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We show how Ricci flow is related to quantum theory via Fisher information and the
quantum potential.

1 Introduction

In [9, 13, 14] we indicated some relations between Weyl ge-
ometry and the quantum potential, between conformal gen-
eral relativity (GR) and Dirac-Weyl theory, and between Ricci
flow and the quantum potential. We would now like to de-
velop this a little further. First we consider simple Ricci flow
as in [35, 49]. Thus from [35] we take the Perelman entropy
functional as (1A) F(g; f) =

R
M (jrf j2 + R) exp(�f)dV

(restricted to f such that
R
M exp(�f)dV = 1) and a Nash

(or differential) entropy via (1B) N(u) =
R
M u log(u)dV

where u = exp(�f) (M is a compact Riemannian manifold
without boundary). One writes dV =

p
det(g)

Q
dxi and

shows that if g ! g + sh (g; h 2 M = Riem(M)) then
(1C) @s det(g)js=0 = gijhij det(g) = (Trgh) det(g). This
comes from a matrix formula of the following form
(1D) @s det(A+ B)js=0 = (A�1 : B) det(A) where A�1 :
B = aijbji = aijbij for symmetricB (aij comes fromA�1).
If one has Ricci flow (1E) @sg=�2Ric (i.e. @sgij =�2Rij)
then, considering h � �2Ric, one arrives at (1F) @sdV =
=�RdV whereR=gijRij (more general Ricci flow involves
(1G) @tgik =�2(Rik +rirk�)). We use now t and s in-
terchangeably and suppose @tg=�2Ric with u= exp(�f)
satisfying ��u= 0 where ��=�@t�� +R. ThenR
M exp(�f)dV = 1 is preserved since (1H) @t

R
M udV =

=
R
M (@su � Ru)dV = � RM �udV = 0 and, after some

integration by parts,

@tN =
Z
M

�
@tu(log(u) + 1)dV + u log(u)@tdV

�
=

=
Z
M

(jrf j2 +R)e�fdV = F:
(1.1)

In particular for R > 0, N is monotone as befits an en-
tropy. We note also that ��u = 0 is equivalent to (1I) @tf =
=��f + jrf j2 �R.

It was also noted in [49] that F is a Fisher information
functional (cf. [8, 10, 24, 25]) and we showed in [13] that
for a given 3-D manifold M and a Weyl-Schrödinger picture
of quantum evolution based on [42, 43] (cf. also [4, 5, 6, 8,
9, 10, 11, 12, 16, 17, 51]) one can express F in terms of a
quantum potential Q in the form (1J) F � �

R
M QPdV +

+�
R
M j~�j2PdV where ~� is a Weyl vector and P is a prob-

ability distribution associated with a quantum mass density
�̂ � j j2. There will be a corresponding Schrödinger

equation (SE) in a Weyl space as in [10, 13] provided there
is a phase S (for  = j j exp(iS=~)) satisfying (1K)
(1=m)div(PrS) = �P � RP (arising from @t�̂ � ��̂ =
=�(1=m)div(�̂rS) and @t�̂+ ��̂�R�̂ = 0 with �̂�P �
�u� j j2). In the present work we show that there can ex-
ist solutions S of (1K) and this establishes a connection be-
tween Ricci flow and quantum theory (via Fisher informa-
tion and the quantum potential). Another aspect is to look
at a relativistic situation with conformal perturbations of a
4-D semi-Riemannian metric g based on a quantum poten-
tial (defined via a quantum mass). Indeed in a simple minded
way we could perhaps think of a conformal transformation
ĝab = 
2gab (in 4-D) where following [14] we can imag-
ine ourselves immersed in conformal general relativity (GR)
with metric ĝ and (1L) exp(Q) � M2=m2 = 
2 = �̂�1

with � � M where � is a Dirac field and Q a quantum po-
tential Q � (~2=m2c2)(�g

p�)=p�) with � � j 2j refer-
ring to a quantum matter density. The theme here (as de-
veloped in [14]) is that Weyl-Dirac action with Dirac field �
leads to � � M and is equivalent to conformal GR (cf. also
[8, 10, 36, 45, 46, 47] and see [28] for ideas on Ricci flow
gravity).

REMARK 1.1. For completeness we recall (cf. [10, 50])
for LG = (1=2�)

p�g R
�L =

1
2�

�
Rab � 1

2
gabR

� p�g �gab +

+
1

2�
gab
p�g �Rab :

(1.2)

The last term can be converted to a boundary integral
if certain derivatives of gab are fixed there. Next following
[7, 9, 14, 27, 38, 39, 40] the Einstein frame GR action has the
form

SGR =
Z
d4x
p�g (R� �(r )2 + 16�LM ) (1.3)

(cf. [7]) whose conformal form (conformal GR) is

ŜGR =
Z
d4x

p�ĝ e� �
�
�
R̂�

�
�� 3

2

�
(r̂ )2 + 16�e� LM

�
= (1.4)

=
Z
d4x
p�g

�
�̂R̂�

�
�� 3

2

�
(r̂�̂)2

�̂
+16��̂2LM

�
;
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where ĝab=
2gab, 
2 = exp( )=�; and �̂= exp(� )=
=��1. If we omit the matter Lagrangians, and set �= 3

2 ��,
(1.4) becomes for ĝab ! gab

~S =
Z
d4x
p�g e� �R+ �(r )2�: (1.5)

In this form on a 3-D manifold M we have exactly the
situation treated in [10, 13] with an associated SE in Weyl
space based on (1K). �

2 Solution of (1K)

Consider now (1K) (1=m)div(PrS) = �P �RP for P �
� �̂ � j j2 and

R
P
pjgjd3x = 1 (in 3-D we will use

here
pjgj for

p�g). One knows that div(PrS) =P�S+
+rP � rS and

� =
1pjgj @m�pjgjr �; r = gmn@n Z

M
divV

pjgj d3x =
Z
@M

V � ds

9>>>=>>>; (2.1)

(cf. [10]). Recall also
R
P
pjgj d3x = 1 and

Q � � ~2

8m

��rP
P

�2

� 2
�

�P
P

��
<Q> =

Z
PQd3x

9>>>=>>>; : (2.2)

Now in 1-D an analogous equation to (1K) would be
(3A) (PS0)0=P 0�RP =F with solution determined via

PS0 = P 0 �
Z
RP + c)

) S0 = @x log(P )� 1
P

Z
RP + cP�1 )

) S = log(P )�
Z

1
P

Z
RP + c

Z
P�1 + k ; (2.3)

which suggests that solutions of (1K) do in fact exist in gen-
eral. We approach the general case in Sobolev spaces à la [1,
2, 15, 22]. The volume element is defined via � =

pjgjdx1^
� � � ^ dxn (where n = 3 for our purposes) and � : ^pM !
^n�pM is defined via

(��)�p+1����n =
1
p!
��1����n ��1����p

(�; �) =
1
p!
��1����p ��1����p

9>>=>>; ; (2.4)

�1 = �; ��� = (�1)p(n�p)�; �� = 1; � ^ (��) = (�; �)�.
One writes now<�; �> =

R
M (�; �)� and, for (
; �) a local

chart we have (2A)
R
M fdV =

R
�(
)(

pjgjf) � ��1Q dxi

(� R
M f

pjgjQ dxi). Then one has (2B) <d�; 
>=
=<�; �
> for � 2 ^pM and 
 2 ^p+1M where the codif-
ferential � on p-forms is defined via (2C) � = (�1)p ��1 d�.
Then �2 = d2 = 0 and � = d� + �d so that �f = �df =
= �r�r�f . Indeed for � 2 ^pM

(��)�1;���;�p�1 = �r
�
;�1;���;�p�1 (2.5)

with �f = 0 (� : ^pM ! ^p�1M ). Then in particular
(2D) <��; �>=<�d�; �>=<d�; d�>=

R
M r��r���.

Now to deal with weak solutions of an equation in diver-
gence form look at an operator (2E) Au = �r(aru) �
(�1=

pjgj) @m(
pjgj agmnrnu) = �rm(armu) so that

for � 2 D(M)Z
M
Au�dV = �

Z �rm(agmnrnu)
�
�dV =

=
Z
agmnrnurm�dV =

Z
armurm�dV:

(2.6)

Here one imagines M to be a complete Riemannian man-
ifold with Soblev spaces H1

0 (M) � H1(M) (see [1, 3, 15,
26, 29, 48]). The notation in [1] is different and we think
of H1(M) as the space of L2 functions u on M with ru 2
L2 and H1

0 means the completion of D(M) in the H1 norm
kuk2 =

R
M [juj2 + jruj2]dV . Following [29] we can also

assume @M = ; with M connected for all M under con-
sideration. Then let H = H1(M) be our Hilbert space and
consider the operator A(S) = �(1=m)r(PrS) with

B(S; ) =
1
m

Z
P rmSrm dV (2.7)

for S; 2H1
0 =H1. Then A(S) =RP ��P =F becomes

(2F) B(S; ) =<F; >=
R
F  dV and one has (2G)

jB(S; )j6 c kSkH k kH and jB(S; S)j= R P (rS)2 dV .
Now P > 0 with

R
PdV = 1 but to use the Lax-Milgram the-

ory we need here jB(S; S)j > �kSk2H (H = H1). In this
direction one recalls that in Euclidean space for  2 H1

0 (R3)
there follows (2H) k k2L2 6 c kr k2L2 (Friedrich’s inequal-
ity — cf. [48]) which would imply k k2H 6 (c+ 1)kr k2L2 .
However such Sobolev and Poincaré-Sobolev inequalities be-
come more complicated on manifolds and (2H) is in no way
automatic (cf. [1, 29, 48]). However we have some recourse
here to the definition of P, namely P = exp(�f), which ba-
sically is a conformal factor and P > 0 unless f!1. One
heuristic situation would then be to assume (2I) 0<�6P (x)
on M (and since

R
exp(�f)dV = 1 with dV =

pjgjQ3
1 dx

i

we must then have �
R
dV 6 1 or vol(M) =

R
M dV 6 (1=�)).

Then from (2G) we have (2J) jB(S; S)j > �k(rS)2k and for
any �> 0 it follows: jB(S; S)j+�kSk2L2 > min(�; �)kSk2H1 .
This means via Lax-Milgram that the equation

A(S)+�S = � 1
m
r(PrS)+�S = F = RP��P (2.8)
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has a unique weak solution S 2H1(M) for any �> 0
(assuming F 2L2(M)). Equivalently (2K) � 1

m [P�S+
+ (rP )(rS)] + �S = F has a unique weak solution S 2
H1(M). This is close but we cannot put � = 0. A differ-
ent approach following from remarks in [29], pp. 56–57 (cor-
rected in [30], p. 248), leads to an heuristic weak solution of
(1K). Thus from a result of Yau [53] if M is a complete sim-
ply connected 3-D differential manifold with sectional curva-
ture K < 0 one has for u 2 D(M)Z

M
j jdV 6 (2

p�K)�1
Z
M
jr jdV )

)
Z
M
j j2dV 6 c

Z
M
jr j2dV: (2.9)

Hence (2H) holds and one has k k2H1 6 (1 + c)kr k2.
Morever if M is bounded and simply connected with a rea-
sonable boundary @M (e.g. weakly convex) one expects (2L)R
M j j2dV 6 c

R
M jr j2dV for  2 D(M) (cf. [41]). In ei-

ther case (2M) jB(S; S)j > �k(rS)2k > (c+ 1)�1�kSk2H1
0

and this leads via Lax-Milgram again to a sample result

THEOREM 2.1. LetM be a bounded and simply connected
3-D differential manifold with a reasonable boundary @M .
Then there exists a unique weak solution of (1K) in H1

0 (M).

REMARK 2.1. One must keep in mind here that the met-
ric is changing under the Ricci flow and assume that estimates
involving e.g. K are considered over some time interval. �

REMARK 2.2. There is an extensive literature concern-
ing eigenvalue bounds on Riemannian manifolds and we cite
a few such results. Here I1(M)� inf
(A(@
)=V (
))
where 
 runs over (connected) open subsets of M with com-
pact closure and smooth boundary (cf. [18, 19]). Yau’s re-
sult is I1(M) > 2

p�K (with equality for the 3-D hyper-
bolic space) and Cheeger’s result involves follows jr�kL2 >
> (1=2)I1(M)k�kL2 >

p�Kk�kL2 . There are many other
results where e.g. �1 > c (vol(M))�2 for M a compact 3-D
hyperbolic manifold of finite volume (see [21, 34, 44] for
this and variations). There are also estimates for the first
eigenvalue along a Ricci flow in [33, 37] and estimates of
the form �1 > 3K for closed 3-D manifolds with Ricci cur-
vature R > 2K (K > 0) in [32, 33]. In fact Ling obtains
�1 > K + (�2= ~d2) where ~d is the diameter of the largest in-
terior ball in nodal domains of the first eigenfunction. There
are also estimates �1 > (�2=d2) (d = diam(M); R > 0) in
[31, 52, 54] and the papers of Ling give an excellent survey
of results, new and old, including estimates of a similar kind
for the first Dirichlet and Neumann eigenvalues. �
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