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It is shown that a photon with a specific frequency can be identified with the Dirac mag-
netic monopole. When a Dirac-Wilson line forms a Dirac-Wilson loop, it is a photon.
This loop model of photon is exactly solvable. From the winding numbers of this loop-
form of photon, we derive the quantization properties of energy and electric charge. A
new QED theory is presented that is free of ultraviolet divergences. The Dirac-Wilson
line is as the quantum photon propagator of the new QED theory from which we can
derive known QED effects such as the anomalous magnetic moment and the Lamb shift.
The one-loop computation of these effects is simpler and is more accurate than that in
the conventional QED theory. Furthermore, from the new QED theory, we have derived
anew QED effect. A new formulation of the Bethe-Salpeter (BS) equation solves the
difficulties of the BS equation and gives a modified ground state of the positronium. By
the mentioned new QED effect and by the new formulation of the BS equation, a term
in the orthopositronium decay rate that is missing in the conventional QED is found,
resolving the orthopositronium lifetime puzzle completely. It is also shown that the
graviton can be constructed from the photon, yielding a theory of quantum gravity that

unifies gravitation and electromagnetism.
1 Introduction

It is well known that the quantum era of physics began with
the quantization of energy of electromagnetic field, from
which Planck derived the radiation formula. FEinstein then
introduced the light-quantum to explain the photoelectric ef-
fects. This light-quantum was regarded as a particle called
photon [1-3]. Quantum mechanics was then developed, ush-
ering in the modern quantum physics era. Subsequently, the
quantization of the electromagnetic field and the theory of
Quantum Electrodynamics (QED) were established.

In this development of quantum theory of physics, the
photon plays a special role. While it is the beginning of quan-
tum physics, it is not easy to understand as is the quantum
mechanics of other particles described by the Schrodinger
equation. In fact, Einstein was careful in regarding the
light-quantum as a particle, and the acceptance of the light-
quantum as a particle called photon did not come about until
much later [1]. The quantum field theory of electromagnetic
field was developed for the photon. However, such difficul-
ties of the quantum field theory as the ultraviolet divergences
are well known. Because of the difficulty of understanding
the photon, Einstein once asked: “What is the photon?” [1].

On the other hand, based on the symmetry of the electric
and magnetic field described by the Maxwell equation and
on the complex wave function of quantum mechanics, Dirac
derived the concept of the magnetic monopole, which is hy-
pothetically considered as a particle with magnetic charge, in
analogy to the electron with electric charge. An important
feature of this magnetic monopole is that it gives the quanti-
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zation of electric charge. Thus it is interesting and important
to find such particles. However, in spite of much effort, no
such particles have been found [4, 5].

In this paper we shall establish a mathematical model of
photon to show that the magnetic monopole can be identified
as a photon. Before giving the detailed model, let us discuss
some thoughts for this identification in the following.

First, if the photon and the magnetic monopole are dif-
ferent types of elementary quantum particles in the electro-
magnetic field, it is odd that one type can be derived from the
other. A natural resolution of this oddity is the identification
of the magnetic monopole as a photon.

The quantum field theory of the free Maxwell equation
is the basic quantum theory of photon [6]. This free field
theory is a linear theory and the models of the quantum parti-
cles obtained from this theory are linear. However, a stable
particle should be a soliton, which is of the nonlinear na-
ture. Secondly, the quantum particles of the quantum the-
ory of Maxwell equation are collective quantum effects in the
same way the phonons which are elementary excitations in
a statistical model. These phonons are usually considered as
quasi-particles and are not regarded as real particles. Regard-
ing the Maxwell equation as a statistical wave equation of
electromagnetic field, we have that the quantum particles in
the quantum theory of Maxwell equation are analogous to the
phonons. Thus they should be regarded as quasi-photons and
have properties of photons but not a complete description of
photons.

In this paper, a nonlinear model of photon is established.
In the model, we show that the Dirac magnetic monopole
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can be identified with the photon with some frequencies. We
provide a U(1) gauge theory of Quantum Electrodynamics
(QED), from which we derive photon as a quantum Dirac-
Wilson loop W (z, z) of this model.  This nonlinear loop
model of the photon is exactly solvable and thus may be re-
garded as a quantum soliton. From the winding numbers of
this loop model of the photon, we derive the quantization
property of energy in Planck’s formula of radiation and the
quantization property of charge. We show that the quanti-
zation property of charge is derived from the quantization
property of energy (in Planck’s formula of radiation), when
the magnetic monopole is identified with photon with certain
frequencies. This explains why we cannot physically find a
magnetic monopole. It is simply a photon with a specific fre-
quency.

From this nonlinear model of the photon, we also con-
struct a model of the electron which has a mass mechanism
for generating mass of the electron. This mechanism of gen-
erating mass supersedes the conventional mechanism of gen-
erating mass (through the Higgs particles) and makes hypoth-
esizing the existence of the Higgs particles unnecessary. This
explains why we cannot physically find such Higgs particles.

The new quantum gauge theory is similar to the conven-
tional QED theory except that the former is not based on the
four dimensional space-time (¢, x) but is based on the proper
time s in the theory of relativity. Only in a later stage in the
new quantum gauge theory, the space-time variable (¢,x) is
derived from the proper time s through the Lorentz metric
ds? = dt? — dx? to obtain space-time statistics and explain
the observable QED effects.

The derived space variable x is a random variable in this
quantum gauge theory. Recall that the conventional quan-
tum mechanics is based on the space-time. Since the space
variable x is actually a random variable as shown in the new
quantum gauge theory, the conventional quantum mechanics
needs probabilistic interpretation and thus has a most myste-
rious measurement problem, on which Albert Einstein once
remarked: “God does not play dice with the universe.” In
contrast, the new quantum gauge theory does not involve the
mentioned measurement problem because it is not based on
the space-time and is deterministic. Thus this quantum
gauge theory resolves the mysterious measurement problem
of quantum mechanics.

Using the space-time statistics, we employ Feynman dia-
grams and Feynman rules to compute the basic QED effects
such as the vertex correction, the photon self-energy and the
electron self-energy. In this computation of the Feynman in-
tegrals, the dimensional regularization method in the conven-
tional QED theory is also used. Nevertheless, while the con-
ventional QED theory uses it to reduce the dimension 4 of
space-time to a (fractional) number n to avoid the ultraviolet
divergences in the Feynman integrals, the new QED theory
uses it to increase the dimension 1 of the proper time to a
number n less than 4, which is the dimension of the space-
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time, to derive the space-time statistics. In the new QED the-
ory, there are no ultraviolet divergences, and the dimensional
regularization method is not used for regularization.

After this increase of dimension, the renormalization
method is used to derive the well-known QED effects. Unlike
the conventional QED theory, the renormalization method is
used in the new QED theory to compute the space-time statis-
tics, but not to remove the ultraviolet divergences, since the
ultraviolet divergences do not occur in the new QED theory.
From these QED effects, we compute the anomalous mag-
netic moment and the Lamb shift [6]. The computation does
not involve numerical approximation as does that of the con-
ventional QED and is simpler and more accurate.

For getting these QED effects, the quantum photon prop-
agator W(z,z'), which is like a line segment connecting
two electrons, is used to derive the electrodynamic interac-
tion. (When the quantum photon propagator W(z, z') forms a
closed circle with z = 2/, it then becomes a photon W (z, z).)
From this quantum photon propagator, a photon propagator is
derived that is similar to the Feynman photon propagator in
the conventional QED theory.

The photon-loop W (z, z) leads to the renormalized elec-
tric charge e and the mass m of electron. In the conventional
QED theory, the bare charge e is of less importance than the
renormalized charge e, in the sense that it is unobservable. In
contrast, in this new theory of QED, the bare charge ey and
the renormalized charge e are of equal importance. While the
renormalized charge e leads to the physical results of QED,
the bare charge eg leads to the universal gravitation constant
G. It is shown that e = n.ep, where n. is a very large wind-
ing number and thus eq is a very small number. It is further
shown that the gravitational constant G = 2eZ which is thus
an extremely small number. This agrees with the fact that the
experimental gravitational constant G is a very small num-
ber. The relationships, e =neeq and G = 26(2), are a part of
a theory unifying gravitation and electromagnetism. In this
unified theory, the graviton propagator and the graviton are
constructed from the quantum photon propagator. This con-
struction leads to a theory of quantum gravity. In short, a new
theory of quantum gravity is developed from the new QED
theory in this paper, and unification of gravitation and elec-
tromagnetism is achieved.

In this paper, we also derive a new QED effect from the
seagull vertex of the new QED theory. The conventional
Bethe-Salpeter (BS) equation is reformulated to resolve its
difficulties (such as the existence of abnormal solutions [7—
32]) and to give a modified ground state wave function of
the positronium. By the new QED effect and the reformu-
lated BS equation, another new QED effect, a term in the or-
thopositronium decay rate that is missing in the conventional
QED is discovered. Including the discovered term, the com-
puted orthopositronium decay rate now agrees with the ex-
perimental rate, resolving the orthopositronium lifetime puz-
zle completely [33-52]. We note that the recent resolution of
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this orthopositronium lifetime puzzle resolves the puzzle only
partially due to a special statistical nature of this new term in
the orthopositronium decay rate.

This paper is organized as follows. In Section 2 we give a
brief description of a new QED theory. With this theory, we
introduce the classical Dirac-Wilson loop in Section 3. We
show that the quantum version of this loop is a nonlinear ex-
actly solvable model and thus can be regarded as a soliton.
We identify this quantum Dirac-Wilson loop as a photon with
the U(1) group as the gauge group. To investigate the prop-
erties of this Dirac-Wilson loop, we derive a chiral symmetry
from the gauge symmetry of this quantum model. From this
chiral symmetry, we derive, in Section 4, a conformal field
theory, which includes an affine Kac-Moody algebra and a
quantum Knizhnik-Zamolodchikov (KZ) equation. A main
point of our model on the quantum KZ equation is that we
can derive two KZ equations which are dual to each other.
This duality is the main point for the Dirac-Wilson loop to
be exactly solvable and to have a winding property which ex-
plains properties of photon. This quantum KZ equation can
be regarded as a quantum Yang-Mills equation.

In Sections 5 to 8, we solve the Dirac-Wilson loop in a
form with a winding property, starting with the KZ equations.
From the winding property of the Dirac-Wilson loop, we de-
rive, in Section 9 and Section 10, the quantization of energy
and the quantization of electric charge which are properties of
photon and magnetic monopole. We then show that the quan-
tization property of charge is derived from the quantization
property of energy of Planck’s formula of radiation, when we
identify photon with the magnetic monopole for some fre-
quencies. From this nonlinear model of photon, we also de-
rive a model of the electron in Section 11. In this model of
electron, we provide a mass mechanism for generating mass
to electron. In Section 12, we show that the photon with a spe-
cific frequency can carry electric charge and magnetic charge,
since an electron is formed from a photon with a specific fre-
quency for giving the electric charge and magnetic charge. In
Section 13, we derive the statistics of photons and electrons
from the loop models of photons and electrons.

In Sections 14 to 22, we derive a new theory of QED,
wherein we perform the computation of the known basic QED
effects such as the photon self-energy, the electron self-energy
and the vertex correction. In particular, we provide simpler
and more accurate computation of the anomalous magnetic
moment and the Lamb shift. Then in Section 23, we com-
pute a new QED effect. Then from Section 24 to Section
25, we reformulate the Bethe-Salpeter (BS) equation. With
this new version of the BS equation and the new QED effect,
a modified ground state wave function of the positronium is
derived. Then by this modified ground state of the positron-
ium, we derive in Section 26 another new QED effect, a term
missing in the theoretic orthopositronium decay rate of the
conventional QED theory, and show that this new theoretical
orthopositronium decay rate agrees with the experimental de-
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cay rate, completely resolving the orthopositronium life time
puzzle [33-52].

In Section 27, the graviton is derived from the photon.
This leads to a new theory of quantum gravity and a new uni-
fication of gravitation and electromagnetism. Then in Section
28, we show that the quantized energies of gravitons can be
identified as dark energy. Then in a way similar to the con-
struction of electrons by photons, we use gravitons to con-
struct particles which can be regarded as dark matter. We
show that the force among gravitons can be repulsive. This
gives the diffusion phenomenon of dark energy and the accel-
erating expansion of the universe [53-57].

2 New gauge model of QED

Let us construct a quantum gauge model, as follows. In prob-
ability theory we have the Wiener measure v which is a mea-
sure on the space Cltg, t1] of continuous functions [58]. This
measure is a well defined mathematical theory for the Brow-
nian motion and it may be symbolically written in the follow-
ing form:
dv = e Lodg,
_1rt (di
2 Jtp \dt
Brownian particle and dz = &[], dz(¢) is symbolically a
product of Lebesgue measures dz(t) and N is a normalized
constant.
Once the Wiener measure is defined we may then define
other measures on C'tg, 1], as follows [58]. Let a potential

ey

where Lyg: )2 dt is the energy integral of the

term % ft? Vdt be added to Ly. Then we have a measure vy
on C[to, t1] defined by:

1t
dvi =e ? fio thdz/. 2)

Under some condition on V' we have that v; is well de-
fined on C[tg,%1]. Let us call (2) as the Feynman-Kac for-
mula [58].

Let us then follow this formula to construct a quantum
model of electrodynamics, as follows. Then similar to the
formula (2) we construct a quantum model of electrodynam-
ics from the following energy integral:

— [ Dds = — [*[3 (%4 -
+ (L +ieo(TI, 4,427 ) < )
x (42— ieo(3_, A;%)7) |ds,

where the complex variable Z = Z(z(s)) and the real vari-
ables A;=A;(z(s)) and A; = Ay(2(s)) are continuous
functions in a form that they are in terms of a (continuously
differentiable) curve z(s) = C(s) = (z1(s), z%(s)),s0 < s <
s1,2(s0) = z(s1) in the complex plane where s is a parameter
representing the proper time in relativity. (We shall also write

0Az )* (6A1

_ BA,
ozt EEX ozl ) +
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z(s) in the complex variable form C(s)=z(s)=z!(s)+
+122(s),s0 < s < s1.) The complex variable Z = Z(z(s))
represents a field of matter, such as the electron (Z* denotes
its complex conjugate), and the real variables A; = A;(2(s))
and A, = Ax(z(s)) represent a connection (or the gauge field
of the photon) and eq denotes the (bare) electric charge.

The integral (3) has the following gauge symmetry:

Z'(2(s)) = B(x(s)) 0=

1 da - (4)
A(2(s) = Aj(2(s) + 2, j=1,2

where a =a(z) is a continuously differentiable real-valued
function of z.

We remark that this QED theory is similar to the conven-
tional Yang-Mills gauge theories. A feature of (3) is that it
is not formulated with the four-dimensional space-time but is
formulated with the one dimensional proper time. This one
dimensional nature let this QED theory avoid the usual ul-
traviolet divergence difficulty of quantum fields. As most of
the theories in physics are formulated with the space-time let
us give reasons of this formulation. We know that with the
concept of space-time we have a convenient way to under-
stand physical phenomena and to formulate theories such as
the Newton equation, the Schrodinger equation, e.t.c. to de-
scribe these physical phenomena. However we also know that
there are fundamental difficulties related to space-time such
as the ultraviolet divergence difficulty of quantum field the-
ory. To resolve these difficulties let us reexamine the concept
of space-time. We propose that the space-time is a statistical
concept which is not as basic as the proper time in relativity.
Because a statistical theory is usually a convenient but incom-
plete description of a more basic theory this means that some
difficulties may appear if we formulate a physical theory with
the space-time. This also means that a way to formulate a ba-
sic theory of physics is to formulate it not with the space-time
but with the proper time only as the parameter for evolution.
This is a reason that we use (3) to formulate a QED theory. In
this formulation we regard the proper time as an independent
parameter for evolution. From (3) we may obtain the con-
ventional results in terms of space-time by introducing the
space-time as a statistical method.

Let us explain in more detail how the space-time comes
out as a statistics. For statistical purpose when many electrons
(or many photons) present we introduce space-time (¢, x) as
a statistical method to write ds? in the form

ds? = dt? — dx?. 3)

We notice that for a given ds there may have many dt
and dx which correspond to many electrons (or photons) such
that (5) holds. In this way the space-time is introduced as a
statistics. By (5) we shall derive statistical formulas for many
electrons (or photons) from formulas obtained from (3). In
this way we obtain the Dirac equation as a statistical equa-
tion for electrons and the Maxwell equation as a statistical
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equation for photons. In this way we may regard the con-
ventional QED theory as a statistical theory extended from
the proper-time formulation of this QED theory (From the
proper-time formulation of this QED theory we also have a
theory of space-time statistics which give the results of the
conventional QED theory). This statistical interpretation of
the conventional QED theory is thus an explanation of the
mystery that the conventional QED theory is successful in
the computation of quantum effects of electromagnetic inter-
action while it has the difficulty of ultraviolet divergence.

We notice that the relation (5) is the famous Lorentz met-
ric. (We may generalize it to other metric in General Rela-
tivity.) Here our understanding of the Lorentz metric is that
it is a statistical formula where the proper time s is more
fundamental than the space-time (¢,x) in the sense that we
first have the proper time and the space-time is introduced
via the Lorentz metric only for the purpose of statistics. This
reverses the order of appearance of the proper time and the
space-time in the history of relativity in which we first have
the concept of space-time and then we have the concept of
proper time which is introduced via the Lorentz metric. Once
we understand that the space-time is a statistical concept from
(3) we can give a solution to the quantum measurement prob-
lem in the debate about quantum mechanics between Bohr
and Einstein. In this debate Bohr insisted that with the prob-
ability interpretation quantum mechanics is very successful.
On the other hand Einstein insisted that quantum mechan-
ics is incomplete because of probability interpretation. Here
we resolve this debate by constructing the above QED the-
ory which is a quantum theory as the quantum mechanics and
unlike quantum mechanics which needs probability interpre-
tation we have that this QED theory is deterministic since it
is not formulated with the space-time.

Similar to the usual Yang-Mills gauge theory we can gen-
eralize this gauge theory with U(1) gauge symmetry to non-
abelian gauge theories. As an illustration let us consider
SU(2)®U(1) gauge symmetry where SU(2) @ U (1) denotes
the direct product of the groups SU(2) and U(1).

Similar to (3) we consider the following energy integral:

L= [ [3Tr(Di4s — DyA1)*(D1Az — Dady) +

(6)
+(D§Z*)(DoZ)]ds,

where Z = (zl,zQ)T is a two dimensional complex vector;

Aj=S0 0 A¥t* (7 =1,2) where A% denotes a component
of a gauge field A*; t*=4<T* denotes a generator of
SU(2) ® U(1) where T* denotes a self-adjoint generator of
SU(2) ® U(1) (here for simplicity we choose a convention
that the complex 7 is absorbed by t* and t* is absorbed by
A;; and the notation A; is with a little confusion with the no-
tation A; in the above formulation of (3) where A;,7=1,2
are real valued); and D; = %—60(22-:1 A; %) forl=1,2;

J
_d 2 vdzj . .
and Do = 4; —eo(D_;_1 A; G5 ) where e is the bare electric
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charge for general interactions including the strong and weak
interactions.

From (6) we can develop a nonabelian gauge theory as
similar to that for the above abelian gauge theory. We have
that (6) is invariant under the following gauge transformation:

Z'(2(s)) == Ula(2(s))) Z(2(s))
Al(2(s)) = Ul(a(z(5))) Aj(2(s)) U Y(a(2(s))) +
+ U(a(2(5))) 22 (a(2(s))), j=1,2

where U(a(z(s))) =) a(z(s)) = 33, eoak (2(s))tk
for some functions a*. We shall mainly consider the case
that a is a function of the form a(z(s)) = Y, Rew®(z(s))t*
where w® are analytic functions of z. (We let the function
w(z(s)):= >°, wF(2(s))t* and we write a(z) = Rew(z).)

The above gauge theory is based on the Banach space
X of continuous functions Z(2(s)), A4;(2(s)), 7=1,2, 0 <
s < s on the one dimensional interval [sg, $1].

Since L is positive and the theory is one dimensional (and
thus is simpler than the usual two dimensional Yang-Mills
gauge theory) we have that this gauge theory is similar to the
Wiener measure except that this gauge theory has a gauge
symmetry. This gauge symmetry gives a degenerate degree
of freedom. In the physics literature the usual way to treat
the degenerate degree of freedom of gauge symmetry is to in-
troduce a gauge fixing condition to eliminate the degenerate
degree of freedom where each gauge fixing will give equiv-
alent physical results [59]. There are various gauge fixing
conditions such as the Lorentz gauge condition, the Feynman
gauge condition, etc. We shall later in the Section on the Kac-
Moody algebra adopt a gauge fixing condition for the above
gauge theory. This gauge fixing condition will also be used to
derive the quantum KZ equation in dual form which will be
regarded as a quantum Yang-Mill equation since its role will
be similar to the classical Yang-Mill equation derived from
the classical Yang-Mill gauge theory.

)

3 Classical Dirac-Wilson loop

Similar to the Wilson loop in quantum field theory [60] from
our quantum theory we introduce an analogue of Wilson loop,
as follows. (We shall also call a Wilson loop as a Dirac-
Wilson loop.)

Definition A classical Wilson loop Wg(C') is defined by:

®)

where R denotes a representation of SU(2); C(-)=z(:) is
a fixed closed curve where the quantum gauge theories are
based on it as specific in the above Section. As usual the
notation P in the definition of Wg(C') denotes a path-ordered
product [60-62].

Let us give some remarks on the above definition of Wil-
son loop, as follows.

Wgr(C) := W (2o, 21) := Pe® Je Ajdxj,
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1. We use the notation W (zq, z1 ) to mean the Wilson loop
Wr(C) which is based on the whole closed curve z(-). Here
for convenience we use only the end points zg and 2; of the
curve z(+) to denote this Wilson loop (We keep in mind that
the definition of W (zp, 21) depends on the whole curve z(-)
connecting zg and 27).

Then we extend the definition of Wg(C) to the case that
z(-) is not a closed curve with z5 # z;. When z(-) is not a
closed curve we shall call W (zg, z1) as a Wilson line.

2. In constructing the Wilson loop we need to choose a
representation R of the SU(2) group. We shall see that be-
cause a Wilson line W(zq, z1) is with two variables zy and
21 a natural representation of a Wilson line or a Wilson loop
is the tensor product of the usual two dimensional represen-
tation of the SU(2) for constructing the Wilson loop. ©

A basic property of a Wilson line W (zg, z1) is that for a
given continuous path A;, 7 =1, 2 on [so, s1] the Wilson line
W (2o, 21) exists on this path and has the following transition
property:

W (z0,21) = W(z0,2)W(z, 21) ©)

where W (zo, z1) denotes the Wilson line of a curve z(-)
which is with 2y as the starting point and z; as the ending
point and z is a point on z(-) between zq and z;.

This property can be proved as follows. We have that
W (2o, 21) is a limit (whenever exists) of ordered product of

eA454%" and thus can be written in the following form:

W(z0,21) =1+ f::” eoAj(z(s))%ds +
+ 3 eoh;(2(s2)) 2e2)

X [fs,z eoAJ—(z(s;«;))%ds;‘;] dsy + - --

s

(10)

where z(s') = zg and z(s") = z;. Then since A; are contin-
uous on [s',s"] and z*(z(-)) are continuously differentiable
on [s',s"] we have that the series in (10) is absolutely con-
vergent. Thus the Wilson line W (zg, z1) exists. Then since
W(z0,21) 1is the limit of ordered product we can write

W(zo,21) in the form W(zq,z)W(z,z1) by dividing z(-)
into two parts at z. This proves the basic property of Wil-
son line. ¢

Remark (classical and quantum versions of Wilson loop)
From the above property we have that the Wilson line
W (2o, z1) exists in the classical pathwise sense where A; are
as classical paths on [sg, s;]. This pathwise version of the
Wilson line W (zg, z1); from the Feynman path integral point
of view; is as a partial description of the quantum version of
the Wilson line W (zg, z1) which is as an operator when A;
are as operators. We shall in the next Section derive and de-
fine a quantum generator J of W (zg, z1) from the quantum
gauge theory. Then by using this generator J we shall com-
pute the quantum version of the Wilson line W (2, 21).

We shall denote both the classical version and quantum
version of Wilson line by the same notation W (zq, 21) when
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there is no confusion. ¢

By following the usual approach of deriving a chiral sym-
metry from a gauge transformation of a gauge field we have
the following chiral symmetry which is derived by applying
an analytic gauge transformation with an analytic function w
for the transformation:

W(Zo,zl) — W’(Zo,zl) =

(1D
= U(w(21))W (20, 21)U H{w(20)) ,
where W'(zg, z1) is a Wilson line with gauge field:
oU(z) .. _ _
=2y o 40w, )

This chiral symmetry is analogous to the chiral symmetry
of the usual guage theory where U denotes an element of the
gauge group [61]. Let us derive (11) as follows. Let U(z) :=
= U(w(2(s))) and U(z + dz) = U(z) + %(,f) dz* where
dz = (dz', dz?). Following [61] we have

U(z +dz)(1 + eodzt AU (2) =
=U(z + d2)U7(2) + eodz*U (2 +dz) AU (s)
~ 1+66UT(5)U’1(z)d:v“—|—eod$“U(z+dz)AﬂU’1(s)

13)
1+ G2 U™ (2)do¥ + eodz U (2) AU~ (2)

Ok

X

=14+ 6;12(:) U=(z)dz* + eodztU(2) A, U71(2)
=1+ eoda:/‘AL .

From (13) we have that (11) holds.

As analogous to the WZW model in conformal field the-
ory [65,66] from the above symmetry we have the following
formulas for the variations é,W and §,.W with respect to
this symmetry (see [65] p.621):

bW (z,2") = W(z, 2 \w(z) (14)
and

JN'W(Z’ZI) = _wl(zl)W(zazl)1 (15)

where z and z' are independent variables and «'(2') =w(2)
when z’ = z. In (14) the variation is with respect to the z vari-
able while in (15) the variation is with respect to the 2z’ vari-
able. This two-side-variations when z # 2’ can be derived as
follows. For the left variation we may let w be analytic in a
neighborhood of z and extended as a continuously differen-
tiable function to a neighborhood of z’ such that w(z') =0 in
this neighborhood of z’. Then from (11) we have that (14)
holds. Similarly we may let w' be analytic in a neighborhood
of 2z’ and extended as a continuously differentiable function to
a neighborhood of z such that w’(z) = 0 in this neighborhood
of z. Then we have that (15) holds.

20

4 Gauge fixing and affine Kac-Moody algebra

This Section has two related purposes. One purpose is to
find a gauge fixing condition for eliminating the degenerate
degree of freedom from the gauge invariance of the above
quantum gauge theory in Section 2. Then another purpose is
to find an equation for defining a generator J of the Wilson
line W (z, z'). This defining equation of J can then be used
as a gauge fixing condition. Thus with this defining equation
of J the construction of the quantum gauge theory in Section
2 is then completed.

We shall derive a quantum loop algebra (or the affine Kac-
Moody algebra) structure from the Wilson line W(z, z') for
the generator J of W(z,z'). To this end let us first con-
sider the classical case. Since W(z, z') is constructed from
SU(2) we have that the mapping z — W(z,2') (We con-
sider W(z, 2') as a function of z with 2z’ being fixed) has a
loop group structure [63, 64]. For a loop group we have the
following generators:

JE=1%2"  n=0,+1,42,... (16)
These generators satisfy the following algebra:
[J2,, J2] = i fabe T sn - (17)

This is the so called loop algebra [63,64]. Let us then
introduce the following generating function J:

J(w)=>"J%w)=>_ j%w)te, (18)

where we define

T w) = 3 (w)t* = Y Ja(z)(w-2)""Th (19)

n=—oo
From J we have

Iy = ﬁ Zd'w (w—2)"J%(w), (20)
where fz denotes a closed contour integral with center z. This
formula can be interpreted as that J is the generator of the
loop group and that J is the directional generator in the di-
rection w®(w) = (w — z)"™. We may generalize (20) to the
following directional generator:

1

i f dw w(w) J(w),

21

where the analytic function w(w)= 3
as a direction and we define

w(w)J(w) := Zwa(w).]“.

o W (w)t? is regarded

(22)

Then since W (z, z') € SU(2), from the variational for-
mula (21) for the loop algebra of the loop group of SU(2) we
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have that the variation of W (z, z') in the direction w(w) is
given by

Wz, z')% j{ dww(w) J(w). (23)

Now let us consider the quantum case which is based on
the quantum gauge theory in Section 2. For this quantum case
we shall define a quantum generator J which is analogous to
the J in (18). We shall choose the equations (34) and (35) as
the equations for defining the quantum generator J. Let us
first give a formal derivation of the equation (34), as follows.
Let us consider the following formal functional integration:

(W(z,2")A(2)) :=

24
= [dAdAydZ*dZe T W (z,2') A(z), ey
where A(z) denotes a field from the quantum gauge theory.
(We first let z’ be fixed as a parameter.)
Let us do a calculus of variation on this integral to derive
a variational equation by applying a gauge transformation on
(24) as follows. (We remark that such variational equations
are usually called the Ward identity in the physics literature.)
Let (A1, A2, Z) be regarded as a coordinate system of the
integral (24). Under a gauge transformation (regarded as a
change of coordinate) with gauge function a(z(s)) this co-
ordinate is changed to another coordinate (A}, A5, Z'). As
similar to the usual change of variable for integration we have
that the integral (24) is unchanged under a change of variable
and we have the following equality:

[ dAYdALAZ*dZ' e V' W (2,2') A (2) =

25
= [dA1dAydZ*dZe LW (z,2')A(z), @
where W'(z, z') denotes the Wilson line based on A} and A}
and similarly A’(z) denotes the field obtained from A(z) with
(A1, Az, Z) replaced by (A}, A5, Z').
Then it can be shown that the differential is unchanged
under a gauge transformation [59]:

dA|dAYdZ"™dZ' = dA1dAydZ*dZ . (26)

Also by the gauge invariance property the factor e~ 7 is
unchanged under a gauge transformation. Thus from (25) we

have

0= (W'(2,2)4(2)) - (W(z,2)AR),  (@7)

where the correlation notation (-) denotes the integral with
respect to the differential
e LdA,dA,dZ*dZ (28)

We can now carry out the calculus of variation. From the
gauge transformation we have the formula:

W'(z,2) = U(a(2))W (2, 2)U 2 (a()),  (29)
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where a(z) =Rew(z). This gauge transformation gives a
variation of W (z, z') with the gauge function a(z) as the vari-
ational direction a in the variational formulas (21) and (23).
Thus analogous to the variational formula (23) we have that
the variation of W (z, z’) under this gauge transformation is
given by

W(z, z')L j{ dw a(w) J(w),

2m J,

(30)

where the generator J for this variation is to be specific. This
J will be a quantum generator which generalizes the classical
generator J in (23).

Thus under a gauge transformation with gauge function
a(z) from (27) we have the following variational equation:

0= <W(z,z’) [5(1,4(2) +
31
+%7{dwa(w)J(w)A(z)]>, ey

where §, A(z) denotes the variation of the field A(z) in the
direction a(z). From this equation an ansatz of J is that J
satisfies the following equation:

1

W(z,2") |8, A(z) + 5 7§ dwa(w)J(w)A(z)| =0. (32)

e J,
From this equation we have the following variational

equation:

-1

- om

8, A(2) fdw a(w)J(w)A(z).

z

(33)

This completes the formal calculus of variation. Now
(with the above derivation as a guide) we choose the follow-
ing equation (34) as one of the equation for defining the gen-
erator J:

-1

5w.A(Z) = %

fdw w(w)J(w)A(z), (34)

where we generalize the direction a(z) = Re w(z) to the ana-
lytic direction w(z). (This generalization has the effect of ex-
tending the real measure of the pure gauge part of the gauge
theory to include the complex Feynman path integral since it
gives the transformation ds — —ds for the integral of the
Wilson line W(z, z').)

Let us now choose one more equation for determine the
generator J in (34). This choice will be as a gauge fixing
condition. As analogous to the WZW model in conformal
field theory [65—67] let us consider a J given by

J(2) = koW 1(2,2') 0. W (2,2'), (35)

where we define 8, = 8,1 + 10,2 and we set z' = z after the
differentiation with respect to z; kg > 0 is a constant which
is fixed when the J is determined to be of the form (35) and
the minus sign is chosen by convention. In the WZW model
[65,67] the J of the form (35) is the generator of the chiral

21
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symmetry of the WZW model. We can write the J in (35) in
the following form:
Jw) =" Jw) =) j%(w)t* (36)
a a

We see that the generators t® of SU(2) appear in this form
of J and this form is analogous to the classical J in (18). This
shows that this J is a possible candidate for the generator J
in (34).

Since W (z, z') is constructed by gauge field we need to
have a gauge fixing for the computations related to W (z, z').
Then since the J in (34) and (35) is constructed by W(z, z')
we have that in defining this J as the generator J of W(z, z')
we have chosen a condition for the gauge fixing. In this paper
we shall always choose this defining equations (34) and (35)
for J as the gauge fixing condition.

In summary we introduce the following definition.

Definition The generator J of the quantum Wilson line
W (z, z') whose classical version is defined by (8), is an op-
erator defined by the two conditions (34) and (35). ¢

Remark We remark that the condition (35) first defines J
classically. Then the condition (34) raises this classical J to
the quantum generator J. ¢

Now we want to show that this generator J in (34) and
(35) can be uniquely solved. (This means that the gauge fix-
ing condition has already fixed the gauge that the degenerate
degree of freedom of gauge invariance has been eliminated so
that we can carry out computation.)

Let us now solve J. From (11) and (35) the variation 6, J
of the generator J in (35) is given by [65, p. 622] and [67]:

8y = [J,w] — ko w . (37)

From (34) and (37) we have that J satisfies the following
relation of current algebra [65-67]:

kodab . Je(2)
J(w)J(2) = —2— —
(w)J°(2) (w— 2)2 + ;'lfabc (w—z)’

where as a convention the regular term of J%(w)J%(z) is
omitted. Then by following [65-67] from (38) and (36) we
can show that the J? in (18) for the corresponding Laurent
series of the quantum generator J satisfy the following Kac-
Moody algebra:

(38)

(T2, 2] = 1 fape T in + koM OabOmino,  (39)

where kg is usually called the central extension or the level of
the Kac-Moody algebra.

Remark Let us also consider the other side of the chiral
symmetry. Similar to the J in (35) we define a generator
J' by:

J'(2') = ko0, W (2, 2" )W (z,2),

where after differentiation with respect to z' we set z =2'.

(40)

22

Let us then consider the following formal correlation:

(AW (z,2)) :=

(41)
::/dAldAde*dZA(z’)W(z,z’)e’L,

where z is fixed. By an approach similar to the above deriva-
tion of (34) we have the following variational equation:

S A(Z') = -t 74/ dwA(z")J (w)w'(w),  (42)

T o2m

where as a gauge fixing we choose the J' in (42) be the J' in
(40). Then similar to (37) we also have

b J' = [T W' — ko' (43)
Then from (42) and (43) we can derive the current algebra

and the Kac-Moody algebra for J' which are of the same form
of (38) and (39). From this we have J' = J. ¢

Now with the above current algebra J and the formula
(34) we can follow the usual approach in conformal field
theory to derive a quantum Knizhnik-Zamolodchikov (KZ)
equation for the product of primary fields in a conformal field
theory [65-67]. We derive the KZ equation for the product
of n Wilson lines W (z, z'). Here an important point is that
from the two sides of W(z, z') we can derive two quantum
KZ equations which are dual to each other. These two quan-
tum KZ equations are different from the usual KZ equation
in that they are equations for the quantum operators W(z, z')
while the usual KZ equation is for the correlations of quan-
tum operators. With this difference we can follow the usual
approach in conformal field theory to derive the following
quantum Knizhnik-Zamolodchikov equation [65, 66, 68]:

0, W(z1,21) Wz, 2},) =

agpa (44)
—e2 n Za t; ®t;
= Fatoo s Zi—z; W (z1,21) - W(zn, 2,),
for z=1,...,n where gg denotes the dual Coxeter number

of a group multiplying with €2 and we have gg=2e2 for

the group SU(2) (When the gauge group is U(1) we have
go = 0). We remark that in (44) we have defined ¢7 :=t% and:

7 ® t;”W(zl,zi) Wz, 20) = W(zg,21) -

45)
e [W (2, 2)] - [ W (25, 25)] - W (2, 20) -
It is interesting and important that we also have the fol-
lowing quantum Knizhnik-Zamolodchikov equation with re-
spect to the 2} variables which is dual to (44):

aZ;W(Zli Zill) T W(Zn, z;z,) =
(46)

_ _—e}
~ ko+go

te @t
S W (a1, 24) -+ W (2, ) 22

n z.—z.
7 i
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for1=1,...,n where we have defined:

Wz1,21) - W(zn, 2,)t7 @ 15 1= W(21,27) - -

47
Wi, 2)8%] - - W (25, 25)t°] - - - W (2n, 23) - .
Remark From the quantum gauge theory we derive the
above quantum KZ equation in dual form by calculus of vari-
ation. This quantum KZ equation in dual form may be con-
sidered as a quantum Euler-Lagrange equation or as a quan-
tum Yang-Mills equation since it is analogous to the classi-
cal Yang-Mills equation which is derived from the classical
Yang-Mills gauge theory by calculus of variation. ¢

5 Solving quantum KZ equation in dual form

Let us consider the following product of two quantum Wilson
lines:
(48)

G(z1,22,23,24) = W (21, 22)W (23, 24) ,

where the quantum Wilson lines W(z1, 23) and W (z3, z4)
represent two pieces of curves starting at z; and z3 and ending
at z5 and z,4 respectively.

We have that this product G(z1, 22, 23, 24) satisfies the
KZ equation for the variables z;, z3 and satisfies the dual
KZ equation for the variables 2z, and z4. Then by solving
the two-variables-KZ equation in (44) we have that a form of
G(z1, 22, 23, 24) is given by [69-71]:

e—flog[i(ﬁ —23)}01 (49)

where £ := %o +g >, t*®t* and C; denotes a constant matrix
which is 1ndependent of the variable z; — z3.

We see that G(z1, 22, 23, 24) is a multi-valued analytic
function where the determination of the £ sign depended on
the choice of the branch.

Similarly by solving the dual two-variable-KZ equation
in (46) we have that G is of the form

C, eflog[:t(Z4fzz)] , (50)
where C> denotes a constant matrix which is independent of

the variable z4 — 25.
From (49), (50) and letting:

Cl — Aeflog[:t(z‘;fzz)]’ 02 — efflog[:t(zlfzg)]A’ (5])

where A is a constant matrix we have that G(z1, 22, 23, 24) is
given by:

efflog[:l:(zl 7Z3)}Aethlog[:t(z4fzg)] ,

G(Zl,22,23,24) = (52)

where at the singular case that z; =23 we define
log[£(z; — 23)] = 0. Similarly for 2z = z4.

Let us find a form of the initial operator A. We notice
that there are two operators 4 (z; — z3) := e~ tloglE(z1—22)]

and ¥, (z4 — 25) = et 1°8[£(z2—22)] acting on the two sides of
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A respectively where the two independent variables 21, z3 of
& are mixed from the two quantum Wilson lines W (21, 23)
and W (z3, 24 ) respectively and the the two independent vari-
ables 23, z4 of ¥ are mixed from the two quantum Wilson
lines W (z1,22) and W (23, 24) respectively. From this we
determine the form of A as follows.

Let D denote a representation of SU(2). Let D(g) rep-
resent an element g of SU(2) and let D(g) ® D(g) denote
the tensor product representation of SU(2). Then in the KZ
equation we define

[t* ® t*][D(g1) ® D(g1)] ®

=[t*D(g:1) ® D(q1)] ®
and
[D(g1) ® D(g1)] ® [D(92) ® D(g2)][t* ®t°] :

= [D(g1) ® D(1)t*] ® [D(g2) ® D(g2)t*].

Then we let U(a) denote the universal enveloping alge-
bra where a denotes an algebra which is formed by the Lie
algebra su(2) and the identity matrix.

Now let the initial operator A be of the form A; ® A ®
A3 ® Ay with A;,1=1,...,4 taking values in U(a). In this
case we have that in (52) the operator ® (27 — 23) acts on A
from the left via the following formula:

Pt A=[t"A;| ® A ® [t°A3] ® A4 .

[D(g2) ® D(g2)] :
[t*D(g2) ® D(g2)]

(33)

(54)

(55)

Similarly the operator ¥ (z4 —22) in (52) acts on A from
the right via the following formula:

AP ®@t% = A; ® [Axt?] ® Az ® [Agt?]. (56)

We may generalize the above tensor product of two quan-
tum Wilson lines as follows. Let us consider a tensor product
of n quantum Wilson lines: W (21, 21) - - - W (2n, 25,) where
the variables z;, z, are all independent. By solving the two
KZ equations we have that this tensor product is given by:

W(zlvzll) T W(zn,z;) =
= H@i(zi — ZJ)AH\I/i(Z: — Z;),
i 5]

where [ [, - denotes a product of ¢ (z; — z;) or ¥1(z; — z})
forz,7 = 1,...,n where ¢« # 5. In (57) the initial opera-
tor A is represented as a tensor product of operators A;;;;,
1,7,¢,7'=1,...,n where each A;j;j is of the form of the
initial operator A in the above tensor product of two-Wilson-
lines case and is acted by &4 (z; — z;) or ¥ (z; — 27) oniits
two sides respectively.

(57)

6 Computation of quantum Wilson lines

Let us consider the following product of two quantum Wilson
lines:
(58)

G(z1,22,23,24) 1= W (21, 22)W (23, 24) ,

23
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where the quantum Wilson lines W (z1, 22) and W (z3, 24)
represent two pieces of curves starting at z; and z3 and ending
at z, and z4 respectively. As shown in the above Section we
have that G(z1, 22, 23, 24) is given by the following formula:

Gl21, 22, 23, 24) = e tlog[£(2z1~25)] g ot log[£(za—22)] . (59)

where the product is a 4-tensor.

Let us set zo = z3. Then the 4-tensor W (z1, z2)W (23, 24)
is reduced to the 2-tensor W (2, 23)W (22, z4). By using (59)
the 2-tensor W (z1, 22)W (22, 24) is given by:

W(Zl, ZQ)W(ZQ, 24) =
. . (60)
— e—iloglt(z1-2)] 4, ofloBlE(za—22)]

where A4 = A1 ® Ay is a 2-tensor reduced from the 4-tensor
A=A;0A;QA;®A, in (59). In this reduction the ¢ operator
of & = e~tloel=(z1-22)] gcting on the left side of A; and As
in A is reduced to acting on the left side of A; and A4 in Ay4.
Similarly the ¢ operator of ¥ = et log[E(za—22)] acting on the
right side of A; and A4 in A is reduced to acting on the right
side of A; and A4 in Aq4.

Then since £ is a 2-tensor operator we have that £ is as
a matrix acting on the two sides of the 2-tensor A;4 which
is also as a matrix with the same dimension as {. Thus &
and ¥ are as matrices of the same dimension as the matrix
Aj14 acting on A4 by the usual matrix operation. Then since
t is a Casimir operator for the 2-tensor group representation
of SU(2) we have that $ and ¥ commute with A;4 since &
and ¥ are exponentials of . (We remark that & and ¥ are
in general not commute with the 4-tensor initial operator A.)
Thus we have

e—tlogl(z1-22)] 4, b loglE(za—22)] —

. . (61)
— eftlog[:l:(zl 7z2)]et log[:l:(zzlfzg)}AM .

We let W (z1, 22)W (22, 24) be as a representation of the
quantum Wilson line W (z1, z4):

W(Z]_,Z4) = W(Z]_,’U}]_)W(u/l,ZAL) = 62
— efflog[:t(zl7w1)}eflog[:|:(Z47w1)}A14. 62)

This representation of the quantum Wilson line W (21, 24)
means that the line (or path) with end points z; and z4 is
specific that it passes the intermediate point w; = z5. This
representation shows the quantum nature that the path is not
specific at other intermediate points except the intermediate
point w; = z5. This unspecification of the path is of the same
quantum nature of the Feynman path description of quantum
mechanics.

Then let us consider another representation of the quan-
tum Wilson line W (zy,24). We consider the three-product
W (21, w1)W (w1, wa)W (wa, z4) which is obtained from the

24

three-tensor W (z1, w1)W (u1, w2)W (uz, z4) by two reduc-
tions where z;, w;, u;, J=1,2 are independent variables.
For this representation we have:

W(zli wl)W(wla ’Z,Uz)W(’LUz, 24) = e_flog[i(ZI_wl)] X
. . . (63)
% e—tlog[i(zl—wg)]et log[i(u—wl)]et log[i(24—w2)]Al4 .

This representation of the quantum Wilson line W (21, 24)
means that the line (or path) with end points z; and 2z, is spe-
cific that it passes the intermediate points w; and w,. This
representation shows the quantum nature that the path is not
specific at other intermediate points except the intermediate
points w; and wy. This unspecification of the path is of
the same quantum nature of the Feynman path description of
quantum mechanics.

Similarly we may represent W (21, z4) by path with end
points z; and z4 and is specific only to pass at finitely many
intermediate points. Then we let the quantum Wilson line
W (21, 2z4) as an equivalent class of all these representations.
Thus we may write:

W(Zl, 24) = W(zl,wl)W(wl, 24) =

(64)
= W(zl,wl)W(wl,wQ)W(wz,m) =

Remark Since Aj4 is a 2-tensor we have that a natural
group representation for the Wilson line W (z1, z4) is the 2-
tensor group representation of the group SU(2).

7 Representing braiding of curves by quantum Wilson
lines

Consider again the G(zy, 22, 23,24) in (58). We have that
G(21, 22, 23, 24) is a multi-valued analytic function where the
determination of the + sign depended on the choice of the
branch.

Let the two pieces of curves represented by W (z1, z2) and
W (23, 24) be crossing at w. In this case we write W (z;, 2;)
as Wiz, z;) = W(z;, w)W(w,z;) where: = 1,3, 7 = 2,4.
Thus we have

W(z1)z2)W(Z3,Z4) =
=W (21, w)W (w, 22)W (23, w)W (w, 24) .

(65)

If we interchange z; and z3, then from (65) we have the
following ordering:

W (zz, w)W (w, 22)W (21, w)W (w, z4) . (66)

Now let us choose a branch. Suppose these two curves
are cut from a knot and that following the orientation of a
knot the curve represented by W (z1, z2) is before the curve
represented by W (zs, z4). Then we fix a branch such that the
product in (59) is with two positive signs:

W(z1,22)W (23,24) = e~ tlog(z1-23) g otlog(za—22) (67)
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Then if we interchange z; and z3 we have

W (zs, w)W (w, 22)W (21, w)W (w, 24) =

. . (68)
— eftlog[f(zlfz3)}Aet log(za—2z2) )
From (67) and (68) as a choice of branch we have
W (z3, W)W (w, 22)W (21, w)W (w, 24) =
(69)

= RW (21, w)W (w, 22)W (23, w)W (w, z4)

where R = e~ is the monodromy of the KZ equation. In
(69) z; and z3 denote two points on a closed curve such that
along the direction of the curve the point 2z; is before the point
z3 and in this case we choose a branch such that the angle of
z3 — z1 minus the angle of z; — z3 is equal to .

Remark We may use other representations of the product
W (21, 22)W (23, 24). For example we may use the following
representation:

W (z1,w)W(w, 20)W (23, w)W (w, 24) =

— e—flog(zl —z3) e—Qf log(zl—w)e—Zflog(zs—w) X (70)

X Aeflog(24—22)eQElog(24—w)lelog(z2—w) .

Then the interchange of 2z; and z3 changes only z; — 23
to zz — z;. Thus the formula (69) holds. Similarly all other
representations of W (z1,z0)W (23, z4) will give the same
result. ¢

Now from (69) we can take a convention that the order-
ing (66) represents that the curve represented by W(z1, 22)
is up-crossing the curve represented by W(zs, z4) while (65)
represents zero crossing of these two curves.

Similarly from the dual KZ equation as a choice of branch
which is consistent with the above formula we have

W (21, w)W (w, 24)W (23, w)W (w, 22) =

71
=W (21, w)W (w, 22)W (23, w)W (w, z4) R, b

where z5 is before z4. We take a convention that the order-
ing in (71) represents that the curve represented by W (z1, 22)
is under-crossing the curve represented by W (zs, z4). Here
along the orientation of a closed curve the piece of curve
represented by W(zy, 22) is before the piece of curve rep-
resented by W (z3, z4). In this case since the angle of z3 — 21
minus the angle of z; — z3 is equal to m we have that the an-
gle of z4 — 25 minus the angle of 2z, — 24 is also equal to 7
and this gives the R~ in this formula (71).
From (69) and (71) we have

W(Zg,Z;})W(Zl,Zz) = RW(ZI)ZZ)W(Z37Z4)R_17 (72)

where 2; and 2z denote the end points of a curve which is
before a curve with end points z3 and z4. From (72) we
see that the algebraic structure of these quantum Wilson lines
W (z, z') is analogous to the quasi-triangular quantum group
[66,69].
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8 Computation of quantum Dirac-Wilson loop

Consider again the quantum Wilson line W (21, 24) given by
W(z1,24) =W(z1, 20)W (22, z4). Let us set z; = z4. In this
case the quantum Wilson line forms a closed loop. Now in
(61) with z; = 2, we have that the quantities e—tlog+(z1—22)
and et!°€£(21-22) which come from the two-side KZ equa-
tions cancel each other and from the multi-valued property of
the log function we have:

W(z1,21) = RN Ay, N=0,41,42,... (73)

where R = e~ is the monodromy of the KZ equation [69].

Remark Itis clear that if we use other representation of the
quantum Wilson loop W (z1, z;1) (such as the representation
W(z1,21) =W (z1, w1 )W (wy, ws)W (w2, 21)) then we will
get the same result as (73).

Remark For simplicity we shall drop the subscript of A4
in (73) and simply write A4 = A.

9 Winding number of Dirac-Wilson loop as quanti-
zation

We have the equation (73) where the integer N is as a winding
number. Then when the gauge group is U(1) we have
W(z1,21) = Ry 4, (74)
where Ry (1) denotes the monodromy of the KZ equation for
U(1). We have
2

0
N ko+g0 ,

Ry =¢ N =0,£1,£2,... (75)
where the constant ey denotes the bare electric charge (and
go =0 for U(1) group). The winding number N is as the
quantization property of photon. We show in the follow-
ing Section that the Dirac-Wilson loop W (z1, z1) with the

abelian U (1) group is a model of the photon.

10 Magnetic monopole is a photon with a specific fre-
quency

We see that the Dirac-Wilson loop is an exactly solvable non-
linear observable. Thus we may regard it as a quantum soliton
of the above gauge theory. In particular for the abelian gauge
theory with U (1) as gauge group we regard the Dirac-Wilson
loop as a quantum soliton of the electromagnetic field. We
now want to show that this soliton has all the properties of
photon and thus we may identify it with the photon.

First we see that from (75) it has discrete energy levels of
light-quantum given by

2
Tes

ho=NT N —01,23,... (76)
ko
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where h is the Planck’s constant; v denotes a frequency and
the constant kg > 0 is determined from this formula. This
formula is from the monodromy Ry (1) for the abelian gauge
theory. We see that the Planck’s constant A comes out from
this winding property of the Dirac-Wilson loop. Then since
this Dirac-Wilson loop is a loop we have that it has the polar-
ization property of light by the right hand rule along the loop
and this polarization can also be regarded as the spin of pho-
ton. Now since this loop is a quantum soliton which behaves
as a particle we have that this loop is a basic particle of the
above abelian gauge theory where the abelian gauge property
is considered as the fundamental property of electromagnetic
field. This shows that the Dirac-Wilson loop has properties of
photon. We shall later show that from this loop model of pho-
ton we can describe the absorption and emission of photon by
an electron. This property of absorption and emission is con-
sidered as a basic principle of the light-quantum hypothesis
of Einstein [1]. From these properties of the Dirac-Wilson
loop we may identify it with the photon.

On the other hand from Dirac’s analysis of the magnetic
monopole we have that the property of magnetic monopole
comes from a closed line integral of vector potential of the
electromagnetic field which is similar to the Dirac-Wilson
loop [4]. Now from this Dirac-Wilson loop we can define
the magnetic charge ¢ and the minimal magnetic charge ¢,
which are given by:

Nm €T

€q 1= ENGmin = Ne€ON )
ko

n=0,1,2,3,... (77)

where e :=n.eq is as the observed electric charge for some
positive integer 7e; and Gpip 1= 22207 for some positive in-
teger n,, and we write N =nn.n.,,n = 0,1,2,3,... (by
absorbing the constant kg to e2 we may let kg = 1).

This shows that the Dirac-Wilson loop gives the property
of magnetic monopole for some frequencies. Since this loop
is a quantum soliton which behaves as a particle we have that
this Dirac-Wilson loop may be identified with the magnetic
monopole for some frequencies. Thus we have that photon
may be identified with the magnetic monopole for some fre-
quencies. With this identification we have the following in-
teresting conclusion: Both the energy quantization of elec-
tromagnetic field and the charge quantization property come
from the same property of photon. Indeed we have:

nhyy :==n n=0,123,... (78)
where v; denotes a frequency. This formula shows that the
energy quantization gives the charge quantization and thus
these two quantizations are from the same property of the
photon when photon is modelled by the Dirac-Wilson loop
and identified with the magnetic monopole for some frequen-
cies. We notice that between two energy levels neg,,;, and
(n + 1)egmin there are other energy levels which may be re-
garded as the excited states of a particle with charge ne.

26

11 Nonlinear loop model of electron

In this Section let us also give a loop model to the electron.
This loop model of electron is based on the above loop model
of the photon. From the loop model of photon we also con-
struct an observable which gives mass to the electron and is
thus a mass mechanism for the electron.

Let W(z, z) denote a Dirac-Wilson loop which represents
a photon. Let Z denotes the complex variable for electron in
(3). We then consider the following observable:

W(z,2)Z . (79)

Since W (z, z) is solvable we have that this observable
is also solvable where in solving W (z, z) the variable Z is
fixed. We let this observable be identified with the electron.
Then we consider the following observable:

ZW(z,2)2. (80)

This observable is with a scalar factor Z*Z where Z* de-
notes the complex conjugate of Z and we regard it as the mass
mechanism of the electron (79). For this observable we model
the energy levels with specific frequencies of W (z, z) as the
mass levels of electron and the mass m of electron is the low-
est energy level hy; with specific frequency vy of W(z, 2)
and is given by:

mc? = hvy (81)

where ¢ denotes the constant of the speed of light and the
frequency v, is given by (78). From this model of the mass
mechanism of electron we have that electron is with mass m
while photon is with zero mass because there does not have
such a mass mechanism Z*W (z, z)Z for the photon. From
this definition of mass we have the following formula relat-
ing the observed electric charge e of electron, the magnetic
charge g, of magnetic monopole and the mass m of elec-
tron:

2

mc (82)

By using the nonlinear model W (z, z)Z to represent an
electron we can then describe the absorption and emission of
a photon by an electron where photon is as a parcel of energy
described by the loop W(z, z), as follows. Let W(z,z2)Z
represents an electron and let Wy (z1, z1) represents a pho-
ton. Then the observable Wi (21, 21)W (z, z) Z represents an
electron having absorbed the photon W; (21, 21). This prop-
erty of absorption and emission is as a basic principle of the
hypothesis of light-quantum stated by FEinstein [1]. Let us
quote the following paragraph from [1]:

= €Qmin = th .

... First, the light-quantum was conceived of as a par-
cel of energy as far as the properties of pure radiation
(no coupling to matter) are concerned. Second, Ein-
stein made the assumption — he call it the heuristic
principle — that also in its coupling to matter (that is,
in emission and absorption), light is created or anni-
hilated in similar discrete parcels of energy. That, I
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believe, was Einstein’s one revolutionary contribution
to physics. It upset all existing ideas about the interac-
tion between light and matter. . .

12 Photon with specific frequency carries electric and
magnetic charges

In this loop model of photon we have that the observed elec-
tric charge e :=n.eg and the magnetic charge g¢,,;, are car-
ried by the photon with some specific frequencies. Let us
here describe the physical effects from this property of pho-
ton that photon with some specific frequency carries the elec-
tric and magnetic charge. From the nonlinear model of elec-
tron we have that an electron W (z, z) Z also carries the elec-
tric charge when a photon W (z, z) carrying the electric and
magnetic charge is absorbed to form the electron W (z, z)Z.
This means that the electric charge of an electron is from the
electric charge carried by a photon. Then an interaction (as
the electric force) is formed between two electrons (with the
electric charges).

On the other hand since photon carries the constant e2 of
the bare electric charge eg we have that between two photons
there is an interaction which is similar to the electric force
between two electrons (with the electric charges). This in-
teraction however may not be of the same magnitude as the
electric force with the magnitude e? since the photons may
not carry the frequency for giving the electric and magnetic
charge. Then for stability such interaction between two pho-
tons tends to give repulsive effect to give the diffusion phe-
nomenon among photons.

Similarly an electron W (z, 2)Z also carries the magnetic
charge when a photon W (z, z) carrying the electric and mag-
netic charge is absorbed to form the electron W (z, z)Z. This
means that the magnetic charge of an electron is from the
magnetic charge carried by a photon. Then a closed-loop in-
teraction (as the magnetic force) may be formed between two
electrons (with the magnetic charges).

On the other hand since photon carries the constant e3 of
the bare electric charge ey we have that between two photons
there is an interaction which is similar to the magnetic force
between two electrons (with the magnetic charges). This in-
teraction however may not be of the same magnitude as the
magnetic force with the magnetic charge ¢,y;, since the pho-
tons may not carry the frequency for giving the electric and
magnetic charge. Then for stability such interaction between
two photons tends to give repulsive effect to give the diffusion
phenomenon among photons.

13 Statistics of photons and electrons
The nonlinear model W (z, z) Z of an electron gives a relation

between photon and electron where the photon is modelled
by W (z, z) which is with a specific frequency for W(z, z)Z

Sze Kui Ng. New Approach to Quantum Electrodynamics

to be an electron, as described in the above Sections. We
want to show that from this nonlinear model we may also de-
rive the required statistics of photons and electrons that pho-
tons obey the Bose-Einstein statistics and electrons obey the
Fermi-Dirac statistics. We have that W (z, z) is as an operator
acting on Z. Let Wy (z, z) be a photon. Then we have that the
nonlinear model Wy (z, 2)W (z, z)Z represents that the pho-
ton W1 (z, z) is absorbed by the electron W (z, z) Z to form an
electron Wy (z,z)W(z,2)Z. Let Wax(z,z) be another pho-
ton. The we have that the model W1 (z, 2)Wa(z, z2)W(z,2)Z
again represents an electron where we have:

Wi(z,2)Wa(z,2)W (2,2)Z =
= Wal(z, 2)Wi(z,2)W(z,2)Z .

(83)

More generally the model ]_[7]:[:1 Whn(z,2)W(z,2)Z rep-
resents that the photons W,(z,2),n=1,2,...,N are
absorbed by the electron W (z, 2)Z. This model shows that
identical (but different) photons can appear identically and it
shows that photons obey the Bose-Einstein statistics. From
the polarization of the Dirac-Wilson loop W (z, z) we may
assign spin 1 to a photon represented by W (z, z).

Let us then consider statistics of electrons. The observ-
able Z*W(z, z)Z gives mass to the electron W(z,z)Z and
thus this observable is as a scalar and thus is assigned with
spin 0. As the observable W (z, z)Z is between W (z, z) and
Z*W (z, z)Z which are with spin 1 and 0 respectively we thus
assign spin % to the observable W(z,2)Z and thus electron
represented by this observable W (z, z)Z is with spin %

Then let Z; and Z5, be two independent complex variables
for two electrons and let W1 (z, z)Z; and Wy(z, z) Z, repre-
sent two electrons. Let W3(z, z) represents a photon. Then
the model W3(z, z)(W1(z,2)Z1 + Wa(z,2)Z2) means that
two electrons are in the same state that the operator Ws(z, 2)
is acted on the two electrons. However this model means that
a photon W (z, z) is absorbed by two distinct electrons and
this is impossible. Thus the models W3(z, 2)W1(z, z)Z; and
Ws5(z,2)Wa(z,2)Z, cannot both exist and this means that
electrons obey Fermi-Dirac statistics.

Thus this nonlinear loop model of photon and electron
gives the required statistics of photons and electrons.

14 Photon propagator and quantum photon propagator

Let us then investigate the quantum Wilson line W (zg, z)
with U(1) group where zq is fixed for the photon field. We
want to show that this quantum Wilson line W (z, z) may
be regarded as the quantum photon propagator for a photon
propagating from zy to z.

As we have shown in the above Section on computation
of quantum Wilson line; to compute W (zg,2) we need to
write W (2o, 2) in the form of two (connected) Wilson lines:
W(zo0,2) =W (20, 21)W (21, 2) for some z; point. Then we
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have:
W (z0,21)W (21,2) =
. . (84)
_ eftlog[:l:(zl72:0)]Aetlog[:t(zfz1)} ,
where £ = — % for the U(1) group (kg is a constant and we
—tlog[+(z—20)]

may for simplicity let kg = 1) where the term e
is obtained by solving the first form of the dual form of the KZ
equation and the term etlogl+(z0=2)] i5 obtained by solving
the second form of the dual form of the KZ equation.

Then we may write W (zg, z) in the following form:

2o (21—20)
W (z0,2) = W(z0,21)W (21,2) =€ "% G0 A. (85)

Let us fix z; with 2z such that:

=z _ 11 (86)
|z —z1]  ng
for some positive integer n. such that r; < nf; and we let
z be a point on a path of connecting zg and z; and then a
closed loop is formed with 2 as the starting and ending point.
(This loop can just be the photon-loop of the electron in this
electromagnetic interaction by this photon propagator (85).)
Then (85) has a factor e log 7% which is the fundamental
solution of the two dimensional Iiaplace equation and is anal-
ogous to the fundamental solution ? (where e :=egn, de-
notes the observed (renormalized) electric charge and r de-
notes the three dimensional distance) of the three dimensional
Laplace equation for the Coulomb’s law. Thus the opera-
tor W(zo,2) =W (20, 21)W|(21,2) in (85) can be regarded
as the quantum photon propagator propagating from zg to z.

We remark that when there are many photons we may in-
troduce the space variable x as a statistical variable via the
Lorentz metric ds? = dt? — dx? to obtain the Coulomb’s law
é from the fundamental solution e log Ik as a statistical
law for electricity (We shall give such a spaece—time statistics
later).

The quantum photon propagator (85) gives a repulsive ef-

. o, . 2
fect since it is analogous to the Coulomb’s law €-. On the

other hand we can reverse the sign of # such that this photon
operator can also give an attractive effect:

1o (a=51)
W (z0,2) = W(z0,21)W (21,2) = gtlog (21—210>A, (87)

where we fix z; with zg such that:

lzzzl (88)
|21 — 20| 72

for some positive integer n, such that r; > n2; and we again
let z be a point on a path of connecting 2y and z; and then a
closed loop is formed with z as the starting and ending point.
(This loop again can just be the photon-loop of the electron
in this electromagnetic interaction by this photon propagator

28

(85).) Then (87) has a factor —e% log 7’;—12 which is the funda-
mental solution of the two dimensional eLaplace equation and
is analogous to the attractive fundamental solution — 972 of the
three dimensional Laplace equation for the Coulomb’s law.

Thus the quantum photon propagator in (85), and in (87),
can give repulsive or attractive effect between two points zg
and z for all z in the complex plane. These repulsive or at-
tractive effects of the quantum photon propagator correspond
to two charges of the same sign and of different sign respec-
tively.

On the other hand when z = zg the quantum Wilson line
W (20, 20) in (85) which is the quantum photon propagator
becomes a quantum Wilson loop W (zp, 2o) which is identi-
fied as a photon, as shown in the above Sections.

Let us then derive a form of photon propagator from the
quantum photon propagator W (zg, z). Let us choose a path
connecting zg and z = z(s). We consider the following path:

Z(S) =2z1+ag [9(31 — s)efiﬁl(ﬁfs) +

, (89)
+ 0(s — sp)ePr(s1=9)])

where (; > 0 is a parameter and z(sg) = 2o for some proper
time sp; and ag is some complex constant; and & is a step
function given by 6(s) =0 for s <0, 8(s) =1 for s > 0. Then
on this path we have:

W(z0,2) =

(=

flog A2=#1)
= W(Zo,zl)W(Zl,z) =e (z1—20) 4 =

0[9(5*51)e_iﬁ1(51_5)+9(5175)ei’61(51_5)]
(z1—20) A =

ilog &
— ptlos

(90)

— eflog b[G(sfsl)e_”Bl(51_S)Jro(slfs)ewl(sl_s)]A —
=bo[6(s — s1)e #Pi(s1—5) 4 g(s) — s)eifﬁl(sl*s)]A

for some complex constants b and by. From this chosen of
the path (89) we have that the quantum photon propagator is
proportional to the following expression:

1

E[g(s _ sl)efi)\l(sf.91) +6(sy — s)eikl(sfsl)]

oD
where we define \; = —£8; = e2B1 > 0. We see that this is
the usual propagator of a particle z(s) of harmonic oscillator
with mass-energy parameter A; > 0 where z(s) satisfies the
following harmonic oscillator equation:

dz
ds?
We regard (91) as the propagator of a photon with mass-

energy parameter A;. Fourier transforming (91) we have the
following form of photon propagator:

= —\2z(s). 92)

1

—_— 93
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where we use the notation kg (instead of the notation k) to
denote the proper energy of photon. We shall show in the
next Section that from this photon propagator by space-time
statistics we can get a propagator with the k5 replaced by
the energy-momemtum four-vector k£ which is similar to the
Feynman propagator (with a mass-energy parameter A; > 0).
We thus see that the quantum photon propagator W (zg, 2)
gives a classical form of photon propagator in the conven-
tional QED theory.

Then we notice that while A; > 0 which may be think of
as the mass-energy parameter of a photon the original quan-
tum photon propagator W(zo, z) can give the Coulomb po-
tential and thus give the effect that the photon is massless.
Thus the photon mass-energy parameter A; > 0 is consis-
tent with the property that the photon is massless. Thus in
the following Sections when we compute the vertex correc-
tion and the Lamb shift we shall then be able to let A; > 0
without contradicting the property that the photon is mass-
less. This then can solve the infrared-divergence problem
of QED.

We remark that if we choose other form of paths for con-
necting zo and z we can get other forms of photon propaga-
tor corresponding to a choice of gauge. From the property
of gauge invariance the final result should not depend on the
form of propagators. We shall see that this is achieved by
renormalization. This property of renormalizable is as a prop-
erty related to the gauge invariance. Indeed we notice that the
quantum photon propagator with a photon-loop W (z, z) at-
tached to an electron represented by Z has already given the
renormalized charge e (and the renormalized mass m of the
electron) for the electromagnetic interaction.

It is clear that this renormalization by the quantum photon
propagator with a photon-loop W (z, z) is independent of the
chosen photon propagator (because it does not need to choose
a photon propagator). Thus the renormalization method as
that in the conventional QED theory for the chosen of a pho-
ton propagator (corresponding to a choice of gauge) should
give the observable result which does not depend on the form
of the photon propagators since these two forms of renormal-
ization must give the same effect of renormalization.

In the following Section and the Sections from Section 16
to Section 23 on Quantum Electrodynamics (QED) we shall
investigate the renormalization method which is analogous to
that of the conventional QED theory and the computation of
QED effects by using this renormalization method.

15 Renormalization

In this Section and the following Sections from Section 16
to Section 23 on Quantum Electrodynamics (QED) we shall
use the density (3) and the notations from this density where
A;,7=1,2 are real components of the photon field. Follow-
ing the conventional QED theory let us consider the following

Sze Kui Ng. New Approach to Quantum Electrodynamics

renormalization:
1 1
— 2 ;s — . — 2 .
Aj=z3Ar, 1=1,2;, Z=2z;7g;
Ze 1 (94)
eqg = ~e=—e¢e;
3 n
ZzZp €

where z4, 2, and z. are renormalization constants to be de-
termined and Ag;, 7 = 1, 2, Zp are renormalized fields. From
this renormalization the density D of QED in (3) can be writ-
ten in the following form:

D= jza (%uF — %) (%08 - %50) +
+z5 (dig + e (Z?:l A]R - )ZE)

x (%2 —ie (T3, Ar%)ZR) =

= {1 (% - 2fan)" (%r — Om) +

+@adln 4 27070 — W2 ZhZR+

. 2 J
+ie(Y,_; AjRE) 2R YR —

—ie@?:l AR ) Rz +
(X3 1 Ar ) Z3ZR | +
+{<ZA ~ D[} (% - ) (S - o)+
(25— 1) 7GR Ge +
1) [+ie (37 L Ap% )75 %n

_ ie(z?f AjR ddwsJ)dZR ZR]

95)

+(ze -

=1
z2 2 27
+ (5 = 1), AriE ) 2R ) =
= Dphy + Dept

where Dy, is as the physical term and the Dy is as the
counter term; and in Dppy the positive parameter 4 is intro-
duced for perturbation expansion and for renormalization.

Similar to that the Ward-Takahashi identities in the con-
ventional QED theory are derived by the gauge invariance of
the conventional QED theory; by using the gauge invariance
of this QED theory we shall also derive the corresponding
Ward-Takahashi identities for this QED theory in the Section
on electron self-energy. From these Ward-Takahashi identi-
ties we then show that there exists a renormalization proce-
dure such that z, = z; as similar to that in the conventional
QED theory. From this relation z, = z,, we then have:

1
o= =—e (96)
z; Ne
and that in (95) we have == — 1=2, — 1
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16 Feynman diagrams and Feynman rules for QED

Let us then transform ds in (3) to (ﬁ+zh) ds where 3,h > 0
are parameters and A is as the Planck constant. The parame-
ter h will give the dynamical effects of QED (as similar to the
conventional QED). Here for simplicity we only consider the
limiting case that 8 — 0 and we let A = 1. From this transfor-
mation we get the Lagrangian £ from — f:ol Dds changing to

fssol Lds. Then we write £ = Lppy + Lent Where Lppy cor-
responds t0 Dppy and L.pe corresponds to Deye. Then from
the following term in Lppy:

_ dZr\ dZg
ds ds

s1
and by the perturbation expansion of efso
following propagator:

— 2247 97)

° we have the
;
- (98)

pE — M
which is as the (primitive) electron propagator where py de-
notes the proper energy variable of electron.

Then from the pure gauge part of L,p, we get the photon
propagator (93), as done in the above Sections and the Section
on photon propagator.

Then from Lpp, we have the following seagull vertex

term:
(Z A]R ) 747k .

This seagull vertex term gives the vertex factor ze? (We
remark that the ds of the paths di are not transformed to
—1ds since these paths are given paths and thus are indepen-
dent of the transformation ds — —1ids).

From this vertex by using the photon propagator (93) in
the above Section we get the following term:

02 ' 02
1e / tdkg e . g

K22 o Y

99)

(100)

The parameter w is regarded as the mass-energy param-
eter of electron. Then from the perturbation expansion of

°t rd . . . S
efso ° we have the following geometric series (which is
similar to the Dyson series in the conventional QED):

5 (—tw? +1pu?) —

— %
— 2 2
Pyp—wW

Py —u2+ u

P3 —ﬂz

(101)

T 7w2+#

where the term ¢ of —zw? +1u? is the zu term in Lppy. (The
other term —zu in Lppy has been used in deriving (98).) Thus
we have the following electron propagator:

(102)

30

This is as the electron propagator with mass-energy
parameter w. From w we shall get the mass m of electron.
(We shall later introduce a space-time statistics to get the
usual electron propagator of the Dirac equation. This usual
electron propagator is as the statistical electron propagator.)
As the Feynman diagrams in the conventional QED we rep-
resent this electron propagator by a straight line.

In the above Sections and the Section on the photon prop-
agator we see that the photon-loop W(z, z) gives the renor-
malized charge e =n.eq and the renormalized mass m of
electron from the bare charge ey by the winding numbers of
the photon loop such that m is with the winding number fac-
tor n.. Then we see that the above one-loop energy integral
of the photon gives the mass-energy parameter w of electron
which gives the mass m of electron. Thus these two types
of photon-loops are closely related (from the relation of pho-
ton propagator and quantum photon propagator) such that the
mass m obtained by the winding numbers of the photon loop
W (z, z) reappears in the one-loop energy integral (100) of
the photon.

Thus we see that even there is no mass term in the La-
grangian of this gauge theory the mass m of the electron can
come out from the gauge theory. This actually resolves the
mass problem of particle physics that particle can be with
mass even without the mass term. Thus we do not need the
Higgs mechanism for generating masses to particles.

On the other hand from the one-loop-electron form of the
seagull vertex we have the following term:

1e? zdpE 1e

2 — U Zu

2
= —iA\2. (103)

IS
So for photon from the perturbation expansion of e” <o

we have the following geometric series:

Lds

7 % 212 %
e T e e
2w P (i) e

— [ . 1 (104)
S Ey Rty

2
A0

where we define A2 = A? + A2. Thus we have the following
photon propagator: ;
k2 A2’
which is of the same form as (93) where we replace A; with
Ao. As the Feynman diagrams in the conventional QED we
represent this photon propagator by a wave line.

Then the following interaction term in Lypy:

ds (Z] lAJR ds )ZR+
dZR(ZJ 1AJRddxs])

gives the vertex factor (—ze)(pg + gg) which corresponds
to the usual vertex of Feynman diagram with two electron
straight lines (with energies pg and gg) and one photon wave
line in the conventional QED.

(105)

(106)
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Then as the Feynman rules in the conventional QED a following Green’s function:

sign ffictor (-1, Where n is the ngmber of the electrorf i fe*ip(z*$1)7”fj+;n dp =

loops in a Feynman diagram, is to be included for the Feyn (2m) pZ—m (112)

man diagram.

17 Statistics with space-time

Let us introduce space-time as a statistical method for a large
amount of basic variables Zg and A;g, Azr. As an illus-

tration let us consider the electron propagator s *— and the
B
following Green’s function corresponding to it:
7 e—iPE(S—SI)d
[, (107)
2 Pp— W

where s is the proper time.

We imagine each electron (and photon) occupies a space
region (This is the creation of the concept of space which is
associated to the electron. Without the electron this space
region does not exist). Then we write

pe(s—8§)=pgt—t)—px-x), (108)
where p(x — x’) denotes the inner product of the three di-
mensional vectors p and x — x’ and (¢,x) is the time-space
coordinate where X is in the space region occupied by Zg(s)
and that

wz—p2:m2>0, (109)

where m is the mass of electron. This mass m is greater
than O since each Zg occupies a space region which implies
that when ¢ — ¢’ tends to 0 we can have that |x — x'| does
not tend to 0 (x and x’ denote two coordinate points in the
regions occupied by Zg(s) and Zg(s') respectively) and thus
(109) holds. Then by linear summing the effects of a large
amount of basic variables Zg and letting w varies from m to
oo from (107), (108) and (109) we get the following statistical

expression: _ )
) / e~ (=) gp
ent) pom?

which is the usual Green’s function of a free field with mass
m where p is a four vector and z = (¢, x).

The result of the above statistics is that (110) is induced
from (107) with the scalar product p% of a scalar p changed
to an indefinite inner product p? of a four vector p and the
parameter w is reduced to m.

Let us then introduce Fermi-Dirac statistics for electrons.
As done by Dirac for deriving the Dirac equation we factorize
p?> —m? into the following form:

(110)

P> —m? = (pg —w)(pg +w) = (a1

= (Yup* — m)(yup* +m),

where <, are the Dirac matrices. Then from (110) we get the
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o i e*iP(@*zl)dp
= @nr | T

Thus we have the Fermi-Dirac statistics that the statistical
electron propagator is of the form sz—m which is the prop-
agator of the Dirac equation and is the electron propagator of
the conventional QED.

Let us then consider statistics of photons. Since the above
quantum gauge theory of photons is a gauge theory which is
gauge invariant we have that the space-time statistical equa-
tion for photons should be gauge invariant. Then since the
Maxwell equation is the only gauge invariant equation for
electromagnetism which is based on the space-time we have
that the Maxwell equation must be a statistical equation for
photons.

Then let us consider the vertexes. The tree vertex (106)
with three lines (one for photon and two for electron) gives
the factor —ie(pg + g5 ) Where pg and g5 are from the factor
df—f for electron.

We notice that this vertex is with two electron lines (or
electron propagator) and one photon line (or photon propa-
gator). In doing a statistics on this photon line when it is
as an external electromagnetic field on the electron this pho-
ton line is of the statistical form v, A# where A# denotes the
four electromagnetic potential fields of the Maxwell equation.
Thus the vertex —te(pg + qg) after statistics is changed to

the form —ie(pg +q5) %
introduced for statistics.
Let us then introduce the on-mass-shell condition as in
the conventional QED theory (see [6]). As similar to the on-
mass-shell condition in the conventional QED theory our on-

mass-shell condition is that p5 =m where m is the observ-

where for each y* a factor % is

able mass of the electron. In this case —ie(pg + qE)% is
changed to —zem~y*. Then the m is absorbed to the two ex-
ternal spinors ﬁu (where E denotes the energy of the elec-
tron satisfied the Dirac equation while the E of pg is only
as a notation) of the two electrons lines attached to this ver-

tex such that the factor —= of spin 0 of the Klein-Gordon

vE
equation is changed to the factor /% of spinors of the Dirac

equation. In this case we have the magnitude of p; and g5
reappears in the two external electron lines with the factor
v/m. The statistical vertex then becomes —iey*. This is ex-
actly the usual vertex in the conventional QED. Thus after a
space-time statistics on the original vertex —ie(pg + g5) We
get the statistical vertex —zey* of the conventional QED.

18 Basic effects of Quantum Electrodynamics
To illustrate this new theory of QED let us compute the three

basic effects of QED: the one-loop photon and electron self-
energies and the one-loop vertex correction.
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As similar to the conventional QED we have the Feynman
rules such that the one-loop photon self-energy is given by the
following Feynman integral:

. . . 22
illo(kg) == 1%(—1)? & x 0
(2pg+kg)(2pgtkyg)dpy (113)

I S (e e

where e is the renormalized electric charge.

Then as the Feynman rules in the conventional QED for
the space-time statistics a statistical sign factor (—1)7, where
7 is the number of the electron loops in a Feynman diagram,
will be included for the Feynman diagram. Thus for the one-
loop photon self-energy (113) a statistical factor (—1)7 will
be introduced to this one-loop photon self-energy integral.

Then similarly we have the Feynman rules such that the
one-loop electron self-energy is given by the following
Feynman integral:

. . . 82
—1Xo(pg) == 12(—1)25 X

(2pg—kg)(2pg—Fkg)dk
* J S o))

(114)

Similarly we have the Feynman rules that the one-loop
vertex correction is given by the following Feynman integral:

(—1e)Ao(pg,q5) =

= (03 (i) g [e ) O e b in - Tha) O
Pr—Fkg)?—w?)((gg—kg)*—w?)(k5—27)

Let us first compute the one-loop vertex correction and
then compute the photon self-energy and the electron self-
energy.

As a statistics we extend the one dimensional integral
[ dkg to the n-dimensional integral [ d"k (n — 4) where
k= (kg, k). This is similar to the dimensional regularization
in the conventional quantum field theories (However here our
aim is to increase the dimension for statistics which is dif-
ferent from the dimensional regularization which is to reduce
the dimension from 4 to n to avoid the ultraviolet divergence).
With this statistics the factor 27 is replaced by the statistical
factor (27)™. From this statistics on (115) we have the fol-
lowing statistical one loop vertex correction:

% fol dzx fol 2ydy [ d"k x (116)

4p5 ap(Prtan) 2k (Prtar)’+4Pp 35)+5k% (Prt+as)—2k%
[k2—2k(pzy+q(1—2)y)—pRey—gz(l—z)y+m2y+A2(1-y)]3

(115)

X

where k% = k% — k2, and k? is from the free parameters w, Ag
where we let w? = m? + k2, A2 =22 + k? for the electron
mass m and a mass-energy parameter A for photon; and:

k(pzy + q(1-2)y) := kp(ppzy + gp(1-2)y) } 1
~k-0=kg(pgry + qg(1—2)y) |

By using the formulae for computing Feynman integrals
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we have that (116) is equal to (see [6,72]):
o3l 1
em Jo 92 [y 2ydy x

% [4PE<1E(PE+qE)7r5F(3f%) 1

T2 Carrr)F
_ 2(pg+3g) +4P5 ag)T 3 D(3-3)r 1 N
I'(3)(A—r2)3-2 (,AJF,.Z)?—%

n 5(pytag)T2(3-1-2)2 1

r'(3)(A-r2)3—2-1 (—A+r2)2*% 118)
| SstapnirE-gy? g

r'3)(A-r2)3-2 (—Afr2)> %

O or¥r(3-1-2)r 1 B
TEA 221 (pip2)2-3

. 27!'%1—'(37%)7‘3 1
TEB—)° 7 (atr2)3

=: (—1e)A(p1,p2),
where we define:

= + 1-—
ri=pgry +qg(l —z)y } (119)

We remark that in this statistics the pg and g variables
are remained as the proper variables which are derived from
the proper time s.

Let us then introduce the Fermi-Dirac statistics on the
electron and we consider the on-mass-shell case as in the con-
ventional QED. We shall see this will lead to the theoretical
results of the conventional QED on the anomalous magnetic
moment and the Lamb shift.

As a Fermi-Dirac statistics we have shown in the above
Section that the vertex term —ie(pg + g ) is replaced with
the vertex term —ie(pg —|—qE)%. Then as a Fermi-Dirac
statistics in the above Section we have shown that the sta-
tistical vertex is —zey* under the on-mass-shell condition.
We notice that this vertex agrees with the vertex term in the
conventional QED theory.

Let us then consider the Fermi-Dirac statistics on the one-
loop vertex correction (118). Let us first consider the follow-
ing term in (118):

% fol dz fol 2ydy X

T (Pp+4g)4Prds 1
I'(3)(A—r2)3-2 (—A+r2)27% )

A = pyzy + 9p(1 — z)y — mPy — A(1 —y)

(120)
X

where we can (as an approximation) let n = 4. From Fermi-
Dirac statistics we have that this term gives the following
statistics:

. 3 1 1 2 Lokg
e 4/ dm/ Qydy = (pE+qE)272 3pqu.
(2m)* Jo 0 I(3)(A —r2)3~

(121)

Then we consider the case of on-mass-shell. In this case
we have pp =m and gz =m. Thus from (121) we have the

Sze Kui Ng. New Approach to Quantum Electrodynamics
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following term:

/dm/ 2ydy

where a mass factor m = %(p g + dg) has been omitted and
put to the external spinor of the external electron as explained
in the above Section on space-time statistics. In (122) we
still keep the expression pg g5 even though in this case of
on-mass-shell because this factor will be important for giving
the observable Lamb shift, as we shall see. In (122) because
of on-mass-shell we have (as an approximation we let n = 4):

(A —r2)3=

T 7“4pE dg

ppre (22

P=-N(1-y) -’ =

(1) (123)
- -y

—m2y?.

Thus in the on-mass-shell case (122) is of the following
form:

PEqE
— d d
eyt / :I:/ yay TX2(1—y) — m2y? )

where a = 27 is the fine structure constant. Carrying out the

integrations on y and on z we have that as A — 0 (124) is
equal to:

(124)

L% PEdE
(~ie)y = FEIE log T (125)
where the proper factor pg g5 will be for a linear space-time
statistics of summation. We remark that (125) corresponds
to a term in the vertex correction in the conventional QED
theory with the infra-divergence when A = 0 (see [6]). Here
since the parameter A has not been determined we shall later
find other way to determine the effect of (125) and to solve
the infrared-divergence problem.

Let us first rewrite the form of the proper value py g5. We
write pg g in the following space-time statistical form:
Pedr = —2p ' p, (126)

where p and p’ denote two space-time four-vectors of electron
such that p? =m? and p’?> = m?2. Then we have

Pgdg =
:% 29rtPrdp+Prdr)= ( —2p' - p+m?)

—2p'-p+m?) =1 (p*—2p'-p+p?) (127)

W=

/

(p
(m?
(p'—p)?

SN

_. 1.2
- 3 q,
where following the convention of QED we define ¢ =p' — p.
Thus from (125) we have the following term:
2

(—ie)y* o2

128
3 mZ (128)

Io
PN

where the parameter A are to be determined. Again this term
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(128) corresponds to a term in the vertex correction in the
conventional QED theory with the infrared-divergence when
A =0 (see [6]).

Let us then consider the following term in (118):

—ie3 1
7(270”/ dz %
0
X /1 2((pg + 95)° +4pEQE)7T%T2ydy
o T(B)(A —r2)3=2(—A +r2)*

For this term we can (as an approximation) also let n =4
and we have let I' (3 — ) = 1. As similar to the conven-
tional QED theory we want to show that this term gives the
anomalous magnetic moment and thus corresponds to a sim-
ilar term in the vertex correction of the conventional QED
theory (see [6]).

By Fermi-Dirac statistics the factor (pg + ¢5) in (129)
of (pg +gg)? gives the statistical term (pg + qz) %'y“. Thus
with the on-mass-shell condition the factor (pg + g) gives
the statistical term m~y*. Thus with the on-mass-shell con-
dition the term (pg +gz)? gives the term my*(pg + qg)-
Then the factor (pg + g ) in this statistical term also give 2m
by the on-mass-shell condition. Thus by Fermi-Dirac statis-
tics and the on-mass-shell condition the factor (pg + g5)? in
(129) gives the statistical term y#2m?2. Then since this is a
(finite) constant term it can be cancelled by the correspond-
ing counter term of the vertex giving the factor —ze-y# and
having the factor z, — 1 in (95). From this cancellation the
renormalization constant 2z, is determined. Since the constant
term is depended on the § > 0 which is introduced for space-
time statistics we have that the renormalization constant z. is
also depended on the § > 0. Thus the renormalization con-
stant 2z, (and the concept of renormalization) is related to the
space-time statistics.

At this point let us give a summary of this renormalization
method, as follows.

(129)

Renormalization

1. The renormalization method of the conventional QED
theory is used to obtain the renormalized physical results.
Here unlike the conventional QED theory the renormaliza-
tion method is not for the removing of ultraviolet divergences
since the QED theory in this paper is free of ultraviolet diver-
gences.

2. We have mentioned in the above Section on photon
propagator that the property of renormalizable is a property of
gauge invariance that it gives the physical results independent
of the chosen photon propagator.

3. The procedure of renormalization is as a part of the
space-time statistics to get the statistical results which is in-
dependent of the chosen photon propagator. ¢

Let us then consider again the above computation of the
one-loop vertex correction. We now have that the (finite) con-
stant term of the one-loop vertex correction is cancelled by
the corresponding counter term with the factor z, — 1 in (95).
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Thus the nonconstant term (128) is renormalized to be the
following renormalized form:

2

. a q
— b= —. 130
(—ie)y* o - 5 log (130)
Let us then consider the following term in (129):
- 8 rEe-=2
1e? / dm/ 2ydy quE“ G2 43
)(A —r2)3-5

where we can (as an approximation) let n = 4. With the on-
mass-shell condition we have that A — r? is again given by
(123). Then letting A = 0 we have that (131) is given by:

—ilea 8ppdr

With the on-mass-shell condition we have » = my. Thus
this term (132) is equal to:

(132)

(—ie) 47:;, 89545 . (133)

Again the factor py, g5 is for the exchange of energies for
two electrons with proper energies p, and g respectively
and thus it is the vital factor. This factor is then for the space-
time statistics and later it will be for a linear statistics of sum-
mation for the on-mass-shell condition. Let us introduce a
space-time statistics on the factor pg g, as follows. With
the on-mass-shell condition we write pz g5 in the following
form:

(134)

1
= (mpg +ggm) = - m(pg +qg) -

Prdg = 5

Then we introduce a space-time statistics on the proper
energies pg and g respectively that pg gives a statistics Gp
and g gives a statistics Sp’ where p and p’' are space-time
four vectors such that p? =m?; p'> =m?; and 3 is a statisti-
cal factor to be determined.

Then we have the following Gordan relation on the space-
time four vectors p and p’ respectively (see [6] [72]):

}

where p* and p*’ denote the four components of p and p’
respectively. Thus from (134) and the Gordan relation (135)
we have the following space-time statistics:

¥ =*(p-7) +10"p,
(135)
" = (0 )y —ic*p,

%(mPE +ggm) =

‘ (136)
= imB(y(p-7) + (@ - — o),

where following the convention of QED we define ¢ = p' —p.

From (136) we see that the space-time statistics on pg
for giving the four vector p needs the product of two Dirac
v-matrices. Then since the introducing of a Dirac y-matrix

34

for space-time statistics requires a statistical factor % we have
that the statistical factor § = 3

Then as in the literature on QED when evaluated between
polarization spinors, the p’-y and «y-p terms are deduced to the
mass m respectively. Thus the term %m,@ (Yp-vy+p ")
as a constant term can be cancelled by the corresponding
counter term with the factor z, — 1 in (95).

Thus by space-time statistics on pg g5 from (133) we get
the following vertex correction:

(—te)

o 137)

dtm

where ¢ = p — p' and the factor 8 in (133) is cancelled by the
statistical factor % B= %. We remark that in the way of getting
(137) a factor m has been absorbed by the two polarization
spinors u to get the form /Zu of the spinors of external
electrons.

Then from (137) we get the following exact second order

magnetic moment:
o

5 Mo,

o (138)

where pg = ﬁ is the Dirac magnetic moment as in the liter-
ature on QED (see [6]).

We see that this result is just the second order anoma-
lous magnetic moment obtained from the conventional QED
(see [6] [72]- [78]). Here we can obtain this anomalous mag-
netic moment exactly while in the conventional QED this
anomalous magnetic moment is obtained only by approxima-
tion under the condition that |g?| < m?2. The point is that we
do not need to carry out a complicate integration as in the lit-
erature in QED when the on-mass-shell condition is applied
to the proper energies py and g5, and with the on-mass-shell
condition applied to the proper energies pg and g5 the com-
putation is simple and the computed result is the exact result
of the anomalous magnetic moment.

Let us then consider the following terms in the one-loop
vertex correction (118):

(27r)" fo dz fo 2ydy x

[5(pg+qg)ﬁr(s—1—3)g 1 n
r'(3)(A—r2)3—2-1 (*A+r2)2’%
5(pg+a )7r%1"(37£)'r2 1
+ ey (AT CarE (139)
32 or B 0(3—1-2)r 1 B
TE)(A—T2721  (Cair27 3
ar3r(3—2)r’ 1

— T(3)(A—r?)3—2 (7A+7‘2)2_% .

From the on-mass-shell condition we have A — 7% =—r2
where we have set A =0. The first and the second term are

with the factor (pg + gz) which by Fermi-Dirac statistics

Sze Kui Ng. New Approach to Quantum Electrodynamics
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gives the statistics (pg + g E)%fy". Then from the following
integration:

fol dzx fol 2yrdy =
= fol dz fol 2y*(pge + (1 — z)gg)dy

we get a factor (pg + g ) for the third and fourth terms. Thus
all these four terms by Fermi-Dirac statistics are with the
statistics (pg + qE)%'y“. Then by the on-mass-shell condi-
tion we have that the statistics (pg + g5) % ¥# gives the statis-
tics m~y#. Thus (139) gives a statistics which is of the form
(y* - constant). Thus this constant term can be cancelled by
the corresponding counter term with the factor z, — 1 in (95).

Thus under the on-mass-shell condition the renormalized
vertex correction (—zie)Ag(p’,p) from the one-loop vertex
correction is given by the sum of (128) and (137):

(—e)Ar(p',p) =

(140)

2 , (141)

19 Computation of the Lamb shift: Part I

The above computation of the vertex correction has not been
completed since the parameter A has not been determined.
This appearance of the nonzero A is due to the on-mass-shell
condition. Let us in this Section complete the above compu-
tation of the vertex correction by finding another way to get
the on-mass-shell condition. By this completion of the above
computation of the vertex correction we are then able to com-
pute the Lamb shift.

As in the literature of QED we let wy,i, denote the min-
imum of the (virtual) photon energy in the scatting of elec-
tron. Then as in the literature of QED we have the following
relation between wm;n and A when %<< 1 where v denotes
the velocity of electron and ¢ denotes the speed of light (see
[6, 68-74]):

5
log 2wmin = log A + = . (142)

6

Thus from (141) we have the following form of the vertex
correction:

(—ie)y* 55 ia [log 22 + 8]+

. S
+(—ie)yH o2

(143)

Let us then find a way to compute the following term in
the vertex correction (143):

2
. a g
(—te) Mgﬁ log

S (144)

The parameter 2wp,iy is for the exchanging (or shifting)
of the proper energies py and g of electrons. Thus the mag-
nitudes of pg and g5 correspond to the magnitude of wWm;p.
When the wpin is chosen the corresponding pg and g5 are
also chosen and vise versa.

Sze Kui Ng. New Approach to Quantum Electrodynamics

Since wpin 1 chosen to be very small we have that the
corresponding proper energies pg and g are very small that
they are no longer equal to the mass m for the on-mass-shell
condition and they are for the virtual electrons. Then to get
the on-mass-shell condition we use a linear statistics of sum-
mation on the vital factor pg qg. This means that the large
amount of the effects pg gz of the exchange of the virtual
electrons are to be summed up to statistically getting the on-
mass-shell condition.

Thus let us consider again the one-loop vertex correction
(118) where we choose pg and g such that pp < m and
gz < m. This chosen corresponds to the chosen of wyi,. We
can choose py and g5 as small as we want such that p, K m
and gz <€ m. Thus we can let A=0 and set pg =gz =0
for the py and g in the denominators (A —r2)3=2 in (118).
Thus (118) is approximately equal to:

e

_ 2((pp+dg)*+4pgap)T ED(3=2)r
Fad +

o (145)
5(pgt+gg)T20(3—2)r®
—m2

5(pgtag)T2I(2—2)

g
* (—A+r2)>~% +

2 n
_ 2orSr(e—

ar 2 ]."(372)7"3]
(A—r2)2—% ‘

“m?2

B,

Let us then first consider the four terms in (145) without
the factor I'(2— 7 ). For these four terms we can (as an appro-

ximation) let n = 4. Carry out the integrations fol dz |, 01 ydy
of these four terms we have that the sum of these four terms
is given by:
. 2

(i€) 127z [4pp 95 (Pp + 9m) —

- %((PE +4p)° +4ppag)(Pg + 45) +
+§(pg + 9p)(PH + 9% + Prdp) — (146)
— (0% + 4§ + pRap + Ppaz)] =

. 2

= (ze) 47?3?:,12 (PE + ‘IE) [%P%} + %Q%} - %PE qE] )

where the four terms of the sum are from the corresponding
four terms of (145) respectively.

Then we consider the two terms in (145) with the factor
['(2-%). Letd:=2— % > 0. We have:

D(6)- (0 4+ 72) 6 = .
= (% + afinite limit term as §—0) - e 9108~ A+7%)
We have:
3 e—0log(—A+r?) _
=1.[1-5log(—A +7%) +0(6%)] . (148)
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Then we have:
—3-6log(—A+1?) =

= —logm?y — log 1> x

2

x[m? —pge — gp(1 —z) + (pge + ¢5(1 — 2))%y] =

_ pRr(1-zy)+e3(1—z)(1—(1—2)y) n
m2

= —logm?y — log [1

(149)

e qgnwbgl—w)y 4 O(piﬂ;rzqiﬂ)]_

Then the constant term — log m2y in (149) can be can-
celled by the corresponding counter term with the factor
Ze — 1in (95) and thus can be ignored. When p2E < m? and
g% < m? the second term in (149) is approximately equal to:

flz,y) = ppe(loy)tap(lz)(1-(1-a)y) _
’ m (150)
_ 2pg quglfcc)y )
Thus by (150) the sum of the two terms in (145) having
the factor I'(2 — %) is approximately equal to:

s fy de [y ydyf(z,y)
(151)
(n+2)

n n
5 —oms i),

x[5(pg + qg)T*
where we can (as an approximation) let n =4. Carrying out
the integration fol dz fol ydy of the two terms in (151) we
have that (151) is equal to the following result:

(i€) 255 (g + q5) X
(152)

x[(~=5-§-2pgag) + (— 5Py — 595 + 2ppap)|,

where the first term and the second term in the [-] are from the
first term and the second term in (151) respectively.
Combining (146) and (151) we have the following result
which approximately equal to (145) when p%4 <« m? and
g% < m%:
2

T 2 2 7
132 Pe T 98)|5PE+ 59+ 3Ppds|, (153)

(—te) 9 9 3
where the exchanging term % Py qg is of vital importance.

Now to have the on-mass-shell condition let us consider
a linear statistics of summation on (153). Let there be a large
amount of virtual electrons z;, 7 € J indexed by a set J with
the proper energies p3,; < m?® and ¢3; < m?, j € J. Then
from (153) we have the following linear statistics of summa-
tion on (153):

(—ie)am® (Pmjo+amjq) %
4m3m?2

(154)
X %Zj(pQEj +q%;) + z ijquEj] )
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where for simplicity we let:

PEj +4g; = PEj’ + dBj' = PEj, + 4Ej, = 2mo  (155)

for all 7,7’ € J and for some (bare) mass mq < m and for
some jg € J. Then by applying Fermi-Dirac statistics on
the factor pgj, + ggj, in (154) we have the following Fermi-
Dirac statistics for (154):

. 2
(—te) 32z 5 1 (Pmjo + 9Ed0) X

x[23,(p%; +95;) + £ 2 PEidms) = (156)

. 2, 41
= (—1e) e (2 50, (0%, + 9%;) + 522, PEidE;)-

Then for the on-mass-shell condition we require that the
linear statistical sum mo% Zj PE;qE; in (156) is of the fol-
lowing form:

mogZPEjQEj Zﬁomng, (157)
J

where g2 = (p' — p?) and the form mq? = m(p’ — p?) is the

on-mass-shell condition which gives the electron mass m;

and that By is a statistical factor (to be determined) for this

linear statistics of summation and is similar to the statistical

factor (27)" for the space-time statistics.

Then we notice that (156) is for computing (144) and thus
its exchanging term corresponding to > ; PE;qE; must be
equal to (144). From (156) we see that there is a statistical
factor 4 which does not appear in (144). Since this exchang-
ing term in (156) must be equal to (144) we conclude that the
statistical factor By must be equal to 4 so as to cancel the sta-
tistical factor 4 in (156). (We also notice that there is a statis-
tical factor 72 in the numerator of (156) and thus it requires
a statistical factor 4 to form the statistical factor (27)% and
thus 8o =4.) Thus we have that for the on-mass-condition
we have that (156) is of the following statistical form:

2

., am 2 4 ;2 5 T,
(_ze)ﬂ3m2 my# |:1529m +ﬁ2§m —l—gq . (158)

Then from (158) we have the following statistical form:

an?

. 2 2 7
(i) 527 {ﬁg gm HBgm’+ 2 q2] , (159

where the factor m of m~# has been absorbed to the two
external spinors of electron. Then we notice that the term
corresponding to 822 m? + 82 m? in (159) is as a constant
term and thus can be cancelled by the corresponding counter
term with the factor z, — 1 in (95). Thus from (159) we
have the following statistical form of effect which corres-

ponds to (144):
L

(—ie)y* -l (160)

This effect (160) is as the total effect of g% computed from
the one-loop vertex with the minimal energy wpi, and thus
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includes the effect of g? from the anomalous magnetic mo- We have
ment. Thus we have that (144) is computed and is given by s o
. .. 1 _—dlog(m”—kgzz(l—z)) —
the following statistical form: 5 € - (167)

( ze)’y“ 3T m2 log 2wmm =

= (—ie)y* = [7 - 3],

where the term corresponding to the factor 3

g s from the
anomalous magnetic moment (137) as computed in the lit-
erature of QED (see [6]). This completes our computation of
(144). Thus under the on-mass-shell condition the renormal-

ized one-loop vertex (—ze)Agr(p’, p) is given by:
(_ie)AR(pl7p) =
. 2
= (1) v 5= (75 - 3) @]

This completes our computation of the one-loop vertex
correction.

(161)

(162)

41rm

20 Computation of photon self-energy

To compute the Lamb shift let us then consider the one-loop
photon self energy (113). As a statistics we extend the one di-
mensional integral [ dpp, to the n-dimensional integral [ d"p
(n — 4) where p = (pg,p). This is similar to the di-
mensional regularization in the existing quantum field the-
ories (However here our aim is to increase the dimension for
statistics which is different from the dimensional regulariza-
tion which is to reduce the dimension from 4 to n to avoid the
ultraviolet divergence). With this statistics the factor 27 is re-
placed by the statistical factor (27)™. From this statistics on
(113) we have that the following statistical one-loop photon
self-energy:
2

(=1)i(=1)? (;,r)n X

X fl d f (4p%+4ppkp+kE)d"D (163)
0 (p2+2pkz+kZz—m2)2
where p? = p% — p?, and p? is from w? =m? + p?; and:
pk =pgkg —pP-0=pgkg. (164)

As a Feynman rule for space-time statistics a statistical
factor (—1) has been introduced for this photon self-energy
since it has a loop of electron particles.

By using the formulae for computing Feynman integrals
we have that (163) is equal to:

fodx

[kg(m —4z+1)r3r(2—2
r(2)(m?—kiz(1—z))> 2

1
((22}5 (165)
r5re-1-2)2

I(2)(m2—kZe(l—=2))>" "% |

+

Let us first consider the first term in the [-] in (165). Let
0:=2— 2 > 0. As for the one-loop vertex we have
L(8) - (m? —kfz(1-2))° =

= (% + a finite term as (5—>O) e

(166)
—8log(m?—k%Lz(1—z)) .
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=1 [1—6log(m? — k3z(1 — z)) 4 0(6?)] .
Then we have

— 3 - 6log(m? — k3z(l —z)) =
(168)

= —logm? —log[l - M]

m2

Then the constant term — log m? in (168) can be can-
celled by the corresponding counter term with the factor
za — 1 in (95) and thus can be ignored. When k% < m?
the second term in (168) is approximately equal to:

kiz(l — z)

e (169)

Carrying out the integration fol dz in (163) with

—log[1 — W] replaced by (169), we have the follow-
ing result:
1 2 2
k%z(l — ) k
dz(4z® — 4z +1)-Z =—£_ 170
| detaat —ae T2 - R )

Thus as in the literature in QED from the photon self-
energy we have the following term which gives contribution
to the Lamb shift:

k% _ (P — QE)2
30m?  30m? '
where k; = pg — qg and pg, g5 denote the proper energies
of virtual electrons. Let us then consider statistics of a large
amount of photon self-energy (168). When there is a large
amount of photon self-energies we have the following linear
statistics of summation:

(171)

2 ks
172
30m2 (172)

where each ¢ represent a photon. Let us write:
ki = (Ppi — 98:)° = Poi — 20pidmi + 9mi - (173)
Thus we have:
i kB =P — 4m)° =

? o (174)

_ 2 2
=2 (Pri +98:) — 222, Prilm: -
Now as the statistics of the vertex correction we have the
following statistics:

Z PEidE: = 4
:

where 4 is a statistical factor which is the same statistical fac-
tor of case of the vertex correction and p, p’ are on-mass-shell
four vectors of electrons. As the the statistics of the vertex
correction this statistical factor cancels another statistical fac-

P —p)® =44, (175)
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tor 4. On the other hand as the statistics of the vertex correc-
tion we have the following statistics:

szE'z :ﬁ3m2) Zq%}z :ﬁ4m27
7 7

where §3 and 3,4 are two statistical factors. As the case of the
vertex correction these two sums give constant terms and thus
can be cancelled by the corresponding counter term with the
factor z4 — 1 in (95). Thus from (174) we have that the lin-
ear statistics of summation ), k2%, gives the following statis-
tical renormalized photon self-energies IIg and II3; (where
we follow the notations in the literature of QED for photon
self-energies I1ys):

(176)

iHR(kE‘) = ik%'HM(kE) =

2 a 2
_2kE47r30'm2 =1Rkg

. (177)
(I

m2

o
3w

where we let k%, = k% for all 1.
Let us then consider the second term in the [-] in (165).
This term can be written in the following form:

n3r(2-2)2 _

(1-2)r(@)(m2—k%z(1-2))>"' "2

r3r(e—2)z
= Ty [(m? — Kye(1 - 2)) +0(8)] = (178)
(-n73r(e-2)2
=K% [% P E) z(l — x)] +
r3r(2—2)2
+ [% ' (1—(g2)rf2)*)2 m? + 0(5))}

Then the first term in (178) under the integration fol dz
is of the form (k% - constant). Thus this term can also be
cancelled by the counter-term with the factor z4 — 1 in (95).
In summary the renormalization constant z4 is given by the
following equation:

n
e’r2

1
(@m)" Jo dz x

(~1%iza — 1) = (-){}-
nm(l z)]

(179)
x [(42% — 4z + 1) — —l—cA},
where c4 is a finite constant when § — 0. From this equation
we have that z4 is a very large number when 6 > 0 is very
small. Thus ey = z. (zZzA/Z) e = Leisa very small

. 2
constant when § > 0 is very small (and since ~ = a = L

is small) where shall show that we can let z, = 2. T
Then the second term in (178) under the integration f 01 dz
gives a parameter A3 > 0 for the photon self-energy since
6 > 0is as a parameter.
Combing the effects of the two terms in the [-] in (165)
we have the following renormalized one-loop photon self-
energy:

t(Hr(kg) + As3) - (180)

38

Then we have the following Dyson series for photon prop-
agator:

+...=

e T E o (Hr(Rg) +0e) gty

- k%(1+HM;—(>\o—>\3) - (181)

—. i

_. sz(lJrHM)*)\R ?
where Ag is as a renormalized mass-energy parameter. This is
as the renormalized photon propagator. We have the follow-
ing approximation of this renormalized photon propagator:

k2 (14 Tyy) — (1= Ta).

(182)

Y R

21 Computation of the Lamb shift: Part II

Combining the effect of vertex correction and photon self-
energy we can now compute the Lamb shift. Combining the
effect of photon self-energy (—zey*)[—IIx] and vertex cor-
rection we have:

(—1e)Ar(p',p) + (—tev?) -] =
(183)

( ze) |:’yf‘ 3mrm?2 (7+ 6 % - %) + 47rm0”uuq" .

As in the literature of QED let us consider the states 2.5 1
and the 2P% in the hydrogen atom [6, 72-78]. Followmg

the literature of QED for the state 25} an effect of ag” (3

3Tm2\8
comes from the anomalous magnetic moment which cancels

the same term with negative sign in (183). Thus by using
the method in the computation of the Lamb shift in the lit-
erature of QED we have the following second order shift for

the state 2.5 1
_ ma® - 5 1
6w 6 5/

AEss,
2
Similarly by the method of computing the Lamb shift in
the literature of QED from the anomalous magnetic moment
we have the following second order shift for the state ZP%:

_ ma® 1
_6ﬂ<_8>.

Thus the second order Lamb shift for the states 25 1 and
2P1 is given by:

(184)

ABap, (185)

AE - AEZS;
2

ma® 5 1
_AEZP% = (7

1
— - 186
6w + 6 5 5t 8) (186)
or in terms of frequencies for each of the terms in (186) we

have:
Av =952 +113.03 — 27.13 + 16.96 =

(187)
= 1054.86 Mc/sec.
This agrees with the experimental results [6, 72—78]:
Ave*P = 1057.86 £ 0.06 Mc/sec
(188)

and = 1057.90 £ 0.06 Mc/sec.
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22 Computation of the electron self-energy

Let us then consider the one-loop electron self-energy (113).
As a statistics we extend the one dimensional integral
[ dkg to the n-dimensional integral [ d"k (n — 4) where
k= (kg, k). This is similar to the dimensional regularization
in the existing quantum field theories (However here our aim
is to increase the dimension for statistics which is different
from the dimensional regularization which is to reduce the
dimension from 4 to n to avoid the ultraviolet divergence).
With this statistics the factor 27 is replaced by the statistical
factor (27)™. From this statistics on (114) we have that the
following statistical one-loop electron self-energy —1%(pyg):

—i%(pg) = i2(—z)2(;7)n fol dz [d"k x

(k% —4PE kpt4ps)d"k
(k2 2kpz+pLz—zm2—(1—x)A2)2 ?

(189)

where k% = k% — k2, and k? is from w? = m? + k? and
A2 =X +k% and kp := kypy — k-0 = kgpy. By using
the formulae for computing Feynman integrals we have that
(189) is equal to:

f [ p%(z?—4z+4)m 2 I'(2— z
(27r)" 0 I'(2)(em2+(1—z)A2—pZz(1-2))>" 2

= =
}

n

= (27r)" fo dm{pE(x —dz + 4)T>

r¥r(e-1-2)2
I(2)(zm?+(1-2)A2—ppa(1-2))*

-6 log(mm2+(17m))\27p?§cc(lfcc))] _

x[(3+0(9))-e

w32 am? + (1 - 2)X - pha(l - 2) +0(8)] } =

= (27r)" fo dm{pE(:z: — 4z +4)TE [} — 3 X
x §log(zm? + (1 — z)A? — pZa(1 —z)) + 0(8)] —
—m222[em® + (1 —2z)A? —phz(l —z) + 0(5)]} =

n

(27r)n fo d${PE($ —4z +4)7r=

X [% —log(zm? + (1 — z)A? — p%z(1 — z)) + 0(8)] —

— 5 24 [zm? + (1 - 2)X — pha(l — ) + 0(8)]} =

n

= (27r)n fo d${PE($ —4z +4)7r=
x [3 — log(zm? + (1 — z)A?) —
phz(l-z)

— log(l — m) + 0((5)] —

—m22%[am® + (1 —z)A® —phz(l —z) + 0(5)]} =
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= 57 Jo dw{pE(z —dz+4)rE (5 -

zm —T
— log(zm? + (1 — z)A?) — log(1 — %) +

+0(8)] +p% - Ir3a(1 —:v)} +iws, (190)

=

where w3 > 0 is as a mass-energy parameter.
Then we notice that from the expressions for Xo(py) and
Ao(pg, gg) in (114) and (115) we have the following identity:

%EO(Z’E) = —No(pp,Pp) +

14& —kg+2p
|k e k=) -

(191)

This is as a Ward-Takahashi identity which is analogous
to the corresponding Ward-Takahashi identity in the conven-
tional QED theory [6].

From (114) and (115) we get their statistical forms by
changing [ dk to [ d"k. From this summation form of statis-
tics and the identity (191) we then get the following statistical
Ward-Takahashi identity:

apE S(p ) _A(pEva)+

i4e> d d"k —kg+2pg (192)
+ (2m)n fO z f (k2 —2kpz+pLz—zm2—(1—z)A2)2

where X(pg) denotes the statistical form of Xo(pg) and is
given by (189) and A(pg, g¢5) denotes the statistical form of
Mo(pg, gg) as in the above Sections.

After the differentiation of (190) with respect to pg the
remaining factor py of the factor p% of (190) is absorbed

to the external spinors as the mass m and a factor % is in-
troduced by space-time statistics, as the case of the statistics
of the vertex correction Ag(pg,qg) in the above Sections.
From the absorbing of a factor pj to the external spinors for
both sides of this statistical Ward-Takahashi identity we then
get a statistical Ward-Takahashi identity where the Taylor ex-
pansion (of the variable pg) of both sides of this statistical
Ward-Takahashi identity are with constant term as the begin-
ning term. From this Ward-Takahashi identity we have that
these two constant terms must be the same constant. Then
the constant term, denoted by C(§), of the vertex correction
of this Ward-Takahashi identity is cancelled by the counter-
term with the factor z, — 1 in (95), as done in the above com-
putation of the renormalized vertex correction Ag(p’, p). (At
this point we notice that in computing the constant term of
the vertex correction some terms with the factor p has been
changed to constant terms under the on-mass-shell condition
pg = m. This then modifies the definition of C(4)).

On the other hand let us denote the constant term for the
electron self-energy by B(4). Then from the above statistical
Ward-Takahashi identity we have the following equality:

1
B(6)+a1 v =

5t =C(), (193)
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where a, b; are finite constants when 6 — 0 and the term
ap - % is from the second term in the right hand side of (192).

Let us then compute the constant term B(4) for the elec-
tron self-energy, as follows. As explained in the above the
constant term for the electron self-energy can be obtained by
differentiation of (190) with respect to pg and the removing
of the remaining factor pg of p%. We have:

n

) n
E{(ZW)” fo dzp%(z? — 4z + 4)m2

x [} —log(zm? + (1 — z)A? — pEa(l — z))] +

+p% - %W%%(zifr)n Jo (1 —2)dz +“"3}

n

(27r)" fo dz2pp(z® — 4z + 4)7w2

(194)
x [ —log(zm? + (1 — z)A? — phz(l — )] +

pE(z> —4z+4)7r2 2pgz(l—z)
dz imQ-&-(l a:))\z—pEi(l z) +

+ (27r)" fO
+2pg - § 78 3 sy a(

Then by Taylor expansion of (194) and by removing a
factor 2p g from (194) the constant term for the electron self-
energy is given by:

n

B(¢) = (27r)” fo dz(z? — 4z +4)7>

x [} — — log(zm? + (1 — z)A%)] — (195)

n
2

1 2 1
—5 T2 5@ Jo (1 —z)dz.

Then as a renormalization procedure for the electron self-
energy we choose a §; > 0 which is related to the ¢ for the
renormalization of the vertex correction such that:

1
B(él): *+b1.

)

This is possible since B(¢) has a term proportional to
%. From this renormalization procedure for the electron self-

energy we have:
B(é1) =C(9).

This constant term B(d;) for the electron self-energy is
to be cancelled by the counter-term with the factor z, — 1 in
(95). We have the following equation to determine the renor-
malization constant z, for this cancellation:

(—1)%(z7 — 1) = (i) B(d1)

Then from the equality (197) we have z, = 2, where z,
is determined by the following equation:

(—1)%(z (=9)C(6)-

Cancelling B(§1) from the electron self-energy (190) we

B(8) +a; - (196)

(197)

(198)
-1) =

(199)

40

get the following renormalized one-loop electron self-energy:

— 193 DR(pg) + w3 1= —ipg & X
(200)

2
z(l—zx .
Pp2(l—c) + 1w? .

X fol dz(z? — 4z +4) log[l T zm2+(1—z)AZ

We notice that in (200) we can let A = 0 since there is
no infrared divergence when A = 0. This is better than the
computed electron self-energy in the conventional QED the-
ory where the computed one-loop electron self-energy is with
infrared divergence when A = 0 [6].

From this renormalized electron self-energy we then have
the renormalized electron propagator obtained by the follow-
ing Dyson series:

= —t— + ( szER(pE)—I—zws)i—i-...:

- pz(l—za(pE»—(wZ—wg) = (201)

_. i
T p5(1-Zr(pg))—wE

where w% := w? — w2 is as a renormalized electron mass-

energy parameter. Then by space-time statistics from the
renormalized electron propagator (201) we can get the renor-
malized electron propagator in the spln—f form, as that the

electron propagator #pjim in the Spln-* form can be ob-

tained from the electron propagator P 1w2 .
B

23 New effect of QED

Let us consider a new effect for electron scattering which is
formed by two seagull vertexes with one photon loop and four
electron lines. This is a new effect of QED because the con-
ventional spin % theory of QED does not have this seagull
vertex. The Feynman integral corresponding to the photon
loop is given by
2(7’)2 4 f dk _
(k3 -23)((P5—a5—Fx)2—23)

50
2m JO J (k2 -2k (pr—a5)T+(Pr—a5)3T—AZ2)>

= (202)

i f f . dk g — .
27 JO (kg —2kg(rg—ag)z+H(pg—ag)%z—A7)?

Let us then introduce a space-time statistics. Since the
photon propagator of the (two joined) seagull vertex interac-
tions is of the form of a circle on a plane we have that the
appropriate space-time statistics of the photons is with the
two dimensional space for the circle of the photon propaga-
tor. From this two dimensional space statistics we then get a
three dimensional space statistics by multiplying the statisti-
cal factor ﬁ of the three dimensional space statistics and
by concentrating in a two dimensional subspace of the three
dimensional space statistics.

Thus as similar to the four dimensional space-time statis-
tics with the three dimensional space statistics in the above
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Sections from (202) we have the following space-time statis-
tics with the two dimensional subspace:

e* fl f d3k _
(2m)* Jo J (kG —2kg(Pg—ag)2+(Pg—ag)°e—k>—A0)? (203)

et 1 dk
— (2n)® fo da:f (k2—2k(p5—q5,0)z+(p5—qz)2T—22)2 ?

where the statistical factor ﬁ of three dimensional space
has been introduced to give the factor ﬁ of the four dimen-
sional space-time statistics; and we let k = (kg, k), k2 =
= k% — k2 and since the photon energy parameter Xq is a
free parameter we can write A2 = k2 + AZ for some ).

Then a delta function concentrating at 0 of a one dimen-
sional momentum variable is multiplied to the integrand in
(203) and the three dimensional energy-momentum integral
in (203) is changed to a four dimensional energy-momentum
integral by taking the corresponding one more momentum in-
tegral.

From this we get a four dimensional space-time statistics
with the usual four dimensional momentum integral and with
the statistical factor ﬁ After this additional momentum
integral we then get (203) as a four dimensional space-time
statistics with the two dimensional momentum variable.

Then to get a four dimensional space-time statistics with
the three dimensional momentum variable a delta function
concentrating at 0 of another one dimensional momentum
variable is multiplied to (203) and the two dimensional mo-
mentum variable of (203) is extended to the corresponding
three dimensional momentum variable. From this we then
get a four dimensional space-time statistics with the three di-
mensional momentum variable.

Then we have that (203) is equal to:

et in3r(2-2)

dz
L) (204)

1
Jo (Py—ay)?e(1—z)-A2)%

Then since the photon mass-energy parameter A4 is a free
parameter for space-time statistics we can write A4 in the fol-
lowing form:

A=(p-a)z(l-2),

where p — q denotes a two dimensional momentum vector.
Then we let p — ¢ = (pg — g5, P — d). Then we have:

(205)

(pE—qE)Qm(l—m)—)\i =

=(pp—ap)’z(1-2)—(p—a)z(1-2)= (206)
— (p—q)?e(1-2).
Then we have that (204) is equal to:
et im3r(2-3) = do

@m* TR 0 ((pgpz1-a)}

et iWW%F(27% 1 _ (207)

S O D

e*i 2o

16m((p—q)2)

4(p-9)2)%
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Thus we have the following potential:

elat

4((p— )%

This potential (208) is as the seagull vertex potential.

We notice that (208) is a new effect for electron-electron
or electron-positron scattering. Recent experiments on the de-
cay of positronium show that the experimental orthopositron-
ium decay rate is significantly larger than that computed from
the conventional QED theory [33-52]. In the following Sec-
tion 24 to Section 26 we show that this discrepancy can be
remedied with this new effect (208).

Vseagull (P - Q) = (208)

24 Reformulating the Bethe-Salpeter equation

To compute the orthopositronium decay rate let us first find
out the ground state wave function of the positronium. To
this end we shall use the Bethe-Salpeter equation. It is well
known that the conventional Bethe-Salpeter equation is with
difficulties such as the relative time and relative energy prob-
lem which leads to the existence of nonphysical solutions
in the conventional Bethe-Salpeter equation [7-32]. From
the above QED theory let us reformulate the Bethe-Salpeter
equation to get a new form of the Bethe-Salpeter equation.
We shall see that this new form of the Bethe-Salpeter equation
resolves the basic difficulties of the Bethe-Salpeter equation
such as the relative time and relative energy problem.

Let us first consider the propagator of electron. Since
electron is a spin-% particle its statistical propagator is of the

form . Thus before the space-time statistics the spin-

.
YupP#—m
% form of electron propagator is of the form

which can

E
be obtained from the electron propagator 1)2+w2 by the fac-
E

Pp—Ww

torization: p% — w? = (py — w)(pg + w). Then we consider
the following product which is from two propagators of two
spin-1 particles:

[Pr1 — willpgy — wa] =

= PgPgy — WiPgy — W2Pp; T Wiwz =: (209)

— 2 2
=:py — wp,
where we define p% = pg,Pg, and w? = wWiPg, +WaPgpy —
— wyws. Then since w; and w, are free mass-energy parame-
ters we have that wy, is also a free mass-energy parameter with
the requirement that it is to be a positive parameter.

Then we introduce the following reformulated relativistic
equation of Bethe-Salpeter type for two particles with spin—%:

_ %)
$o(Ps> ) = G =Ty —aal X
L (210)
x [ ie”¢o(9g,ws)dgp
((PE_‘IE)Z_}‘S) !
where we use the photon propagator ﬁ (which is of the
B 0o

effect of Coulomb potential) for the interaction of these two
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particles and we write the proper energy k% of this potential
in the form k%4 = (pg — gg)? and X is as the coupling
parameter. We shall later also introduce the seagull vertex
term for the potential of binding.

Let us then introduce the space-time statistics. Since we
have the seagull vertex term for the potential of binding which
is of the form of a circle in a two dimensional space from the
above Section on the seagull vertex potential we see that the
appropriate space-time statistics is with the two dimensional
space. Thus with this space-time statistics from (210) we
have the following reformulated relativistic Bethe-Salpeter

equation:
/ 1d3g
(p—q)?

where we let the free parameters w, and Ag be such that
p? = p% — p? with w? = p? + 3 for some constant v =
=L > 0 where a is as the radius of the binding system; and

(p—9)° = (pp —az) = (P~ a)° With f = (p — @)". We
notice that the potential a2 )2 of binding is now of the usual

_)\’
2 — 7

@211)

$o(p) = $o(9),

(relativistic) Coulomb potential type. In (211) the constant e?
in (210) has been absorbed into the parameter A’ in (211).

We see that in this reformulated Bethe-Salpeter equation
the relative time and relative energy problem of the conven-
tional Bethe-Salpeter equations is resolved [7-32]. Thus this
reformulated Bethe-Salpeter equation will be free of abnor-
mal solutions.

Let us then solve (211) for the relativistic bound states of
particles. We show that the ground state solution ¢ (p) can
be exactly solved and is of the following form:

1
®o(P) = 75— (212)
olp) (»* — 13)?
We have:
1 1 _
((P—2)®) (2—3)2 —
_ (24 1—1) fl (1—z)dz _
— C-DIA-1)! Jo [z(p—a)2+(1—=) (232 —
(213)

_ (2411 (1—z)dz _
- o(e-na-1) fO [¢?+2zpg+ap>—(1—z)yE]®

_ (1—z)dz
=2y l¢°+2zpg+ap®—(1—2)75]®

Thus we have:

d%q _

of (r—9)2 )(q -2

— 4o ! a®

=12 fo (1-2)de f [q2+2zpq+acp2qf(17ac)'y§}3

_ 227r21"(3 )f (1—z)dz =
r'(3) 0 [to(1-z)p>—(1-2)r2] 3

_ 27r21"(3—§)f dz T =
I'(3) O [+zp2—y3l[(1—2)(zp2—3)|2

0

3 3
2m2r(3-3) »5? fl delzi=%]2 _
I@  a(3)? Jo = | =

2r3r(3-2)
6

2 2
gy Ja de[P=d - P] -

_2rdr(a-2) g
r'(3) 8(73)?

DBl -Rt - =

=3

27r21-1\—‘((§)7 )foo dt[P _'70)t—p] Z =

3
2m2P(3-%) 1
- ') (-3

) fy? r 2 dr =

1
2 v(@2-3)

Then let us choose A’ such that \' = 27%20 From this

value of A’ we see that the BS equation (211) holds. Thus the
ground state solution is of the form (212). We see that when
pg = 0 and w? = p? + 43 then this ground state gives the
well known nonrelativistic ground state of the form W
of binding system such as the hydrogen atom.

25 Bethe-Salpeter equation with seagull vertex potential

Let us then introduce the following reformulated relativistic
Bethe-Salpeter equation which is also with the seagull vertex
potential of binding:

(215)

[ o 3
X f |:(p—q)2 + 4((p—q)2)% ] ¢(q)d q,

where a factor 2 of both the Coulomb-type potential and
the seagull vertex potential is absorbed to the coupling con-
stant .

Let us solve (215) for the relativistic bound states of par-
ticles. We write the ground state solution in the following

form:
¢(p) = ¢o(p) + ad1(p),

where ¢o(p) is the ground state of the BS equation when the
interaction potential only consists of the Coulomb-type po-
tential. Let us then determine the ¢ (p).

From (215) by comparing the coefficients of the o/, j =
= 0,1 on both sides of BS equation we have the following
equation for ¢ (p):

(216)

= ;A12 d? +
np) = s fL((p q)Z)J‘ﬁO( e
217)
- i i 3
+ p2—7§ f[((P*Q)Z) + 4((p_q)2)%:|¢1(q)d g

This is a nonhomogeneous linear Fredholm integral
equation. We can find its solution by perturbation. As a
first order approximation we have the following approxima-
tion of ¢1(p):
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JURESY. have ¢o(p) = =7 and:
Bo)~ 57 ] ot 2@ e y
' ; B Pl — 7
— =X i 1 3 — = lo 219
7 ) (ot @r 4 #1P) = oo+ 2pl [ 1pl %0 e

Y iD(14+14+2-1) 1
P22 41"(1+%712)1"(1+2—1) Jo v2(1 —y)dy x

daq
[a%—2qpy+p2y—(1—y)7E]

241 T

_ X ar(i+2)
T p2o5 AT(H)T(2)

1 ”r21“(***)y2(1 y)dy
Jo e -—nn = (218)
A,
I e 4F( )foy dy(py 2

_ A’ log || =0
p? 724|P\Wo [p[+0

[p|=0
[p[+70

_ T 2%
p2—yg m? 4lp\vo

log

— log| [PI=70
27 (p vo)\m &|lplFo |’

where |p| = +/p?.

Thus we have the ground state ¢(p) = ¢o(p) + ad1(p)
where p denotes an energy-momentum vector with a two di-
mensional momentum. Thus this ground state is for a two
dimensional (momentum) subspace. We may extend it to the
ground state of the form ¢(p) = ¢o(p) + ad:(p) where p
denotes a four dimensional energy-momentum vector with a
three dimensional momentum; and due to the special nature
that ¢, (p) is obtained by a two dimensional space statistics
the extension @1 (p) of @1 (p) to with a three dimensional mo-
mentum is a wave function obtained by multiplying ¢ (p)
with a delta function concentrating at 0 of a one dimensional
momentum variable and the variable p of ¢, (p) is extended to
be a four dimensional energy-momentum vector with a three
dimensional momentum.

Let us use this form of the ground state ¢(p) = ¢o(p) +
ag; (p) to compute new QED effects in the orthopositronium
decay rate where there is a discrepancy between theoretical
result and the experimental result [33-52].

26 New QED effect of orthopositronium decay rate

From the seagull vertex let us find new QED effect to the
orthopositronium decay rate where there is a discrepancy be-
tween theory and experimental result [33-52]. Let us com-
pute the new one-loop effect of orthopositronium decay rate
which is from the seagull vertex potential.

From the seagull vertex potential the positronium ground
state is modified from ¢(p) =0 (p) to #(p)=¢o(p) +ad1(p).
Let us apply this form of the ground state of positronium to
the computation of the orthopositronium decay rate.

Let us consider the nonrelativistic case. In this case we
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Let M denotes the decay amplitude. Let M denotes the
zero-loop decay amplitude. Then following the approach in
the computation of the positronium decay rate [33-52] the
first order decay rate I' is given by:

[ 8137E [60(D) + o (p)] Mo(p)dp =:

=:To+ aneagull )

(220)

where 87r%'yog is the normalized constant for the usual unnor-
malized ground state wave function ¢q [33-52].

We have that the first order decay rate 'y is given
by [33-52]:

5
o := (orys J 87376 9o(p) Mo(P)d’p =

87r2'y

= @ne f(p2+72)2M°( p)&p ~

X

¢0(r = O)Mo(O) =

) (221)
8#570
- (e2m)?

f (p2+7 )2 0) =
_ 87r%7§ i
- (@7m)° 7

= L 1 MO(O)v

(ra®)}

Mo(0) =

where 1o(r) denotes the usual nonrelativistic ground state
wave function of positronium; and a = % is as the radius
of the positronium. In the above equation the step ~ holds
since ¢o(p) — O rapidly as p — oo such that the effect of
Mo (p) is small for p # 0; as explained in [33]- [52].

Then let us consider the new QED effect of decay rate
from ¢1(p). As the three dimensional space statistics in the
Section on the seagull vertex potential we have the following
statistics of the decay rate from ¢ (p):

5 _
Fseagull = ﬁ fgﬂ-%fYOQ ¢1(p)M0

B
= oy J 87275 61(P) Mo(p)d?p ~

y
872y,
(2m)®

X

p:

f ¢1(P)Mo(0)d2
(222)
—87r%70

ECLE d?pMo(0) =

I log | {122 |
2m(p2+7¢) \p\
5

8w 2 'Yo 7l'3
(2m)32m 27vg

= . lMO(O)r

4(ma3)2

Mo(0) =

43
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where the step & holds as similar the equation (221) since in
the two dimensional integral of ¢; (p) we have that ¢ (p)—0
as p — oo such that it tends to zero as rapidly as the three
dimensional case of ¢o(p) — 0.

Thus we have:

aPseagull = g Ig. (223)

4
From the literature of computation of the orthopositron-
ium decay rate we have that the computed orthopositronium
decay rate (up to the order o) is given by [33-52]:

Tops =To[l+ A% + L loga + B(2)? — £ log?a] =
= 7.039934(10) us~?, (224)

where A = —10.286 606(10), B = 44.52(26) and 'y =
=2(n? — 9)ma® =7.211 169 us~*.

Then with the additional decay rate from the seagull ver-
tex potential (or from the modified ground state of positron-
ium) we have the following computed orthopositronium de-
cay rate (up to the order o?):

FO-PS + al—‘seagull =

= F0[1+(A+§)g+%2loga+3(%)2—glogza] =

™

= 7.039934(10) + 0.01315874 us~! =

= 7.052092(84) us . (225)

This agrees with the two Ann Arbor experimental val-
ues where the two Ann Arbor experimental values are given
by: T'y_ps(Gas) = 7.0514(14) us~* and I',_pg(Vacuum) =
=7.0482(16) us~* [33,34].

We remark that for the decay rate al'seqgun We have only
computed it up to the order . If we consider the decay rate
ol seqgun up to the order a? then the decay rate (225) will be
reduced since the order o of I'scq g1 is Of negative value.

If we consider only the computed orthopositronium de-
cay rate up to the order o with the term B(2)? omitted, then
I'y.ps = 7.038202 us~™! (see [33-52]) and we have the fol-
lowing computed orthopositronium decay rate:

To.ps + @ seagunr = 7.05136074 s~ 2. (226)

This also agrees with the above two Ann Arbor experi-
mental values and is closer to these two experimental values.

On the other hand the Tokyo experimental value given by
['y.ps(Powder) = 7.0398(29) us~ ! [35] may be interpreted
by that in this experiment the QED effect I'seq g4 Of the seag-
ull vertex potential is suppressed due to the special two di-
mensional statistical form of I'seq g, (Thus the additional ef-
fect of the modified ground state ¢ of the positronium is sup-
pressed). Thus the value of this experiment agrees with the
computational result I' y_pg. Similarly the experimental result
of another Ann Arbor experiment given by 7.0404(8) us™*

44

[36] may also be interpreted by that in this experiment the
QED effect I'seqquu Of the seagull vertex potential is sup-
pressed due to the special two dimensional statistical form
of Fsea gull-

27 Graviton constructed from photon

It is well known that Einstein tried to find a theory to unify
gravitation and electromagnetism [1,79, 80]. The search for
such a theory has been one of the major research topics in
physics [80-88]. Another major research topic in physics is
the search for a theory of quantum gravity [8§9-120]. In fact,
these two topics are closely related. In this Section, we pro-
pose a theory of quantum gravity that unifies gravitation and
electromagnetism.

In the above Sections the photon is as the quantum Wilson
loop with the U(1) gauge group for electrodynamics. In the
above Sections we have also shown that the corresponding
quantum Wilson line can be regarded as the photon propa-
gator in analogy to the usual concept of propagator. In this
section from this quantum photon propagator, the quantum
graviton propagator and the graviton are constructed. This
construction forms the foundation of a theory of quantum
gravity that unifies gravitation and electromagnetism.

It is well known that Weyl introduced the gauge concept
to unify gravitation and electromagnetism [80]. However this
gauge concept of unifying gravitation and electromagnetism
was abandoned because of the criticism of the path depen-
dence of the gauge (it is well known that this gauge con-
cept later is important for quantum physics as phase invari-
ance) [1]. In this paper we shall use again Weyl’s gauge
concept to develop a theory of quantum gravity which uni-
fies gravitation and electromagnetism. We shall show that the
difficulty of path dependence of the gauge can be solved in
this quantum theory of unifying gravitation and electromag-
netism.

Let us consider a differential of the form g(s)ds where
g(s) is a field variable to be determined. Let us consider a
symmetry of the following form:

g9(s)ds = g'(s')ds’,

where s is transformed to s’ and g'(s) is a field variable such
that (227) holds. From (227) we have a symmetry of the fol-
lowing form:

9(s)"g(s)ds® = g™ (s')g'(s")ds",

(227)

(228)

where g*(s) and g"*(*) denote the complex conjugate of g(s)
and g'(s) respectively. This symmetry can be considered
as the symmetry for deriving the gravity since we can write
9(s)*g(s)ds? into the following metric form for the four di-
mensional space-time in General Relativity:

9(s)*g(s)ds® = g, dzHdz”, (229)

Sze Kui Ng. New Approach to Quantum Electrodynamics



April, 2008

PROGRESS IN PHYSICS

Volume 2

where we write ds?® = auydztdz” for some functions a,,
by introducing the space-time variable z#, u = 0, 1, 2, 3 with
z° as the time variable; and g, = g(s)*g(s)a,. Thus from
the symmetry (227) we can derive General Relativity.

Let us now determine the variable g(s). Let us consider
g(s) = W{(zo, 2(s)), a quantum Wilson line with U(1) group
where zg is fixed. When W (2o, 2(s)) is the classical Wilson
line then it is of path dependence and thus there is a diffi-
culty to use it to define g(s) = W (zq, 2(s)). This is also the
difficulty of Weyl’s gauge theory of unifying gravitation and
electromagnetism. Then when W (2o, z(s)) is the quantum
Wilson line because of the quantum nature of unspecification
of paths we have that g(s) = W (z, 2z(s)) is well defined
where the whole path of connecting zg and z(s) is unspeci-
fied (except the two end points zg and z(s)).

Thus for a given transformation s’ — s and for any (con-
tinuous and piecewise smooth) path connecting zg and z(s)
the resulting quantum Wilson line W'(zg, 2(s(s'))) is again
of the form W(zg, 2(s)) = W(zo, 2(s(s"))). Let g'(s') =
=W'(z0,2(s(s'))) 2. Then we have:

g* (sl)gl(sl)dsl2 —

= W™ (20,2(s(s"))W' (20, 2(s(s))) (§)?ds" =
(230)

= W*(zg, 2(s))W (2o, z(s))(%)st’2 =

g(s)*g(s)ds®.

Il

This shows that the quantum Wilson line W (zq, 2(s)) can
be the field variable for the gravity and thus can be the field
variable for quantum gravity since W (zo, z(s)) is a quantum
field variable.

Then we consider the operator W (zq, 2)W (2, z). From
this operator W (2o, 2)W (2o, z) we can compute the opera-
tor W* (29, 2)W (20, 2z) which is as the absolute value of this
operator. Thus this operator W (zq, 2)W (20, 2) can be re-
garded as the quantum graviton propagator while the quan-
tum Wilson line W (zq, 2) is regarded as the quantum pho-
ton propagator for the photon field propagating from 2y to
z. Let us then compute this quantum graviton propagator
W (20, 2)W (29, z). We have the following formula:

W(z,20)W(20,2) =
A . 231)
= e~tlog[(2—20)] 4 gt log[+(z0—2)] |

where f:—% for the U(1) group (ko > 0 is a constant

and we may let kg = 1) where the term e~ tlog[H(z—20)] jg
obtained by solving the first form of the dual form of the KZ
equation and the term etlogl+(20=2)] i5 obtained by solving
the second form of the dual form of the KZ equation.

Then we change the W (z, z9) of W (z,29)W (20, ) in
(231) to the second factor W (zg, 2) of W (z, 20)W (20, 2) by
reversing the proper time direction of the path of connecting
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z and 2o for W(z, zg). This gives the graviton propagator
W (20, 2)W (20, 2). Then the reversing of the proper time di-
rection of the path of connecting z and zo for W (z, zg) also
gives the reversing of the first form of the dual form of the
KZ equation to the second form of the dual form of the KZ
equation. Thus by solving the second form of dual form of
the KZ equation we have that W (zg, 2)W (2, 2) is given by:

W (20, 2)W (20, 2) = et log[£(z—20)] gt logl+(z—20)] —
R (232)
_ eZtlog[i(z—zo)}A.

In (232) let us define the following constant G:

2
G.:=—2f=2%50

ko (233)

We regard this constant GG as the gravitational constant of
the law of Newton’s gravitation and General Relativity. We

1
. . i1
notice that from the relation eg = (zj) e = nie where

the renormalization number n, = z% is a very large num-
ber we have that the bare electric charge eg is a very small
number. Thus the gravitational constant G given by (233)
agrees with the fact that the gravitational constant is a very
small constant. This then gives a closed relationship between
electromagnetism and gravitation.

We remark that since in (232) the factor —Glogr; =
= Glog % < 0 (where we define r; = |z — 2| and 7y is
restricted such that »; > 1) is the fundamental solution of
the two dimensional Laplace equation we have that this fac-
tor (together with the factor e~Clogm = %18 %) is anal-
ogous to the fundamental solution —G% of the three dimen-
sional Laplace equation for the law of Newton’s gravitation.
Thus the operator W (2q, 2)W (20, z) in (232) can be regarded
as the graviton propagator which gives attractive effect when
r1 > 1. Thus the graviton propagator (232) gives the same
attractive effect of —G% for the law of Newton’s gravitation.

On the other hand when r; < 1 we have that the factor
—Glogry = Glog % > 0. In this case we may consider that
this graviton propagator gives repulsive effect. This means
that when two particles are very close to each other then the
gravitational force can be from attractive to become repulsive.
This repulsive effect is a modification of —G % for the law of
Newton’s gravitation for which the attractive force between
two particles tends to co when the distance between the two
particles tends to 0.

Then by multiplying two masses m; and m. (obtained
from the winding numbers of Wilson loops in (73) of two par-
ticles to the graviton propagator (232) we have the following
formula:

1
Gmimylog —.
1

(234)

From this formula (234) by introducing the space vari-
able x as a statistical variable via the Lorentz metric: ds? =
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= dt? — dx? we have the following statistical formula which by the following formula:
is the potential law of Newton’s gravitation: W (20, 2)W (20, 2)W (2, 20)W (2, 20) Z , (240)

1
—-GM1 M, -, (235)
r
where M; and M, denotes the masses of two objects.
We remark that the graviton propagator (232) is for mat-
ters. We may by symmetry find a propagator f(zg,z) of the
following form:

f(zo, 2) 1= e~ 2tloBlE(z=20)l 4 | (236)

When |z — 2| > 1 this propagator f(zq,2) gives repul-
sive effect between two particles and thus is for anti-matter
particles where by the term anti-matter we mean particles
with the repulsive effect (236). Then since |f(zo, 2)| — o0
as |z — zg| — co we have that two such anti-matter particles
can not physically exist. However in the following Section on
dark energy and dark matter we shall show the possibility of
another repulsive effect among gravitons.

As similar to that the quantum Wilson loop W (zq, zo) is
as the photon we have that the following double quantum Wil-
son loop can be regarded as the graviton:

W (20, 2)W (20, 2)W (2, 20)W (2, 20) - (237)

28 Dark energy and dark matter

By the method of computation of solutions of KZ equations
and the computation of the graviton propagator (232) we have
that (237) is given by:

W (20, 2)W (20, 2)W (2, 20)W (2, 20) =

_ erlog[i(z—zo)}Age—Zflog[:t(z—zo)} _ (238)

= R™A,, n=0,+1,4+2,43,...

where A, denotes the initial operator for the graviton. Thus
as similar to the quantization of energy of photons we have
the following quantization of energy of gravitons:

hv = 2me3n, n=0,+1,42,+3,... (239)

As similar to that a photon with a specific frequency can
be as a magnetic monopole because of its loop nature we have
that the graviton (237) with a specific frequency can also be
regarded as a magnetic monopole (which is similar to but dif-
ferent from the magnetic monopole of the photon kind) be-
cause of its loop nature. (This means that the loop nature
gives magnetic property.)

Since we still can not directly observe the graviton in ex-
periments the quantized energies (239) of gravitons can be
identified as dark energy. Then as similar to the construction
of electrons from photons we construct matter from gravitons

46

where Z is a complex number as a state acted by the graviton.

Similar to the mechanism of generating mass of electron
we have that the mechanism of generating the mass my of
these particles is given by the following formula:

de2 = 27]'63 ng = ﬂGnd = th (241)

for some integer n4 and some frequency v .

Since the graviton is not directly observable it is consis-
tent to identify the quantized energies of gravitons as dark
energy and to identify the matters (240) constructed by gravi-
tons as dark matter.

It is interesting to consider the quantum gravity effect be-
tween two gravitons. When a graviton propagator is con-
nected to a graviton we have that this graviton propagator
is extended to contain a closed loop since the graviton is
a closed loop. In this case as similar to the quantum pho-
ton propagator this extended quantum graviton propagator
can give attractive or repulsive effect. Then for stability the
extended quantum graviton propagator tends to give the re-
pulsive effect between the two gravitons. Thus the quan-
tum gravity effect among gravitons can be repulsive which
gives the diffusion of gravitons and thus gives a diffusion phe-
nomenon of dark energy. Furthermore for stability more and
more open-loop graviton propagators in the space form closed
loops. Thus more and more gravitons are forming and the re-
pulsive effect of gravitons gives the accelerating expansion of
the universe [53-57].

Let us then consider the quantum gravity effect between
two particles of dark matter. When a graviton propagator is
connected to two particles of dark matter not by connecting
to the gravitons acting on the two particles of dark matter we
have that the graviton propagator gives only attractive effect
between the two particles of dark matter. Thus as similar to
the gravitational force among the usual non-dark matters the
gravitational force among dark matters are mainly attractive.
Then when the graviton propagator is connected to two par-
ticles of dark matter by connecting to the gravitons acting on
the two particles of dark matter then as the above case of two
gravitons we have that the graviton propagator can give at-
tractive or repulsive effect between the two particles of dark
matter.

29 Conclusion

In this paper a quantum loop model of photon is established.
We show that this loop model is exactly solvable and thus
may be considered as a quantum soliton. We show that this
nonlinear model of photon has properties of photon and mag-
netic monopole and thus photon with some specific frequency
may be identified with the magnetic monopole. From the dis-
crete winding numbers of this loop model we can derive the
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quantization property of energy for the Planck’s formula of
radiation and the quantization property of electric charge. We
show that the charge quantization is derived from the energy
quantization. On the other hand from the nonlinear model
of photon a nonlinear loop model of electron is established.
This model of electron has a mass mechanism which gener-
ates mass to the electron where the mass of the electron is
from the photon-loop. With this mass mechanism for gen-
erating mass the Higgs mechanism of the conventional QED
theory for generating mass is not necessary.

We derive a QED theory which is not based on the four
dimensional space-time but is based on the one dimensional
proper time. This QED theory is free of ultraviolet diver-
gences. From this QED theory the quantum loop model of
photon is established. In this QED theory the four dimen-
sional space-time is derived for statistics. Using the space-
time statistics, we employ Feynman diagrams and Feynman
rules to compute the basic QED effects such as the vertex cor-
rection, the photon self-energy and the electron self-energy.
From these QED effects we compute the anomalous magnetic
moment and the Lamb shift. The computation is of simplic-
ity and accuracy and the computational result is better than
that of the conventional QED theory in that the computation
is simpler and it does not involve numerical approximation as
that in the conventional QED theory where the Lamb shift is
approximated by numerical means.

From the QED theory in this paper we can also derive
a new QED effect which is from the seagull vertex of this
QED theory. By this new QED effect and by a reformu-
lated Bethe-Salpeter (BS) equation which resolves the diffi-
culties of the BS equation (such as the existence of abnormal
solutions) and gives a modified ground state wave function
of the positronium. Then from this modified ground state
wave function of the positronium a new QED effect of the or-
thopositronium decay rate is derived such that the computed
orthopositronium decay rate agrees with the experimental de-
cay rate. Thus the orthopositronium lifetime puzzle is com-
pletely resolved where we also show that the recent resolu-
tion of this orthopositronium lifetime puzzle only partially
resolves this puzzle due to the special nature of two dimen-
sional space statistics of this new QED effect.

By this quantum loop model of photon a theory of quan-
tum gravity is also established where the graviton is con-
structed from the photon. Thus this theory of quantum gravity
unifies gravitation and electromagnetism. In this unification
of gravitation and electromagnetism we show that the univer-
sal gravitation constant G is proportional to eZ where eq is the
bare electric charge which is a very small constant and is re-
lated to the renormalized charge e by the formula eq = ni e
where the renormalized number n. is a very large winding
number of the photon-loop. This relation of G with eg (and
thus with e) gives a closed relationship between gravitation
and electromagnetism. Then since gravitons are not directly
observable the quantized energies of gravitons are as dark en-
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ergy and the particles constructed by gravitons are as dark
matter. We show that the quantum gravity effect among par-
ticles of dark matter is mainly attractive (and it is possible to
be repulsive when a graviton loop is formed in the graviton
propagator) while the quantum gravity effect among gravi-
tons can be repulsive which gives the diffusion of gravitons
and thus gives the diffusion phenomenon of dark energy and
the accelerating expansion of the universe.

Submitted on January 03, 2008
Accepted on January 23, 2008

References

1. Pais A. Subtle is the lord. Oxford University Press, 1982.
2. Planck M. Annalen der Physik, 1901, v.4, 553.

3. Einstein A. Annalen der Physik, 1905, v. 17, 891.

4. Dirac P.A.M. Phys. Rev., 1948, v.74, 817.

5

. Dirac P.A.M. Directions in physics. John Wiley and Sons Inc.,
1978.

6. Itzykson C. and Zuber J.B. Quantum field theory. McGraw-
Hill Inc., 1980.

7. Bethe H.A. and Salpeter E.E. Phys. Rev., 1951, v. 82, 309.
8. Bethe H.A. and Salpeter E.E. Phys. Rev., 1951, v. 84, 1232.
9. Gell-Mann M. and Law F. Phys. Rev., 1951, v. 84, 350.

10. Mandelstam S. Proc. Roy. Soc. A, 1955, v.233, 248.

11. Dyson EJ. Phys. Rev., 1953, v.91, 1543.

12. Nakanishi N. Phys. Rev. B, 1953, v. 139, 1401.

13. Nakanishi N. Phys. Rev. B, 1965, v. 138, 1182.

14. Salpeter E.E. Phys. Rev., 1952, v. 87, 328.

15. Lagae J.F. Phys. Rev. D, 1992, v.45, 305.

16. Wick G.C. Phys. Rev., 1954, v.96, 1124.

17. Cutkosky R.E. Phys. Rev., 1954, v.96, 1135.

18. Bijtebier J. Nucl. Phys. A, 1997, v. 623, 498.

19. Bijtebier J. Nucl. Phys. A, 2002, v. 703, 327.

20. Alkofer R. and von Smekal L. Phys. Rep., 2001, v. 353, 281.

21. Ahlig S. and Alkofer R. arXiv: hep-th/9810241.

22. Fukui L. and Seto N. Pror. Theor. Phys., 1993, v. 89, 205.

23. Fukui L. and Seto N. arXiv: hep-ph/9509382.

24. Ohnuki Y. and Watanabe K. Suppl. Pror. Theor. Phys., 1965,
416.

25. Kaufmann W.B. Phys. Rev., 1969, v. 187, 2951.
26. Scarf EL. Phys. Rev., 1955, v. 100, 912.

27. Namyslowski J.M. Phys. Rev., 1967, v. 160, 1525.
28. Namyslowski J.M. Phys. Rev. D, 1978, v. 18, 3676.

29. Fishbane PM. and J.M. Namyslowski J.M. Phys. Rev. D,
1980, v. 21, 2406.

30. Roberts C.D. and Williams A.G. Prog. Part. Nuc. Phys., 1994,
v.33.

31. Silagadze Z.K. arXiv: hep-ph/9803307.

47



Volume 2

PROGRESS IN PHYSICS

April, 2008

32.

33.

34.

35.

36.

37.

38.
39.

40.
41.
42.

43.

44.

45.
46.

47.

48.
49.

50.

51.

52.

53.

54.

55.

56.

57.

48

Nieuwenhuis T. and Tjon J.A. Few-Body Systems, 1996, v.21,
167.

Westbrook C.I., Gidley D.W., Conti R.S., and Rich A. Phys.
Rev. Lett., 1987, v. 58, 1328.

Nico J.S., Gidley D.W., Rich A., and Zitzewitz P.W. Phys. Rev.
Lett., 1990, v. 65, 1344.

Asai S., Orito S., and Shinohara N. Phys. Lett. B, 1995, v.357,
475.

Yallery R.S., Zitzewitz P.W., and Gidley D.W. Phys. Rev.
Lett., 2003, v. 90, 203402.

Levin B.M., Kochenda L.M., Markov A.A. and Shantarovich
V.P. Soviet J. Nucl. Phys., 1987, v.45, 1119.

Levin B.M. CERN E-print, EXT-2004-016.

Caswell W.E., Lepage G.P., and Sapirstein J. Phys. Rev. Lett.,
1977, v. 38, 488.

Adkins G.S. Phys. Rev. Lett., 1996, v.76, 4903.
Caswell W.E. and Lepage G.P. Phys. A, 1979, v. 20, 36.

Karshenboim S.G. Zh. Eksp. Fiz, 1993, v. 103, 1105 (English
translation — JETP URSS, 1993, v.76, 541).

Karshenboim S.G. Yad. Fiz., 1993, v. 56, 155 (English trans-
lation — Phys. At. Nucl, 1993, v.56, 1710).

Czarnecki A., Melnikov K., and Yelkhovsky A. Phys. Rev.
Lett., 1999, v. 83, 1135.

Caswell W.E. and Lepage G.P. Phys. Lett B, 1986, v. 167, 437.

Hoang A.H., Lebelle P, and Zebarjad S.M. Phys. Rev. A,
2000, v. 62, 012109; arXiv: hep-ph/9909495.

Adkins G.S. and Lymberopoulos M. Phys. Rev. A, 1995, v.51,
2908.

Adkins G.S. and Shiferaw Y. Phys. Rev. A, 1995, v.52, 2442.

Adkins G.S., Fell R.N., and Sapirstein J. Phys. Rev. A, 2001,
v.63, 032511.

Adkins G.S., Fell R.N., and Sapirstein J. Annals Phys., 2002,
v.295, 136-193.

Hill R.J. and Lepage G.P. Phys. Rev. D, 2000, v.62,
111301(R).

Knieh B.A. and Penin A.A. Phys. Rev. Lett, 2000, v. 85, 1210;
2000, v. 85, 3065(E).

Riess A.G. et al. (Supernova Search Team Collaboration), As-
tron. J., 1998, v. 116, 1009.

Perlmutter S. et al. (Supernova Cosmology Project Collabora-
tion), Astrophys. J., 1999, v. 517, 565.

Riess A.G. et al. (Supernova Search Team Collaboration), As-
trophys. J., 2004, v. 607, 665.

Barris B.J. et al. Astrophys. J., 2004, v. 602, 571; Knop R.A.
et al. Astrophys. J., 2003, v.598, 102; Tonry J.L. et al. (Su-
pernova Search Team Collaboration), Astrophys. J., 2003,
v.594, 1.

Perlmutter S. and Schmidt B.P. Measuring cosmology with su-
pernovae. In: Supernovae and Gamma Ray Bursts, K. Weiler,
ed., Springer, Lecture notes in physics; arXiv: astro-ph/
0303428.

58.

59.
60.
61.
62.

64.
65.

66.

67.

68.
69.

70.
71.
72.

73.
74.
75.

76.
7.

78.

79.

80.

81.

82.
83.
84.

85.
86.
87.
88.
89.
90.

Glimm J. and Jaffe A. Quantum physics. Springer-Verlag,
1987.

Faddev L.D. and Popov V.N. Phys. Lett., 1967, v.25B, 29.
Witten E. Comm. Math. Phys., 1989, v.121, 351.
Kauffman L. Knots and physics. World Scientific, 1993.

Baez J. and Muniain J. Gauge fields, knots and gravity. World
Scientic, 1994.

. Lust D and Theisen S. Lectures on string theory. Springer-

Verlag, 1989.
Pressley A. and Segal G. Loop groups. Clarendon Press, 1986.

Di Francesco P., Mathieu P., and Senechal D. Conformal field
theory. Springer-Verlag, 1997.

Fuchs J. Affine Lie algebras and quantum groups. Cambridge
University Press, 1992.

Knizhnik V.G. and Zamolodchikov A.B. Nucl. Phys. B, 1984,
v.247, 83.

Ng S.K. arXiv: math.QA/0008103; math.GM/0603275.

Chari V. and Pressley A. A guide to quantum groups. Cam-
bridge University Press, 1994.

Kohno T. Ann. Inst. Fourier (Grenoble), 1987, v.37, 139-160.
Drinfel’d V.G. Leningrad Math. J., 1990, v. 1, 1419-57.

Ticciati R. Quantum field theory for mathematicians. Cam-
bridge, 1999.

Bethe H.A. Phys. Rev., 1947, v.72, 339.
Lamb W.E. and Retherford R.C. Phys. Rev., 1947, v.72, 241.

Lifshitz E.M. and Piteavskii L.P. Relativistic quantum field
theory. 1973.

Triebwasser S. et al. Phys. Rev., 1953, v. 89, 98.

Robiscoe R.T. and Shyn T.W. Phys. Rev. Lett., 1970, v.24,
559.

Yennie D.R., Frautschi S.C., and Surra H. Ann. Phys., 1961,
v. 13, 379.

Einstein A. The meaning of relativity. 5th edition, Princeton
University Press, 1955.

Weyl H. Sitz. Berichte d. Preuss Akad. d. Wissenschafen,
v. 465, 1918.

Kaluza T. Sitzungsber. Preuss. Akad. Wiss. Berlin, Math.
Phys., 966-972, 1921.

Klein O. Z. Phys., 1926, v. 37, 895-906.
Nordstrom G. Physik. Zeitschr. 1914, v. 15, 504-506.

Sakharov A.D. Soviet Physics Doklady (translated from Dokl.
Akad. Nauk. URSS), v. 12, 1040.

Misner C. and Wheeler J.A. Ann. Phys., 1957, v.2, 525.
Saxl E.J. Nature, July 11 1963, v.203, 136.

Teller E. Proc. of Nat. Acad. of Sci., v. 74, no. 4, 2664-2666.
Witten E. Nucl. Phys. B, 1981, v. 186, 412.

Ashtekar A. Phys. Rev. Lett., 1986, v.57, 2244.

Ashtekar A. and Lewandowski J. Class. Quantum Grav.,
1997.

Sze Kui Ng. New Approach to Quantum Electrodynamics



April, 2008 PROGRESS IN PHYSICS Volume 2

91. Ashtekar A. and Lewandowski J. Adv. Theor. Math. Phys., 118. Smolin L. arXiv: hep-th/0507235.
1998, v. 1, 388. 119. Thiemann T. arXiv: gr-qc/0210094.

92. Aharony O., Gubser S.S., Maldacena J., Ooguri H., Oz Y. 120. Wu N. arXiv: hep-th/0207254.
Phys. Rept., 2000, v. 323, 183-386.

93. Baez J. Knots and quantum gravity: progress and prospects,
in Proc. of the 7th Marcel Grossman Meeting on General Rel-
ativity, eds. R. Jantzen and G. Mac Keiser, World Scientific,
1996.

94. Baez J. Spin networks in nonperturbative quantum gravity. In:
The Interface of Knots and Physics, ed. L. Kauffman, AMS,
1996.

95. Baez J. and Christensen J.D. arXiv: gr-qc/0202017.

96. Barrett J. J. Math. Phys., 1995, v.36, 6161-6179.

97. Briigmann B. and Pullin J. Phys. Rev. Lett., 1992, v. 68, 431.

98. Bronstein M.P. Zh. Eksp. Tear. Fiz., 1936, v. 6, 195.

99. Carlip S. Quantum gravity in 2+1 dimension. Cambridge
University Press, 1998.

100. Crane L. Knots and quantum gravity. J.C. Baez, ed., Claren-
don, Oxford, 1994.

101. Cremmer E., Julia B., and Scherk J. Physics Letters B, 1978,
v.76,409-412.

102. Dewitt B. Phys. Rev., 1967, v.160, 1113-1118; Phys. Rev.,
1967, v.162, 1195-1239; Phys. Rev., 1967, v.162, 1239—
1256.

103. Duft M.J. Int. J. of Mod. Physics A, 1996, v. 11, 5623-5642.

104. Freedman D.Z., van Nieuwenhuizen P., and Ferrara S. Physi-
cal Review D, 1976, v. 13, 3214-3218.

105. Gibbons G. W. and Hawking S. W. (eds.), Euclidean quantum
gravity. World Scientific, 1993.

106. Green M.B. and Schwarz J.H. Physics Letters B, 1984, v. 149,
117-122.

107. Green M., Schwarz J., and Witten E. Superstring theory I, II.
Cambridge University Press, 1987.

108. Isham C.J. Proc. Roy. Soc. Lond. A. Mat., 1979, v. 368, 33-36.

109. Loll R. Loop formulation of gauge theory and gravity. In:
Knots and Quantum Gravity, ed. J. Baez, Clarendon Press,
Oxford, 1994, 1-19.

110. Perez A. Spinfoam models for quantum gravity. Ph.D. Thesis,
University of Pittsburgh, 2001.

111. Penrose R. Angular momentum: an approach to combinatorial
space-time. In: Quantum Theory and Beyond, ed. T. Bastin,
Cambridge University Press, 1971.

112. Pullin J. Knot theory and quantum gravity in loop space: a
primer. In ed. J.L. Lucio, Proc. of the V Mexician School of
Particles and Fields, World Scientific, 1993.

113. Rovelli C. Phys. Rev. D, 1991, v.43, 442-456.

114. Rovelli C. and Smolin L. Phys. Rev. Lett., 1988, v.61, 1155.

115. Rovelli C. and Smolin L. Nucl. Phys. B, 1990, v.331, 80-152.

116. Rovelli C. and Smolin L. Nucl. Phys. B, 1995, v.442, 593—
622.

117. Smolin L. Classical and Quantum Gravity, 1992, v.9, 173—
191.

Sze Kui Ng. New Approach to Quantum Electrodynamics 49



