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In the preceding article we argue that biquaternionic extension of Klein-Gordon equa-
tion has solution containing imaginary part, which differs appreciably from known so-
lution of KGE. In the present article we discuss some possible interpretation of this
imaginary part of the solution of biquaternionic KGE (BQKGE); thereafter we offer a
new derivation of biquaternion Schrödinger equation using this method. Further obser-
vation is of course recommended in order to refute or verify this proposition.

1 Introduction

There were some attempts in literature to generalise Schrö-
dinger equation using quaternion and biquaternion numbers.
Because quaternion number use in Quantum Mechanics has
often been described [1, 2, 3, 4], we only mention in this paper
the use of biquaternion number. Sapogin [5] was the first to
introduce biquaternion to extend Schrödinger equation, while
Kravchenko [4] use biquaternion number to describe neat link
between Schrödinger equation and Riccati equation.

In the present article we discuss a new derivation of bi-
quaternion Schrödinger equation using a method used in the
preceding paper. Because the previous method has been used
for Klein-Gordon equation [1], now it seems natural to ex-
tend it to Schrödinger equation. This biquaternion effect may
be useful in particular to explore new effects in the context of
low-energy reaction (LENR) [6]. Nonetheless, further obser-
vation is of course recommended in order to refute or verify
this proposition.

2 Some interpretations of preceding result of biquater-
nionic KGE

In our preceding paper [1], we argue that it is possible to
write biquaternionic extension of Klein-Gordon equation as
follows��
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Or this equation can be rewritten as�}�}+m2�'(x; t) = 0 (2)

provided we use this definition
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where e1, e2, e3 are quaternion imaginary units obeying
(with ordinary quaternion symbols: e1 = i, e2 = j, e3 = k)

i2 = j2 = k2 = �1 ; ij = �ji = k ;

jk = �kj = i ; ki = �ik = j ;
(4)

and quaternion Nabla operator is defined as [7]
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Note that equation (3) and (5) included partial time-
differentiation.

It is worth nothing here that equation (2) yields solution
containing imaginary part, which differs appreciably from
known solution of KGE:
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m2t2 + constant: (6)

Some possible alternative interpretations of this imagina-
ry part of the solution of biquaternionic KGE (BQKGE) are:

(a) The imaginary part implies that there is exponential
term of the wave solution, which is quite similar to
the Ginzburg-Landau extension of London phenomen-
ology [8]

 (r) = j (r)j ei'(r) ; (7)

because (6) can be rewritten (approximately) as:

y(x; t) =
ei

4
m2t2; (8)

(b) The aforementioned exponential term of the solution
(8) can be interpreted as signature of vortices solution.
Interestingly Navier-Stokes equation which implies
vorticity equation can also be rewritten in terms of
Yukawa equation [3];

(c) The imaginary part implies that there is spiral wave,
which suggests spiralling motion of meson or other par-
ticles. Interestingly it has been argued that one can ex-
plain electron phenomena by assuming spiralling elec-
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trons [9]. Alternatively this spiralling wave may al-
ready be known in the form of Bierkeland flow. For
meson observation, this could be interpreted as another
form of meson, which may be called “supersymmetric-
meson” [1];

(d) The imaginary part of solution of BQKGE also implies
that it consists of standard solution of KGE [1], and
its alteration because of imaginary differential operator.
That would mean the resulting wave is composed of
two complementary waves;

(e) Considering some recent proposals suggesting that
neutrino can have imaginary mass [10], the aforemen-
tioned imaginary part of solution of BQKGE can also
imply that the (supersymmetric-) meson may be com-
posed of neutrino(s). This new proposition may require
new thinking both on the nature of neutrino and also
supersymmetric-meson [11].

While some of these propositions remain to be seen, in
deriving the preceding BQKGE we follow Dirac’s phrase that
“One can generalize his physics by generalizing his mathe-
matics”. More specifically, we focus on using a “theorem”
from this principle, i.e.: “One can generalize his mathemat-
ics by generalizing his (differential) operator”.

3 Extended biquaternion Schrödinger equation

One can expect to use the same method described above to
generalize the standard Schrödinger equation [12]�
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2m
�u+ V (x)

�
u = Eu ; (9)

or, in simplified form, [12, p.11]:

(�� + wk)fk = 0 ; k = 0; 1; 2; 3: (10)

In order to generalize equation (9) to biquaternion version
(BQSE), we use first quaternion Nabla operator (5), and by
noticing that � � rr, we get
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Note that we shall introduce the second term in order to
‘neutralize’ the partial time-differentiation ofrq �rq operator.

To get biquaternion form of equation (11) we can use our
definition in equation (3) rather than (5), so we get
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This is an alternative version of biquaternionic Schrödin-
ger equation, compared to Sapogin’s [5] or Kravchenko’s [4]
method. We also note here that the route to quaternionize
Schrödinger equation here is rather different from what is de-
scribed by Horwitz [13, p. 6]

~H =  e1E ; (13)

or
~H q =  q

�
q�1 e1 q

�
E ; (14)

where the quaternion number q, can be expressed as follows
(see [13, p. 6] and [4])

q = q0 +
3X
i=1

qi ei : (15)

Nonetheless, further observation is of course recommend-
ed in order to refute or verify this proposition (12).

4 Numerical solution of biquaternion Schrödinger
equation

It can be shown that numerical solution (using Maxima [14])
of biquaternionic extension of Schrödinger equation yields
different result compared to the standard Schrödinger equa-
tion, as follows. For clarity, all solutions were computed in
1-D only.

For standard Schrödinger equation [12], one can rewrite
equation (9) as follows:

(a) For V (x) > E:

� ~2

2m
�u+ a � u = 0 ; (16)

(b) For V (x) < E:

� ~2

2m
�u� a � u = 0 : (17)

Numerical solution of equation (16) and (17) is given (by
assuming ~=1 and m= 1=2 for convenience)

(%i44) -’diff (y, x, 2) + a*y;
(%o44) a � y � d2

d2x
y

(a) For V (x) > E:

(%i46) ode2 (%o44, y, x);
(%o46) y = k1 � exp(

p
a � x) + k2 � exp(�pax)

(b) For V (x) < E:

(%i45) ode2 (%o44, y, x);
(%o45) y = k1 � sinh(

p
a � x) + k2 � cosh(

p
a � x)

In the meantime, numerical solution of equation (12), is
given (by assuming ~=1 and m= 1=2 for convenience)

(a) For V (x) > E:

(%i38) (%i+1)*’diff (y, x, 2) + a*y;

(%o38) (i+ 1) d2

d2x
y + a � y

(%i39) ode2 (%o38, y, x);
(%o39) y = k1 � sin(

p a
i+1 � x) + k2 � cos(

p a
i+1 � x)

(b) For V (x) < E:

(%i40) (%i+1)*’diff (y, x, 2) - a*y;

(%o40) (i+ 1) d2

d2x
y � a � y

(%i41) ode2 (%o40, y, x);
(%o41)y = k1 � sin(

p� a
i+1 � x) + k2 � cos(

p� a
i+1 � x)
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Therefore, we conclude that numerical solution of bi-
quaternionic extension of Schrödinger equation yields differ-
ent result compared to the solution of standard Schrödinger
equation. Nonetheless, we recommend further observation in
order to refute or verify this proposition/numerical solution
of biquaternion extension of spatial-differential operator of
Schrödinger equation.

As side remark, it is interesting to note here that if we
introduce imaginary number in equation (16) and equation
(17), the numerical solutions will be quite different compared
to solution of equation (16) and (17), as follows

� i~2

2m
�u+ au = 0 ; (18)

where V (x) > E, or

� i~2

2m
�u� au = 0 ; (19)

where V (x) < E.
Numerical solution of equation (18) and (19) is given (by

assuming ~=1 and m= 1=2 for convenience)

(a) For V (x) > E:

(%i47) -%i*’diff (y, x, 2) + a*y;
(%o47) a � y � i d2

d2x
y

(%i48) ode2 (%o47, y, x);
(%o48) y = k1 � sin(

p
ia � x) + k2 � cos(

p
ia � x)

(b) For V (x) < E:

(%i50) -%i*’diff (y, x, 2) - a*y;
(%o50) �a � y � i d2

d2x
y

(%i51) ode2 (%o50, y, x);
(%o51) y = k1 � sin(�pia � x) + k2 � cos(�pia � x)

It shall be clear therefore that using different sign for dif-
ferential operator yields quite different results.
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dinger operator. arXiv: math-ph/0305046, p. 9.

5. Sapogin V. Unitary quantum theory. ICCF Proceedings, listed
in Infinite Energy magazine, http://www.infinite-energy.com

6. Storm E. http://www.lenr-canr.org

7. Christianto V. A new wave quantum relativistic equation from
quaternionic representation of Maxwell-Dirac equation as an
alternative to Barut-Dirac equation. Electronic Journal of The-
oretical Physics, 2006, v. 3, no. 12 (http://www.ejtp.com).

8. Schrieffer J. R. and Tinkham M. Superconductivity. Rev. Mod-
ern Phys., 1999, v. 71, no. 2, S313.

9. Drew H. R. A periodic structural model for the electron can cal-
culate its intrinsic properties to an accuracy of second or third
order. Apeiron, 2002, v. 9, no. 4.

10. Jeong E. J. Neutrinos must be tachyons. arXiv: hep-ph/

9704311.

11. Sivasubramanian S., et al. arXiv: hep-th/0309260.
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