + A� @�'� A�@�' :
In the particular case in which the field-lines of the elec-

tromagnetic four-potential propagate in the direction of the
electron’s motion, we have

F�� = �
�e�

1� �2

c2

� (@�u� � @�u�)

where � is a proportionality constant and �=� �e
q

�
m0

.
Then, we may define a vortical velocity field, i.e., a spin field,
through the vorticity tensor which is given by

!�� =
1
2

(@�u� � @�u�)
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and hence
F�� = 2�

�e�
1� �2

c2

� !�� ;
which describes an electrically charged spinning region in the
space-time continuum S2.

Furthermore, we have the following generalized identity
for the electromagnetic field tensor:

�r�F�� + �r�F�� + �r�F�� =

= 2
�

��[��]F�� + ��[��]F�� + ��[��]F��
�

which, in the present theory, takes the particular form

�r�F�� + �r�F�� + �r�F�� =

= 2 (F��@�'+ F��@�'+ F��@�') :

Contracting, we have

�r� j� = � c
4�

�r�
�

��[��]F
��
�
:

We therefore expect that the expression in the brackets
indeed vanishes. For this purpose, we may set

j� = � c
4�

��[��] F
��

and hence, again, using the relation

��[��] =
1
2
�
���@�'� ��� @�'� ;

we immediately see that

�r�j� � c
4�

�
@�' �r�F�� + F��

�
@�@�'� ��[��]@�'

��
=

= � j� @�'� c
4�

��[��]F
�� @�'

i.e.,
�r� j� = 0 :

At this point, we may note the following: the fact that
our theory employs torsion, from which the electromagnetic
field is extracted, and at the same time guarantees electromag-
netic charge conservation (in the form of the above continuity
equation) in a natural manner is a remarkable property.

Now, let us call the relation

��[��] = �1
2
l
�
��� � l �r� ���

�
R���� �

�

obtained in Section 3 of this work (in which R���� =K�
���).

This can simply be written as

��[��] = �1
2
le�'R���� ��

i.e.,

��[��] = �1
2
le�'R���� g��@� :

Hence, we obtain the elegant result

F�� = � l m0c2

�e
e�'R���� u� g��@� 

i.e.,

F�� = � l
�e

m0c2p
1 +M 

R���� u� g
��@� 

or, in terms of the components of the (dimensionless) micro-
scopic displacement field �,

F�� = � l m0c2

�e
e�'R���� u� g����

which further reveals how the electromagnetic field originates
in the gravitational field in the space-time S2 as a quantum
field. Hence, at last, we see a complete picture of the elec-
tromagnetic field as an emergent phenomenon. This com-
pletes the long-cherished hypothesis that the electromagnetic
field itself is caused by a massive charged particle, i.e., when
m0 = 0 neither gravity nor electromagnetism can exist. Fi-
nally, with this result at hand, we obtain the following equa-
tion of motion for the electron in the gravitational field:

du�

ds
+ ��

��u
�u� = � le�'R���� u� ��u�

i.e.,

du�

ds
+ ��

��u
�u� = � lp

1 +M 
R���� u�u

� @� :

In addition, we note that the torsion tensor is now seen to
be given by

�� = �1
2
le�'R�� ��

or, alternatively,

�� = �1
2
le�'R�� g��@� :

In other words,

�� = �1
2

lp
1 +M  

R�� g��@� :

Hence, the second generalized Bianchi identity finally
takes the somewhat more transparent form

�r�
�
R�� � 1

2
g��R

�
=

= �2
3
le�'

�
R��R�� � 1

2
RR��

�
g�� @� 

i.e.,

�r�
�
R�� � 1

2
g��R

�
=

= �2
3

lp
1 +M 

�
R��R�� � 1

2
RR��

�
g�� @� :
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5 Final remarks

The present theory, in its current form, is still in an elementary
state of development. However, as we have seen, the emer-
gence of the electromagnetic field from the quantum evolu-
tion of the gravitational field is a remarkable achievement
which deserves special attention. On another occasion, we
shall expect to expound the structure of the generalized Ein-
stein’s equation in the present theory with a generally non-
conservative energy-momentum tensor given by

T�� = � c4

8�G

�
R�� � 1

2
g��R

�
which, like in the case of self-creation cosmology, seems to
allow us to attribute the creation and annihilation of matter
directly to the scalar generator of the quantum evolution pro-
cess, and hence the wave function alone, as

�r�T�� = �2
3

lp
1 +M 

T��R�� g�� @� , 0 :
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