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There is hope that a properly developed Classical Electrodynamics (CED) will be able
to play a role in a unified field theory explaining electromagnetism, quantum phenom-
ena, and gravitation. There is much work that has to be done in this direction. In this
article we propose a move towards this aim by refining the basic principles of an im-
proved CED. Attention is focused on the reinterpretation of the E-M potential. We use
these basic principles to obtain solutions that explain the interactions between a con-
stant electromagnetic field and a thin layer of material continuum; between a constant
electromagnetic field and a spherical configuration of material continuum (for a charged
elementary particle); between a transverse electromagnetic wave and a material contin-
uum; between a longitudinal aether wave (dummy wave) and a material continuum.

1 Introduction

The development of Classical Electrodynamics in the late
19th and early 20th century ran into serious trouble from
which Classical Electrodynamics was not able to recover (see
R.Feynman’s Lectures on Physics [1]: Volume 2, Chapter
28). According to R. Feynman, this development “ultimately
falls on its face” and “It is interesting, though, that the clas-
sical theory of electromagnetism is an unsatisfactory theory
all by itself. There are difficulties associated with the ideas
of Maxwell’s theory which are not solved by and not directly
associated with quantum mechanics”. Further in the book he
also writes: “To get a consistent picture, we must imagine that
something holds the electron together”, and “the extra non-
electrical forces are also known by the more elegant name,
the Poincare stresses”. He then concludes: “— there have
to be other forces in nature to make a consistent theory of
this kind”. CED was discredited not only by R. Feynman but
also by many other famous physicists. As a result the whole
of theoretical physics came to believe in the impossibility of
explaining the stability of electron charge by classical means,
claiming defect in the classical principles. But this is not true.

We showed earlier [2, 3, 4] and further elaborate here
that there is nothing wrong with the basic classical ideas that
Maxwell’s theory is based upon. It simply needs further de-
velopment. The work [2] opens the way to the natural (with-
out singularities) development of CED. In this work it was
shown that Poincare’s claim in 1906 that the “material” part
of the energy-momentum tensor, “Poincare stresses”, has to
be of a “nonelectromagnetic nature” (see Jackson, [5]) is in-
correct. It was shown that the definite material part is ex-
pressed only through current desity (see formula (9) in [2]),
and given a static solution: Ideal Particle, IP, see (19). The
proper covariance of IP is manifest — the charges actually
hold together and the energy inside an IP comes from the in-
terior electric field (positive energy) and the interior charge
density (negative energy, see formula (22) of [2]). The to-

tal energy inside an IP is zero, which means that the rest
mass (total energy) corresponds to the vacuum energy only.
The contributions to the “inertial mass” (linear momentum
divided by velocity; R.Feynman called it “electromagnetic
mass”) can be calculated by making a Lorentz transformation
and a subsequent integration. The total inertial mass is equal
to the rest mass (which is in compliance with covariance) but
the contributions are different: 4/3 comes from the vacuum
electric field, 2/3 comes from the interior electric field, and
—1 comes from the interior charge density. This is the ex-
planation of the “anomalous factor of 4/3 in the inertia” (first
found in 1881 by J.J. Thomson [5]).
Let us begin with Maxwell’s equations:
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The equations are given in 4D form, 3D form, and in an
integral form. Equation (1) represents the interaction law be-
tween the electromagnetic field and the current density. Equa-
tion (2) applies only to the electromagnetic field. This whole
system, wherein equation (1c¢) is not included, is definite for
the 6 unknown components of the electromagnetic field on
the condition that the currents (all the components) are given.
This is the first order PDE system, the characteristics of which
are the wave fronts.

What kind of currents can be given for this system? Not
only can continuous fields of currents be prescribed. A jump
in a current density is a normal situation. We can even go
further and prescribe infinite (but the space integral has to be
finite) current density. But in this case we have to check the
results. In other words, the system allows that the given cur-
rent density can contain Dirac’s delta-functions if none of the
integrals in (1) and (2) goes infinite. But this is not the end.
There exists an energy-momentum tensor that gives us the en-
ergy density in space. The space integral of that density also
has to be finite. Here arises the problem. If we prescribe a
point charge (3D delta-function) then the energy integral will
be infinite. If we prescribe a charged infinitely thin string
(2D delta-function) then the energy will also be infinite. But
if we prescribe an infinitely thin surface with a finite surface
charge density on it (1-d delta-function) then the energy inte-
gral will be finite. It appears that this is the only case that we
can allow. But we have to remember that it is possible that a
disruption surface (where the charge/current density can be
infinite) can be present in our physical system. This kind of
surface allows the electromagnetic field to have a jump across
this surface (this very important fact was ignored in conven-
tional CED — see below). It is also very important to under-
stand that all these delta-functions for the charge distribution
are at our discretion: we can prescribe them or we can “hold
out”. If we choose to prescribe then we are taking on an ad-
ditional responsibility. The major attempt to discredit CED
(to remove any “obstacles” in the way of quantum theory)
was right here. The detractors of CED (including celebrated
names like R. Feynman in the USA and L. D. Landau in Rus-
sia but, remarkably, not A. Einstein) tried to convince us that a
point charge is inherent to CED. With it comes the divergence
of energy and the radiation reaction problem. This problem
is solvable for the extended particle (which has infinite de-
grees of freedom) but is not solvable for the point particle.
This is not an indication that the “classical theory of elec-
tromagnetism is an unsatisfactory theory by itself”. Rather
this means that we should not use the point charge model (or
charged string model). Only a charged closed surface model
is suitable.

We have another serious problem in conventional electro-
dynamics. As we have shown below, the variation procedure
of conventional CED results in the requirement that the elec-
tromagnetic field must be continuous across any disruption
surface. That actually implies the impossibility of a surface
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charge/current on a disruption surface. I changed the varia-
tion procedure of CED and arrived at a theory where the elec-
tromagnetic interaction (ultimately represented by Maxwell’s
equation (1)) is the only interaction. The so-called interaction
term in the Lagrangian (A* j;,) is abandoned. Also abandoned
is the possibility introducing any other interactions (like the
“strong” or “weak”). I firmly believe that all the experimen-
tal data for elementary particles, quantum phenomena, and
gravitation can be explained starting only with the electro-
magnetic interaction (1).

What is the right expression for the energy-momentum
tensor that corresponds to the system described by (1) and
(2)? The classical principles require that this expression must
be unique. Conventional electrodynamics provides us with
the expression: T* = pcu'u* £ (for a “material” part con-
taining free particles only: see Landau [6], formula 33.5)
that contains density of mass, w, and velocity only. No
charge/current density is included. It seems that the mere
presence of charge/current density has to contribute to the
energy of the system. To correct the situation we took the
simplest possible Lagrangian with charge density:

3)
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where kg is a new constant. No interaction term (like Ay 7*)
is included.

2 Variation of metrics

Let us find the energy-momentum tensor that corresponds to
the Lagrangian (3). The metric tensor in classical 4-space is
gix =diag[1,—1,—1,—1] (we assume ¢ = 1). Let us con-
sider an arbitrary variation of a metric tensor but on the con-
dition that this variation does not introduce any curvature in
space. This variation is:

0gik = &ijk + Ekfs 4

where £¥ is an arbitrary but small vector. One has to use the
mathematical apparatus of General Relativity to check that
with the variation (3) the Riemann curvature tensor remains
zero to first order. Assuming that the covariant components
of the physical fields are kept constant (then the contravariant
components will be varied as a result of the variation of the
metric tensor, but we do not use them — see (3) for an ex-
planation) we can calculate the variation of the action. The
variation of the square root of the determinant of the met-
ric tensor is: 5F:—% /=9 gix 69" (this result can be
found in textbooks on field theory). The variation of action
becomes:
oA
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If our system consists of two regions that are separated
by a closed disruption surface .S then the above procedure
has to be applied to each region separately. We can write:
Ti€lF = (Ty €k — Til,’:fi. The 4D volume integrals over
divergence (the first term) can be expressed through 3D hy-
persurface integrals according to the 4D theorem of Gauss.
The integral over some remote closed surface becomes zero
due to the smallness of Tj; on infinity (usually assumed). The
integral over a 3D volume at ¢; and ¢, becomes zero due to
the assumption: ¢; = O at these times. What is left is:

68 = _/Tik & V/—gdQ = / (Tfoue — THn) €dSk +

S
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Since §; are arbitrary small functions (between ¢; and ¢;),
the requirement 6.5 = 0 yields:

ia
e = 0.

(6)

This condition has to be fulfilled for the inside and the
outside regions separately. And the additional requirement
on the disruption surface S,

T* N, (62)
is continuous, where Ny, is a normal to the surface.

We have found the unique definition of the energy-
momentum tensor (5). If we want the action to be minimum
with respect to the arbitrary variation of the metric tensor in
flat space then (6) and (6a) should be satisfied. Let us rewrite
the energy-momentum tensor in 3D form:
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Notice that we have not used Maxwell’s or any other field
equations so far. It should also be noted that for the energy-
momentum tensor (5), (5a) is not defined on the disruption
surface itself, despite the fact that there can be a surface

charge/current on a surface (infinite volume density but finite
surface density).

Going further, we are definitely stating that Maxwell’s
equation (1) is a universal law that should be fulfilled in
all space without exceptions. It defines the interaction be-
tween the electromagnetic field and the field of current
density. This law cannot be subjected to any variation
procedure. Maxwell’s equation (2) we will confirm later as
a result of a variation; see formula (9). Substituting (5) in
(6) and using Maxwell’s equation (1) and the antisymmetry
of F;;, we obtain:
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This equation has to be fulfilled for the inside and outside
regions separately because (6) is fulfilled separately in these
regions. This is important. It is also important to realize that
while the conservation of charge is fulfilled everywhere, in-
cluding a disruption surface, the disruption surface itself is
exempt from energy-momentum conservation (no surface en-
ergy, no surface tension). This arrangement is in agreement
with the fact that we can integrate a delta-function (charge)
but we cannot integrate its square (would be energy).

3 A new dynamics

Equation (7) we call a Dynamics Equation. It is a nonlin-
ear equation. But it has to be fulfilled inside and outside the
particle separately. This will allow us to reduce it to a linear
equation inside these regions.

Definition: vacuum is a region of space where all the com-
ponents of current density are zero.

Equation (7) is automatically satisfied in vacuum
(J*¥ = 0). The other possibility (J* # 0) will be the interior re-
gion of an elementary particle. The boundary between these
regions will be a disruption surface. Inside the particle instead
of (7) we have:

k2c . .

4L Fo; +.7a|i — Jila = 0

T
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Lo F4VO+-==0, “H-rot;j=0
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All the solutions of equation (7a) are also solutions of the
nonlinear equation (7). At present we know nothing about
the solutions of (7) that do not satisfy (7a). Inside the ele-
mentary particle the dynamics equation (7) or (7a) describes,
as we call it, a Material Continuum. A Material Contin-
uum cannot be divided into a system of material points. The
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Relativistic (or Newtonian) Dynamics Equation of CED, that
describes the behavior of the particle as a whole, completely
disappears inside the elementary particle. There is no mass,
no force, no velocity or acceleration inside the particle. The
field of current density 7% defines a kinematic state of the Ma-
terial Continuum. A world line of current j* is not a world
line of a material point. That allows us to deny any causal
connection between the points on this line. In consequence,
7* can be space-like as well as time-like. That is in no contra-
diction with the fact that the boundary of the particle cannot
exceed the speed of light. Equation (7a) is linear and allows
superposition of different solutions. Using (1) we can obtain:

G-k =0 k=0
. (7b)
'k_iazjk_’_ijk:O
2 9t2 0

By equation (7) we have obtained something very impor-
tant, but we are just on the beginning of a difficult and uncer-
tain journey. Now the current density cannot be prescribed
arbitrarily. Inside the particle it has to satisfy equation (7b).
However, there are no provisions on the surface current den-
sity (if a surface current is different from zero then its density
is necessarily expressed by a delta-function across the disrup-
tion surface).

4 The electromagnetic potential

Now we are going to vary the electromagnetic field F;y in all
the space, including a disruption surface. As usual, the vari-
ation is kept zero at ¢; and ¢, and also on a remote closed
surface, at infinity. In this case the results of variation will be
in force on the disruption surface itself. Still, we have to write
the variation formulae for each region separately. We claim
that equation (1) cannot be subjected to variation. It is the
preliminary condition before any variation. In our system we
have 10 unknown independent functions (4 functions in J
and 6 functions in Fj). These functions already have to sat-
isfy 8 equations: 4 equations in (1) and 4 equations in (7). We
have only 2 degrees of freedom left. We cannot vary Fj; by a
straightforward procedure. Let us employ here the Lagrange
method of indefinite factors. Let us introduce a modified La-
grangian:

A=A+ A (ja—k;Fﬁ), 8)

where A* are 4 indefinite Lagrange factors. Now we have
2+ 4 =06 degrees of freedom and we use them to vary Fj.
We have:
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The first term under integration is divergence and can be
transformed to the hypersurface integral according to Gauss
theorem. Since the variation is arbitrary, the square brackets
term has to be zero in either case. It gives:

Fip = Agji — Ay - )]

If V4 is the inside region of the particle from ¢; to ¢5 then
the hypersurface integrals at ¢; and £5 will be zero, but the hy-
persurface integral over the closed disruption surface will be

L[ 7§ (A'g™ — AFg"), 6Fu dS;.
47-r n

If V4 is the outside vacuum then the hypersurface inte-
grals at t; and £; will be zero. The hypersurface integral over
the remote closed surface will be zero, but the hypersurface
integral over the disruption surface will be

1 . .
_E\/dt\% (Algkl — Akgll)out 0F; dS; .

These integrals will annihilate if the potential A® is con-
tinuous across the disruption surface. The continuity of
potential does not preclude the possibility of a surface
charge/current and a jump of electromagnetic field as a con-
sequence.

Claim: The variation procedure of conventional CED re-
sults in the impossibility of a surface charge/current
on a disruption surface. The variation procedure of
conventional CED begins with equation (9) replacing
the electromagnetic field with a potential. It introduces
the interaction term A¥ j; in the Lagrangian and varies
the potential §A*. As a result of the least action it
obtains Maxwell’s equation (1). But it can be shown
that the consideration of a disruption surface will pro-
duce the requirement of electromagnetic field continu-
ity. This actually denies the possibility of a single layer
surface charge/current (the double layers are not inter-
esting and they will require the jump of potential and
infinite electromagnetic field). Therefore, the conven-
tional variation procedure is incorrect.

5 The physical meaning of potential

Now we learned that the electromagnetic potential, which
was devoid of a physical meaning, has to be continuous across
all the boundaries of disruption. This is a very important
result. It allows me to reinterpret the physical meaning of
potential. It is true that according to (9) we can add to the
potential a gradient of some arbitrary function and the elec-
tromagnetic field won’t change (gauge invariance). Yes, but
this fact can be given another interpretation: the potential is
unique and it actually contains more information about
physical reality than the electromagnetic field does. To
make the potential mathematically unique, besides initial data
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and boundary conditions we need only to impose the conser-
vation equation (formerly Lorenz gauge).

Y 4m .

Ak =0, A=k gk = _ZT gk ()
L la c c

This is true everywhere. Using (1), (7a), and (9) we can

conclude that inside a material continuum the potential has to

satisfy: i Ik
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is satisfied then (7c) also satisfied. This type of equation is
satisfied by the current density, see (7b). This equation can be
called the “Generalized Helmholtz Equation”. In static con-
ditions (11) coincides with the Helmholtz equation. Equation
(11) differs from the Klein-Gordon equation by the sign be-
fore the square of a constant.

The new interpretation of potential: A° represents the
aether quantity (positive or negative), the 3-vector A repre-
sents the aether current. All together: the potential uniquely
describes the existing physical reality — the aether. In gen-
eral, the interpretation of potential doubles the interpretation
of current.

6 The implications of the re-interpretation of potential

Let us suppose that the potential is equal to a gradient of some
function G, which we call a “dummy generator’:

10G -
Ab=g*G,, Av=-—, A=-VG

c Ot
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la 18G_
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G has to be the solution of a homogeneous wave equation.
However, there are no requirements for G on a disruption sur-
face that we know of at present. But now we won’t say that
G is devoid of a physical meaning (remember the mistake we
made with potential).

What kind of a physical process is described here by the
corresponding potential? There is no electromagnetic field
and the energy-momentum tensor is equal to zero. These are
the “dummy waves” — the longitudinal aether waves. These
waves are physically significant only due to the boundary
conditions on the disruption surfaces, which they affect. If
this is the case, then GG can be significant in physical experi-
ment. It can be even unique under the laws (these laws are not
completely clear) of another physical realm (realm of electro-
magnetic potential).

It is difficult to imagine an elementary particle without
some oscillating electromagnetic field inside it. If we assume

10

that the oscillating field is present inside the particle then
the boundary conditions may require the corresponding os-
cillating electromagnetic field in vacuum that surrounds the
particle. It is easy to show that the energy of this vacuum
electromagnetic field will be infinite. However, it is possible
that in vacuum only waves of the scalar potential take care
of the necessary boundary conditions. Since the potential is
not present in the energy-momentum tensor (5), there won’t
be any energy connected with it. We are free to suggest
that the massive elementary particles are the sources of
these waves. These waves are emitted continuously with an
amplitude (or its square) that is proportional to the mass of
the particle (this proposition seems to be reasonable). These
waves are only outgoing waves. The incoming waves can
only be plane incoherent waves (the spherical incoming co-
herent waves are impossible). We are not considering any
incoming waves at this point.

We now show, by some examples, that the concept of the
material continuum really works.

7 Obtaining solutions

Fortunately, all the equations for finding the solutions are lin-
ear. That allows us to seek a total solution as a superposition
of the particular solutions which satisfy the equations and
the boundary conditions separately. The only unlinear condi-
tion is (6a), which has to be fulfilled only on the disruption
surface. Only the total solution can be used in (6a).

IP2 (Ideal Particle Second): Let us obtain the simplest
static spherically symmetric solution with electric charge and
electric field only. We have:

A), = a(Ro(z) — Ro(21) + bz1)

. ke ) (13a)
0<z<z, 0= akR(z)
2
A%, =abt z1<z< 00
Z , (13b)
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B, = akoRi(2), 0<z<2z
22 , (13¢)
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a
Qtot = ?sz; Qsurf = T Zf (b - Rl(zl))7 (13d)
0 0
o’ 2 3 p2
mc® = ﬁ(—z1 Ro(z1) Ri(21) + 27 R§(21) +
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+ 2} R2(21)) = ﬁ(zl —sinz; cosz1),
0
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where Rp(z) and R;(z) are spherical Bessel functions. In
general, the electric field has a jump at the boundary of IP2.
The position of the boundary z; is arbitrary, but only at
z1 =nm (correspond to IP1) the surface charge is zero and
the electric field continuous. The first term in the mass ex-
pression (with the minus sign) corresponds to the energy of
the interior region of the particle. It can be positive or neg-
ative, depending on z; (at z; =nm it is zero). The second
and third terms together represent the vacuum energy, which
is positive. The total energy/mass remains positive at all z;.

It was confirmed that IP is an unstable “equilibrium”.
Given a small perturbation it will grow in time. We hope
to find a stable solution among the more complicated solu-
tions than IP. The first idea was to introduce a spin in a static
solutions. Then we tried to introduce the steady-state oscil-
lating solutions. It was confirmed that there exist oscillating
solutions with oscillating potential in vacuum that does not
produce any vacuum E-M field. Then we tried to introduce a
spin that originates from the oscillating solutions. Also we
tried to consider the cylindrically shaped particles that are
moving with the speed of light (close to a photon, see [3]).
All these attempts indicate that the boundary of a particle that
separates the material continuum from vacuum is a key player
in any solution.

8 The mechanism of interaction between a constant
electric field and a static charge (simplified thin layer
model)

The simplest solutions can be obtained in plane symmetry
where all the physical quantities depend only on the third co-
ordinate — z. Let us consider symmetry of the type, vacuum
— material continuum — vacuum. The thin layer of material
continuum from z = 0 to z = a (a is of the order of the size
of elementary particle) will represent a simplified model of an
elementary particle. The boundaries at z = 0 and z = a are
deemed to be enforced by the particle and the whole deficit
of energy or momentum on these boundaries is deemed to go
directly to the particle. Actually, if we have a deficit of en-
ergy or momentum it means that we are missing a particular
solution that brings this deficit to zero, according to (6a).

For further discussion we need to write down the integral
form of the energy-momentum conservation:

G,
— [ TV = — ¢ T™IdY
cot / 4 j{ E

14 z

(6b)

where V' is a 3D volume (which is not moving — it is our
choice), and X is a 3D closed surface around this volume (ob-
viously also not moving). The index m can correspond to any
coordinate, while the index g corresponds only to the terres-
trial coordinates (1, 2, 3). If m = 0 then the left part of (6b)
is the time rate of increase of the energy inside V. T%7 is the
3-dimensional Pointing vector (or the flow of energy through
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a square unit per unit of time). If m = 3 (in the plane symme-
try only one coordinate is of interest) then the left part of (6b)
is the time rate of increase of the linear momentum of the vol-
ume V (actually it is a force applied to the volume V). T3¢ is
the 3-vector (in general ¢ can be 1, 2, 3; in our case ¢ = 3) of
the flow of linear momentum through a square unit per unit
of time. It is obvious that when static (or in a steady state)
the left part of (6b) must be zero if there is no source/drain of
energy/linear momentum inside the said volume.

Suppose the constant electric field in the first vacuum re-
gion is E. The scalar potential (aether quantity), the electric
field, and the charge density are:

élz—EZ-f-Cl, E1:E

E
P, = i sin kgz + C1 cos koz
0

_ 4mQ + E(1 — coskga)

C
! ko sinkga
Ey = Ecoskgz + koCsinkgz - (14)
kg
p= %2 ®s =—(E+4rQ)(z —a) + C2
4wQ cos kga — E(1 — cos koa)
02 = "
ko sin kga
E3 = E + 47!'Q )

Here the charge density is the solution of (7b) inside the
second region. The potentials are the solutions of (10). All
the physical quantities except p are continuous on the bound-
aries. That means that the jumps of the components of the
energy-momentum tensor will be due to the jumps of the
charge density only. The energy momentum tensor in this
symmetry (and this particular case) is:

TOO_iEz_zing:Tll:TZZ
8w kg
) ) (15)
TO3 _ . 33 _ _ L)
' 8 kgcp

There is no energy flow in this system, but there is a
flow of linear momentum. In the first vacuum region it is:
T3 =—F? /8. Then it jumps on the first and on the second
boundaries:

kZ C?

T33 =0 _ T33 —0=)=— ovi

(2=04) ~T¥(z=0-) = -+

kZ C2
T¥(z=a+)-T¥(z=0a—) = 7%; (16)
KC: KiCE 4mQ
0 -2 _ E+ %
8w 8w @ * 2

After that it is: T2 = —(E +47Q)?/8m. As we go from
left to right the jump on the first boundary is negative. That

11
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means that the small volume that includes the first boundary
gets negative outside (we always consider the outside nor-
mal to the closed surface ¥3) flow of linear momentum. That
means that the volume itself, according to expression (6b),
gets the positive rate of linear momentum, which is the force
in the positive direction of the z-axis. The first boundary is
pushed in the positive direction of the z-axis. The second
boundary is also pushed, but in the negative direction of the
z-axis. The difference is exactly equal to the force with which
the field acts on a particle; see (16). We see that electric field
does not act on a charge per se but only on a whole particle
and only through its boundaries. This picture is true only at
t = 0 because the missing particular solution that makes the
appearance of “free” sources and drains most definitely will
depend on time (the particle will begin to accelerate). This is
the actual success of the proposed modification of CED.

9 The mechanism of interaction between a constant
electric field and a static spherical charge

Here we will confirm that the thin layer treatment corresponds
to the more accurate but more complicated spherical charge
treatment. Suppose we have a constant electric field £ di-
rected along the z-axis in vacuum. Also we have a sphere
of radius r; that separates the material continuum inside the
sphere, from vacuum. The situation is static at ¢ = 0. The
potential in general has to satisfy the equation AI . = 0(10)
everywhere, and equation (7¢) inside the material continuum.
This last equation, with 3rd derivatives, has to be satisfied
strictly inside a material continuum and not on the disruption
surface itself (where a single layer of charge/current density

is possible and the charge/current density, 7% = ¢ Alka‘a,
be infinite). In vacuum we have
Al’;'“ =0. (17)
Let us define a “dummy” potential by:
Df =0, D' —Dp* =0,
(18)

consequently: D‘kala =0.

If we have a solution A* of (10)+(7c) or a solution of
(10)+(17) then A* 4+ D will also be the solution of the same
equations (it does not matter whether inside the material con-
tinuum or in vacuum).

Now we return to our particular case. The solution of
(18) that we are interested in would be: D® = const. If there
is no time dependence then (10) is satisfied for any A° if a
vector potential is zero. Equation (7c) is a Laplace opera-
tor taken from a Helmholtz equation. The solutions of the
Helmholtz equation being considered would be: Ry (kor) and
R (kor) cos @ where R, are the spherical Bessel functions.
In vacuum we consider the solutions e/r, (where e is the to-
tal charge), r cos 8, and (1/7%) cos . So, let us consider the

12

potential

A?n =aRg (ko’f‘) + ri —aRy (ko’l‘l)
1

3
—i—E’(—r) cos @

The corresponding electric

(19)
AO

out —

It is continuous at r = 7.
field and charge density will be,

E-r in — Olko Rl (ko’l’)
3
E‘rout +E(1+ 3> cos 8
3 (20)
Eopin =0, EGout:E<T; 1>sm9
ak?
= —Ry(k
4 o (ko)

We see that the radial component of the electric field has
a jump while the 8 component is continuous. The surface
charge density and the total surface charge are:

_E'r in(rl) + Er out(Tl) =

% — ako Ry (kor1) + 3E cos b
1

471'/7 surf —

21
Qsurf tot = € — akor3 Ry (kor1)

We see that it does not matter what the relation is be-
tween the constants « and e, the surface of the particle has
a “surface charge polarization” 3E cos 8. Only this polariza-
tion will result in the net force on the charge. The polariza-
tion in the volume of the particle can be introduced using the
solution R (kqr)cosf. But this polarization won’t change
the net force (it can be introduced with any constant factor).
We’ve made the corresponding calculations that support this
statement. We do not present them here, for simplification.

The double radial component of the energy-momentum
tensor will be:

1672
kg

8n T = B2 — B2 —

8T

surf in — _azkg (Rg(koﬁ) + R%(ko?‘l))

. (22)
e? e .

87rTsurf out — 7‘7 + - Ecosf@ + 9E° cos“0

1 1

_ mbr
Tsurf out —

TGT

surf in

=0

The force applied to the surface will be normal to the sur-
face and equal t0 Tgurs in — Taues ous- LIS force is zero if

E = 0. This case corresponds to the true static solution of
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our equations with (6a) satisfied. This solution enforces the
spherical boundary. If E is not zero, then we do not know the
actual solution because (6a) is not satisfied. The actual solu-
tion will be not static. But we can calculate the force at the
moment when E was “turned on”. To get the z component
of this force we have to multiply the expression on cos 8. If
we integrate this over the spherical surface then all the terms
except the one with cos 8 are zero. The result of integration
will be eE. This is exactly the force with which the electric
field E acts on a charge e.

10 The transverse electromagnetic wave

Let us consider that the transverse electromagnetic wave is
coming from the left and encounters the layer of material con-
tinuum. We expect to find the transmitted and reflected waves
as well as the radiation pressure. “Behind” the transverse E-
M wave we find that the transverse aether wave with only an
z component (for z-polarized E-M wave) of the vector poten-
tial (aether current) is different from zero:

1Al =@ + @7

&f = Ffe™™* & = Fy ™

1By = —ik 1A', (Ho=—ik- (] — &])
QA =35 + &,

+ _ pt,—ik'z - _ i ik'z
&, =F,e , &, =Fje

w , (23)
k=—, (K')? = k2 + k*
2By = —1k - AY, Hy = —ik'- (8] — &)
ck?
(z,8) = —2 ., A
j(zr ) A 2

1 _ pt_—ik
3A —FSe’z

3By = —ik-3AY, H, = —ik-3Al

where the prefixes to the fields always denote the number of
the region (we did not attach indexes to the current density 3
because it is different from zero only in the second region).
We assume that all the functions depend on ¢ through the fac-
tor exp(zwt). In the first region the given incoming wave F1+
and some reflected wave F;  are present. In the second region
two waves are present. They satisfy the equations:
4 0

2A1”+k2'2A1:—7j, 7’2141:0.
c Oz

On the boundaries the vector potential (aether current)

(24)

Y. N. Keilman. In-Depth Development of Classical Electrodynamics

and its first derivative have to be continuous. We found that

e 21k2 sin(k'a)

F =-F

1 1 D

- 4kE

F+ —ika _ F+

3 € 1 " p
D=(k+k)e*e — (k—k)2e ¥ (25)

2k(k + K'Y .

F2+ — F1+ ( D+ ) e’Lk a

_ 2k(k —k) .
= F+ ik'a

2 1 D J

Here we found the amplitudes of reflected and transmitted
waves and the amplitudes of both waves in the second region
(only F’fr is considered to be real and given).

We found previously that the energy-momentum tensor in
a material continuum has the form (one-dimensional symme-
try assumed):

1 2T
TOO _ - E2 H2 _ -2
8w (8" + H7) k3 c? T
1 2 .
T33:—(E2+Hz)+ m 2
& kZc2 26)
1 2 .
Tll — g (_E2 + H2) _ kcz) C2 ]2 — _T22
1
T = —_ EH
am

Since we use complex numbers — we have to take the real
parts of the physical values, multiply them and then take the
time average. The result will be the real part of the product
of the first complex amplitude on the conjugate of the second
complex amplitude. The result in the second region is:

2m 7= kZ k2
kZc2 ' 7|DJ?

x (kg + 2k% + k§ cos 2k (a — z))

2k2
| D?
x (kg cos2k'(a — z) — k? (k3 + 2k%))

00 _ +2
T =-F

27

4k4k12
T03 _ F+2
b owD?

2k2k12
T33 _ F+2
b omD?

(k5 + 2k?)

The electric and magnetic fields are continuous in this
system. The flow of energy appear to be independent of z
in the second region. It is continuous on the boundaries (see
(26); the currents are not included in T°%). This means that it
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is constant through the whole system. The flow of linear mo-
mentum (733) is positive in the first region and then jumps
up on the first boundary due to the jump of the current 7. It
means that the surface integral in (6b) is positive and the first
boundary is losing linear momentum. The surface is pulled in
the negative direction of the z-axis. But this pull is less than
another pull due to the jump on the second boundary; this can
be determined from (27). We consider k'a ~ 7» but it will be
true for any k'a different from 7. Notice also that at k'a = 7
the reflected wave is zero as can be seen from (25). Thus,
the material continuum will experience the force (through its
boundaries) in the positive direction of the z-axis. The nu-
merical value of this force can be calculated from the jumps
and it is equal to the force that we usually calculate from the
linear momentum of incident transmitted and reflected waves.

11 The longitudinal aether (dummy) wave

Let us consider a longitudinal aether wave travelling from the
left, encountering the layer of material continuum. There are
no electromagnetic fields that accompany this wave in vac-
uum. Not so inside the material continuum. We have:

1A =& + &)
@Y‘ — F]?‘refikz7 @1— — Fl_eikz, k — g
c
A =9 —a, ,A° =98] + &,
&) = Ffe 2 &, = Fy et
k
A= (8] - 97), (K =K+ @9
0 _ckg o —
J (z,t)—ﬂ(‘% + %)
2
3 _ ckok 4 _
77 (2,t) = ank' (‘i’z —@2)
Zk% + — 0 3 + —ikz
E3:?(§2 —@2), 3A :3A =F38

where we assume that all the functions depend on ¢ through
the factor exp(zwt). In the first region the given incoming
wave F;" and some reflected wave F; are present (both are
dummy waves). In the second region two waves are present.
They satisfy the equations:

2A0”+k2~2AO:—41].0
c
2A3”+k2~2A3:—4—7rj3 (29)
c

ik A% +,A4% =0.

To define all the waves we have to satisfy the conditions
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on the boundaries. The scalar potential (aether quantity) and
the vector potential (aether current) should be continuous
across the boundaries. We found that

on z=a: Fz-i-efik’a _ k ;—kkl Fyfe ke
Fyeita = _klzizk Fjf eika
on z=0: Ff:Ffrw
Fife ke = pf 4’;“' (30)
D=(k+ k’)2 eik'a _ (k' — k)2 o ik'a
Ff = Ff w ik'a
Fy = —Ff W —ik'a

Here we found the amplitudes of reflected and transmitted
waves and the amplitudes of both waves in the second region
(only F;' is considered to be real).

From (28) we can calculate the derivatives:

1AO’ - —’lk . 1A3 zAOI - —Iikm ‘2 8
' k (28a)
1AY = ik A%, S AY = —ik -, A°

We see that the aether current (A%) has a continuous de-
rivative while the derivative of aether quantity (A°) has a
jump at the boundaries. This means that there are surface
charges associated with the boundaries.

We notice from (28) that the electric field, charge density,
and current density are different from zero inside the second
region. This means that the material continuum produces a
kind of physical response to the energy-less dummy waves.
We also found previously that the energy-momentum tensor
in a material continuum has the form (one-dimensional sym-
metry assumed),

1
TOO — 7E2 _ 2 2 +2
8w k3 c? (0" +57)
1 2
Tl _ g2 2.2, .2
o g (70T 31)
22 _ 33 _ iEz _2m (c2p2 _jz)
8 k2 c2
4
TOl - _ -
k%cz Cp]

To actually calculate a time average of the energy-
momentum tensor we have to take the real parts of the physi-
cal values, multiply them, and then take the time average. The
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result will be the real part of the product of the first complex
amplitude on the conjugate of the second complex amplitude.
The result of calculation is,

T33 — _(F+)2 2k‘01 (k2+2k2)
1 7!'|D|2 0
4k2k2k/2
T03 — F+ 2 0 32
( 1) 7T|.D|2 ( )
2kS
00 __ +32 0
7% = (F)") IDP cos(2k' (a — z))

The first two time averages of the tensor components ap-
pear to be independent of z. The energy density depends on z.
All these tensor components are zero in both vacuum regions.
This means that all of them jump at the boundaries.

On the first boundary the jump of T332 is negative. It
means that the first boundary will be pushed to the right. On
the second boundary the jump will be positive and the same
by its absolute value (because T2 is constant inside the sec-
ond region). The second boundary will be pushed in the neg-
ative direction of the z-axis with the same force — we have
equilibrium — no “free” force.

On the first boundary the jump of T°% is negative. It
means that the first boundary will be getting energy. On the
second boundary the jump will be positive and the same by
its absolute value (because T°2 is constant inside the second
region). The second boundary will be losing the same amount
of energy — no “free” energy.

It appears that the particular solutions that we have carry
energy and momentum from the second boundary to the first,
while the missing particular solution carries them back. If we
imagine that the energy and momentum can be lost on the
way from the sourse to the drain then we get a free linear mo-
mentum directed to the sourse of dummy waves (gravitational
force). Also we get a free energy for heating stars. This un-
conservation proposition can be quite real if we consider that
we obtained the conservation of energy-momentum from the
requirement of minimum action. In the real physical world
the action may has a small jitter around the exact minimum.
Obviously this jitter is very small so that it can revile itself
only on a cosmic scale.

At the present time we hesitate in proceeding further from
these results because the meaning of these results has still to
be clarified.

12 De Broglie’s waves

Let us suppose, in addition (see Section 6), that the frequency
of dummy waves (as well as the intensity) also proportional to
the mass of the particle: w = mc?/h. The resting particles are
present in abundance in the experimental arrangement itself.
These resting particles can be partially synchronized in some
proximity (the extent of this proximity is not known yet) of
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any point inside the experimental device. We can expect some
standing scalar waves of a dummy generator that can be expe-
rienced by the moving particle independently of the direction
of motion. In this case we can explain De Broglie’s waves as
beat frequency waves between the frequency of a resting par-
ticle and the Doppler shifted frequency of a moving particle.
The rdle of the nonlinear device that is necessary to obtain the
beat frequency wave, can be very well played by the boundary
of the particle itself. This will explain “the wave properties of
particles” by purely classical means, as first proposed in 1993
by Milo Wolff [7].

In the foregoing reformulation of conventional classical
electrodynamics, we omitted the interaction term in the La-
grangian/Hamiltonian. Quantum Theory was undermined by
this action. One should note that, historically, after the cre-
ation of quantum theory, there were attempts to legitimize the
electromagnetic potential as a physically measurable value
(see R. Feynman, [1]). Still, it is too early to try to find a
classical basis for quantum theory, but the direction to go is
that of the physical realm of the electromagnetic potential.

13 Conclusion

Probably it is not right to keep the disruption surface devoid
from surface energy and surface tension. To introduce that
correctly we have to consider some surface Lagrange density
and add a surface integral to the action volume integral. That
I hope to see in a future development.
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