
Volume 2 PROGRESS IN PHYSICS April, 2008

SPECIAL REPORT

Reconsideration of the Uncertainty Relations and Quantum Measurements

Spiridon Dumitru

Department of Physics, “Transilvania” University, B-dul Eroilor 29. R-2200 Braşov, Romania
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Discussions on uncertainty relations (UR) and quantum measurements (QMS) persisted
until nowadays in publications about quantum mechanics (QM). They originate mainly
from the conventional interpretation of UR (CIUR). In the most of the QM literarure,
it is underestimated the fact that, over the years, a lot of deficiencies regarding CIUR
were signaled. As a rule the alluded deficiencies were remarked disparately and dis-
cussed as punctual and non-essential questions. Here we approach an investigation of
the mentioned deficiencies collected in a conclusive ensemble. Subsequently we expose
a reconsideration of the major problems referring to UR and QMS. We reveal that all the
basic presumption of CIUR are troubled by insurmountable deficiencies which require
the indubitable failure of CIUR and its necessary abandonment. Therefore the UR must
be deprived of their statute of crucial pieces for physics. So, the aboriginal versions of
UR appear as being in postures of either (i) thought-experimental fictions or (ii) sim-
ple QM formulae and, any other versions of them, have no connection with the QMS.
Then the QMS must be viewed as an additional subject comparatively with the usual
questions of QM. For a theoretical description of QMS we propose an information-
transmission model, in which the quantum observables are considered as random vari-
ables. Our approach directs to natural solutions and simplifications for many problems
regarding UR and QMS.

1 Introduction

The uncertainty relations (UR) and quantum measurements
(QMS) constitute a couple of considerable popularity, fre-
quently regarded as a crucial pieces of quantum mechanics
(QM). The respective crucial character is often glorified by
assertions like:

(i) UR are expression of “the most important principle of
the twentieth century physics” [1];

(ii) the description of QMS is “probably the most impor-
tant part of the theory (QM)” [2].

The alluded couple constitute the basis for the so-called
Conventional Interpretation of UR (CIUR). Discussions
about CIUR are present in a large number of early as well
as recent publications (see [1–11] and references therein).
Less mentioned is the fact that CIUR ideas are troubled by
a number of still unsolved deficiencies. As a rule, in the main
stream of CIUR partisan publications, the alluded deficien-
cies are underestimated (through unnatural solutions or even
by omission). Nevertheless, during the years, in scientific lit-
erature were recorded remrks such as:

(i) UR “are probably the most controverted formulae in
the whole of the theoretical physics” [12];

(ii) “the word (“measurement”) has had such a damaging
efect on the discussions that. . . it should be banned al-
together in quantum mechanics” [13];

(iii) “the idea that there are defects in the foundations of
orthodox quantum theory is unquestionable present in
the conscience of many physicists” [14];

(iv) “Many scientists have considered the conceptual
framework of quantum theory to be unsatisfactory. The
very foundations of Quantum Mechanics is a matter
that needs to be resolved in order to achieve and gain a
deep physical understanding of the underlying physical
procedures that constitute our world” [15].

The above mentioned status of things require further stud-
ies and probably new views. We believe that a promising
strategy to satisfy such requirements is to develop an investi-
gation guided by the following objectives (obj.):
(obj.1) to identify the basic presumptions of CIUR;
(obj.2) to reunite together all the significant deficiencies of

CIUR;
(obj.3) to examine the verity and importance of the respec-

tive deficiencies;
(obj.4) to see if such an examination defends or incriminate

CIUR;
(obj.5) in the latter case to admit the failure of CIUR and its

abanonment;
(obj.6) to search for a genuine reinterpretation of UR;
(obj.7) to evaluate the consequences of the UR reinterpreta-

tion for QMS;
(obj.8) to promote new views about QMS;
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(obj.9) to note a number of remarks on some adjacent ques-
tions.

A such guided investigation we are approaching in the
next sections of this paper. The present approach try to com-
plete and to improve somewhat less elaborated ideas from few
of our previous writings. But, due to a lot of unfortunate
chances, and contrary to my desire, the respective writings
were edited in modest publications [16–18] or remained as
preprints registred in data bases of LANL and CERN libraries
(see [19]).

2 Shortly on CIUR history and its basic presumptions

The story of CIUR began with the Heisenberg’s seminal work
[20] and it starts [21] from the search of general answers to
the primary questions (q.):

(q.1) Are all measurements affected by measuring uncertain-
ties?

(q.2) How can the respective uncertainties be described
quantitatively?

In connection with the respective questions, in its subse-
quent extension, CIUR promoted the suppositions (s.):

(s.1) The measuring uncertainties are due to the perturba-
tions of the measured microparticle (system) by its in-
teractions with the measuring instrument;

(s.2) In the case of macroscopic systems the mentioned per-
turbations can be made arbitrarily small and, conse-
quently, always the corresponding uncertainties can be
considered as negligible;

(s.3) On the other hand, in the case of quantum micropar-
ticles (of atomic size) the alluded perturbations are es-
sentially unavoidable and consequently for certain
measurements (see below) the corresponding uncer-
tainties are non-negligible.

Then CIUR limited its attention only to the quantum
cases, for which restored to an amalgamation of the following
motivations (m.):

(m.1) Analysis of some thought (gedanken) measuring ex-
periments;

(m.2) Appeal to the theoretical version of UR from the ex-
isting QM.

N: In the present paper we will use the term
“observable” (introduced by CIUR literature) for denoting
a physical quantity referring to a considered microparticle
(system).

Now let us return to the begining of CIUR history. Firstly
[20, 22], for argumentation of the above noted motivation
(m.1) were imagined some thought experiments on a quan-
tum microparticle, destined to simultaneous measurements of
two (canonically) conjugated observables A and B (such are
coordinate q and momentum p or time t and energy E). The

corresponding “thought experimental” (te) uncertainties were
noted with �teA and �teB. They were found as being inter-
connected trough the following te-UR

�teA ��teB > ~ ; (1)

where ~ denotes the reduced Planck constant.
As regard the usage of motivation (m.2) in order to pro-

mote CIUR few time later was introduced [23, 24] the so-
called Robertson Schrödinger UR (RSUR):

�	A ��	B >
1
2

���
�Â; B̂��	��� : (2)

In this relation one finds usual QM notations i.e.: (i) Â
and B̂ denote the quantum operators associated with the ob-
servables A and B of the same microparticle, (ii) �	A and
�	B signify the standard deviation of the respective observ-
ables, (iii) h(: : :)i	 represents the mean value of (: : :) in the
state described by the wave function 	, (iv) [Â; B̂] depict the
commutator of the operators Â and B̂ (for some other details
about the QM notations and validity of RSUR (2) see the next
section).

CIUR was built by regarding the relations (1) and (2), as
standard (reference) elements. It started through the writings
(and public lectures) of the so-called Copenhagen School par-
tisans. Later CIUR was adopted, more or less explicitely, in a
large number of publications.

An attentive examination of the alluded publications show
that in the main CIUR is builded onthe following five basic
presumptions (P):

P1 : Quantities �teA and �	A from relations (1) and (2)
denoted by a unique symbol �A, have similar signif-
icance of measuring uncertainty for the observable A
refering to the same microparticle. Consequently the
respective relations have the same generic interpreta-
tion as UR regarding the simultaneous measurements
of observables A and B of the alluded microparticle;

P2 : In case of a solitary observable A, for a microparticle,
the quantity �A can have always an unbounded small
value. Therefore such an obvservable can be measured
without uncertainty in all cases of microparticles (sys-
tems) and states;

P3 : When two observables A and B are commutable (i.e
[Â; B̂] = 0) relation (2) allows for the quantities �A
and �B, regarding the same microparticle, to be un-
limitedly small at the same time. That is why such ob-
servables can be measured simultaneously and without
uncertainties for any microparticle (system) or state.
Therefore they are considered as compatible;

P4 : If two observables A and B are non-commutable (i.e.
[Â; B̂], 0) relation (2) shows that, for a given micro-
particle, the quantities �A and �B can be never re-
duced concomitantly to null values. For that reason
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such observables can be measured simultaneously only
with non-null and interconnected uncertainties, irres-
pective of the microparticle (system) or state. Hence
such observables are considered as incompatible;

P5 : Relations (1) and (2), Planck’s constant ~ as well as
the measuring peculiarities noted in P4 are typically
QM things which have not analogies in classical (non-
quantum) macroscopic physics.

Here it must recorded the fact that, in individual publi-
cations from the literature which promote CIUR, the above
noted presumptions P1–P5 often appear in non-explicit forms
and are mentioned separately or only few of them. Also in the
same publications the deficiencies of CIUR are omited or un-
derestimated. On the other hand in writings which tackle the
deficiencies of CIUR the respective deficiencies are always
discussed as separate pieces not reunited in some elucidative
ensembles. So, tacitly, in our days CIUR seems to remain a
largely adopted doctrine which dominates the questions re-
garding the foundation and interpretation of QM.

3 Examination of CIUR deficiencies regarded in an elu-
cidative collection

In oder to evaluate the true significance of deficiences regard-
ing CIUR we think that it must discussed together many such
deficiences reunited, for a good examination, in an elucida-
tive collection. Such a kind of discussion we try to present
below in this section.

Firstly let us examine the deficiences regarding the rela-
tion (1). For such a purpose we note the following remark (R):

R1: On the relation (1)
In reality the respective relation is an improper piece for a ref-
erence/standard element of a supposed solid doctrine such as
CIUR. This fact is due to the to the circumstance that such a
relation has a transitory/temporary character because it was
founded on old resolution criteria (introduced by Abe and
Rayleigh — see [22,25]). But the respective criteria were im-
proved in the so-called super-resolution techniques worked
out in modern experimental physics (see [26–31] and refer-
ences). Then it is possible to imagine some super-resolution-
thought-experiments (srte). So, for the corresponding srte-
uncertainties �srteA and �srteB of two observables A and
B the following relation can be promoted

�srteA ��srteB 6 ~ : (3)

Such a relation is possibly to replace the CIUR basic for-
mula (1). But the alluded possibility invalidate the presum-
tion P1 and incriminate CIUR in connection with one of its
main points.
End of R1

For an argued examination of CIUR deficiences regarding
the relation (2) it is of main importance the following remark:

R2: On the aboriginal QM elements
Let us remind briefly some significant elements, selected
from the aboriginal framework of usual QM. So we consider a
QM microparticle whose state (of orbital nature) is described
by the wave function 	. Two observables Aj (j = 1; 2)
of the respective particle will be described by the operators
Âj . The notation (f; g) will be used for the scalar product
of the functions f and g. Correspondingly, the quantities
hAji	 = (	 ; Âj	) and �	Âj = Âj � hÂji	 will depict the
mean (expected) value respectively the deviation-operator of
the observable Aj regarded as a random variable. Then, by
denoting the two observable with A1 = A and A2 = B, we
can be write the following Cauchy-Schwarz relation:�

�	Â	; �	Â	
��

�	B̂	; �	B̂	
�
>

>
�����	Â	; �	B	

����2 : (4)

For an observable Aj considered as a random variable the

quantity �	Aj =
�
�	Âj	; �	Âj	

� 1
2 signifies its standard

deviation. From (4) it results directly that the standard devi-
ations �	A and �	B of the mentioned observables satisfy
the relation

�	A ��	B >
�����	Â	; �	B	

���� ; (5)

which can be called Cauchy-Schwarz formula (CSF). Note
that CSF (5) (as well as the relation (4)) is always valid, i.e.
for all observables, paricles and states. Here it is important to
specify the fact that the CSF (5) is an aboriginal piece which
implies the subsequent and restricted RSUR (1) only in the
cases when the operators Â = Â1 and B̂ = Â2 satisfy the
conditions�

Âj	; Âk	
�

=
�

	; ÂjÂk	
�
; (j; k = 1; 2) : (6)

Indeed in such cases one can write the relation�
�	Â	; �	B̂	

�
=

= 1
2

�
	;
�
�	Â � �	B̂	 + �	B̂ � �	Â

�
	
��

� i
2

�
	; i

�
Â; B̂

�
	
�
;

(7)

where the two terms from the right hand side are purely real
and imaginary quantities respectively. Therefore in the men-
tioned cases from (5) one finds

�	A ��	B >
1
2

���
�Â; B̂��	��� (8)

i.e. the well known RSUR (2).
The above reminded aboriginal QM elements prove the

following fact. In reality for a role of standard (reference)
piece regarding the interpretation of QM aspects must be con-
sidered the CSF (5) but not the RSUR (2). But such a reality
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incriminate in an indubitable manner all the basic presump-
tions P1–P5 of CIUR.
End of R2

The same QM elenments reminded in R2, motivate the next
remark:

R3: On a denomination used by CIUR
The denomination “uncertainty” used by CIUR for quantities
like �	A from (2) is groundless because of the following
considerations. As it was noted previously in the aboriginal
QM framework, �	A signifies the standard deviation of the
observable A regarded as a random variable. The mentioned
framework deals with theoretical concepts and models about
the intrinsic (inner) properties of the considered particle but
not with aspects of the measurements performed on the re-
spective particle. Consequently, for a quantum microparticle,
the quantity �	A refers to the intrinsic characteristics (re-
flected in fluctuations) of the observable A. Moreover it must
noted the following realities:

(i) For a particle in a given state the quantity �	A has
a well defined value connected with the corresponding
wave function 	;

(ii) The value of �	A is not related with the possible mod-
ifications of the accuracy regarding the measurement of
the observable A.

The alluded realities are attested by the fact that for the
same state of the measured particle (i.e. for the same value
of �	A ) the measuring uncertainties regarding the observ-
ableA can be changed through the improving or worsening of
experimental devices/procedures. Note that the above men-
tioned realities imply and justify the observation [32] that,
for two variables x and p of the same particle, the usual CIUR
statement “as �x approaches zero, �p becomes infinite and
vice versa” is a doubtful speculation. Finally we can conclude
that the ensemble of the things revealed in the present remark
contradict the presumptions P2–P4 of CIUR. But such a con-
clusion must be reported as a serious deficience of CIUR.
End of R3

A class of CIUR conceptual deficiences regards the follow-
ing pairs of canonically conjugated observables: Lz-', N -�
and E-t (Lz = z component of angular momentum, ' = az-
imuthal angle, N = number, � = phase, E = energy, t =
time). The respective pairs were and still are considered as
being unconformable with the accepted mathematical rules
of QM. Such a fact roused many debates and motivated vari-
ous approaches planned to elucidate in an acceptable manner
the missing conformity (for significant references see below
within the remarks R4–R6). But so far such an elucidation
was not ratified (or admited unanimously) in the scientific lit-
erature. In reality one can prove that, for all the three men-
tioned pairs of observables, the alluded unconformity refers
not to conflicts with aboriginal QM rules but to serious dis-
agreements with RSUR (2). Such proofs and their conse-

quences for CIUR we will discuss below in the following re-
marks:

R4: On the pair Lz-'
The parts of above alluded problems regarding of the pair Lz-
' were examined in all of their details in our recent paper
[33]. There we have revealed the following indubitable facts:

(i) In reality the pair Lz-' is unconformable only in re-
spect with the secondary and limited piece which is
RSUR (2);

(ii) In a deep analysis, the same pair proves to be in a natu-
ral conformity with the true QM rules presented in R2;

(iii) The mentioned conformity regards mainly the CSF (5)
which can degenerate in the trivial equality 0 = 0 in
some cases rgarding the pair Lz-'.

But such facts points out an indubitable deficience of
CIUR’s basic presumption P4.
End of R4

R5: On the pair N -�
The involvement of pair N -� in debates regarding CIUR
started [35] subsequently of the Dirac’s idea [36] to transcribe
the ladder (lowering and raising) operators â and â+ in the
forms

â = ei�̂
p
N̂ ; â+ =

p
N̂e�i�̂: (9)

By adopting the relation [â; â+] = ââ+ � â+â = 1 from
(9) it follows that the operators N̂ and �̂ satisfy the commu-
tation formula

[N̂ ; �̂] = i : (10)

This relation was associated directly with the RSUR (2)
respectively with the presumption P4 of CIUR. The men-
tioned association guided to the rash impression that the
N -� pair satisfy the relation

�	N ��	� >
1
2
: (11)

But, lately, it was found that relation (11) is false — at
least in some well-specified situations. Such a situation ap-
pears in the case of a quantum oscillator (QO). The mentioned
falsity can be pointed out as follows. The Schrödinger equa-
tion for a QO stationary state has the form:

E	 =
1

2m0
p̂2	 +

1
2
m0!2x̂2	 ; (12)

where m0 and ! represent the mass and (angular) frequency
of QO while p̂=�i~ @

@x and x = x� denote the operators of
the Cartesian moment p and coordinate x. Then the operators
â, â+ and N̂ have [34] the expressions

â =
m0!x̂+ ip̂p

2m0!~
; â+ =

m0!x̂� ip̂p
2m0!~

; N̂ = â+â : (13)

The solution of the equation (12) is an eigenstate wave
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function of the form

	n(x) = 	n(�) / exp
�
��2

2

�
Hn(�) ; (14)

where � = x
pm0!

~
, while n = 0; 1; 2; 3; : : : signifies the os-

cillation quantum number andHn(�) stand for Hermite poli-
nomials of �. The noted solution correspond to the energy
eigenvalue E = En = ~!(n + 1

2 ) and satisfy the relation
N̂	n (x) = n �	n (x).

It is easy to see that in a state described by a wave function
like (14) one find the results

�	N = 0 ; �	� 6 2� : (15)

The here noted restriction �� 6 2� (more exactly
�� = �=

p
3 — see below in (19)) is due to the natural fact

that the definition range for � is the interval [0; 2�). Through
the results (15) one finds a true falsity of the presumed re-
lation (11). Then the harmonization of N -� pair with the
CIUR doctrine reaches to a deadlock. For avoiding the men-
tioned deadlock in many publications were promoted var-
ious adjustements regarding the pair N -� (see [35, 37–43]
and references therein). But it is easy to observe that all
the alluded adjustements are subsequent (and dependent) in
respect with the RSUR (2) in the following sense. The re-
spective adjustements consider the alluded RSUR as an ab-
solutely valid formula and try to adjust accordingly the de-
scription of the pair N -� for QO. So the operators N̂ and
�̂, defined in (9) were replaced by some substitute (sbs) op-
erators N̂sbs = f (N̂) and �̂sbs = g (�̂), where the func-
tions f and g are introduced through various ad hoc proce-
dures. The so introduced substitute operators N̂sbs and �̂sbs
pursue to be associated with corresponding standard devia-
tions �	Nsbs and �	�sbs able to satisfy relations resem-
bling more or less with RSUR (2) or with (11). But we ap-
preciate as very doubtful the fact that the afferent “substitute
observables” Nsbs and �sbs can have natural (or even useful)
physical significances. Probably that this fact as well as the ad
hoc character of the functions f and g constitute the reasons
for which until now, in scientific publications, it does not exist
a unanimous agreement able to guarantee a genuine elucida-
tion of true status of the N -� pair comparatively with CIUR
concepts.

Our opinion is that an elucidation of the mentioned kind
can be obtained only through a discussion founded on the
aboriginal QM elements presented above in the remark R2.
For approaching such a discussion here we add the following
supplementary details. For the alluded QO the Schrödinger
equation (12) as well as its solution (14) are depicted in a
“coordinate x-representation”. But the same equation and
solution can be described in a “phase �-representation”. By
taking into account the relation (10) it results directly that tn
the �-representation the operators N̂ and �̂ have the expres-
sions N̂ = i

� @
@�

�
and �̂ = ��. In the same representation the

Schrödinger equation (12) takes the form

E	n (�) = ~!
�
i
@
@�

+
1
2

�
	n (�) (16)

where � 2 [0; 2�). Then the solution of the above equation is
given by the relation

	n (�) =
1p
2�

exp (in�) (17)

with n = E
~! � 1

2 . If, similarly with te case of a classical
oscillator, for a QO the energy E is considered to have non-
negative values one finds n = 0; 1; 2; 3; : : : .

Now, for the case of a QO, by taking into account the
wave function (17), the operators N̂ and �̂ in the �-
representation, as well as the aboriginal QM elements pre-
sented in R2, we can note the following things. In the respec-
tive case it is verified the relation

(N̂	n; �̂	n) = (	n; N̂�̂	n) + i : (18)

This relation shows directly the circumstance that in the
mentioned case the conditions (6) are not fulfiled by the oper-
ators N̂ and �̂ in connection with the wave function (17). But
such a circumstance point out the observation that in the case
under discussion the RSUR (2)/(8) is not valid. On the other
hand one can see that CSF (5) remains true. In fact it take the
form of the trivial equality 0 = 0 because in the due case one
obtains

�	N = 0 ; �	� =
�p
3
;
�
�N̂	n; � �̂	n

�
= 0 : (19)

The above revealed facts allow us to note the following
conclusions. In case of QO states (described by the wave
functions (14) or (17)) theN -� pair is in a complete disagree-
ment with the RSUR (2)/(8) and with the associated basic pre-
sumption P4 of CIUR. But, in the alluded case, the same pair
is in a full concordance with the aboriginal QM element by
the CSF (5). Then it is completely clear that the here noted
concclusions reveal an authentic deficience of CIUR.

O: Often in CIUR literature the N -� pair is dis-
cussed in connection with the situations regarding ensembles
of particles (e.g. fuxes of photons). But, in our opinion,
such situations are completely different comparatively with
the above presented problem about the N -� pair and QO
wave functions (states). In the alluded situations the Dirac’s
notations/formulas (9) can be also used but they must be uti-
lized strictly in connection with the wave functions describing
the respective ensembles. Such utilization can offer examples
in which the N -� pair satisfy relations which are semblable
with RSUR (2) or with the relation (11). But it is less proba-
ble that the alluded examples are able to consolidate the CIUR
concepts. This because in its primary form CIUR regards on
the first place the individual quantum particles but not ensem-
bles of such particles.
End of R5
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R6: On the E-t pair
Another pair of (canonically) conjugated observables which
are unconformable in relation with the CIUR ideas is given by
energy E and time t. That is why the respective pair was the
subject of a large number of (old as well as recent) controver-
sial discussions (see [2, 44–48] and references therein). The
alluded discussions were generated by the following observa-
tions. On one hand, in conformity with the CIUR tradition,
in terms of QM, E and t regarded as conjugated observables,
ought to be described by the operators

Ê = i~
@
@t
; t̂ = t� (20)

respectively by the commutation relation�
Ê; t̂

�
= i~ : (21)

In accordance with the RSUR (2) such a description re-
quire the formula

�	E ��	t >
~

2
: (22)

On the other hand because in usual QM the time t is a
deterministic but not a random variable for any quantum sit-
uation (particle/system and state) one finds the expressions

�	E = a finite quantity ; �	t � 0 : (23)

But these expressions invalidate the relation (22) and con-
sequently show an anomaly in respect with the CIUR ideas
(especially with the presumption P4). For avoiding the al-
luded anomaly CIUR partisans invented a lot of adjusted
�	E��	t formulae destined to substitute the questionable
relation (22) (see [2, 44–48] and references). The mentioned
formulae can be written in the generic form

�vE ��vt >
~

2
: (24)

Here �vE and �vt have various (v) significances
such as:

(i) �1E = line-breadth of the spectrum characterizing the
decay of an excited state and �1t = half-life of the re-
spective state;

(ii) �2E = ~�! = spectral width (in terms of frequency
!) of a wave packet and �2t = temporal width of the
respective packet;

(iii) �3E = �	E and �3t = �	A � (d hAi	 =dt)�1, with
A = an arbitrary observable.

Note that in spite of the efforts and imagination implied in
the disputes connected with the formulae (24) the following
observations remain of topical interest.

(i) The diverse formulae from the family (24) are not mu-
tually equivalent from a mathematical viewpoint.
Moreover they have no natural justification in the
framework of usual QM (that however give a huge
number of good results in applications);

(ii) In the specific literature (see [2, 44–48] and references
therein) none of the formulas (24) is agreed unanimous-
ly as a correct substitute for relation (22).

Here it must be added also another observation regarding
the E-t pair. Even if the respective pair is considered to be
described by the operators (20), in the true QM terms, one
finds the relation�

Ê	; t̂	
�

=
�

	; Ê t̂	
�� i~ : (25)

This relation shows clearly that for theE-t pair the condi-
tion (6) is never satisfied. That is why for the respective pair
the RSUR (2)/(8) is not applicable at all. Nevertheless for
the same pair, described by the operators (20), the CSF (5) is
always true. But because in QM the time t is a determinis-
tic (i.e. non-random) variable in all cases the mentioned CSF
degenerates into the trivial equality 0 = 0.

Due to the above noted observations we can conclude that
the applicability of the CIUR ideas to the E-t pair persists in
our days as a still unsolved question. Moreover it seems to
be most probabble the fact that the respective question can
not be solved naturally in accordance with the authentic and
aboriginal QM procedures. But such a fact must be reported
as a true and serious deficience of CIUR.
End of R6

In the above remarks R1–R6 we have approached few facts
which through detailed examinations reveal indubitable de-
ficiences of CIUR.The respective facts are somewhat known
due to their relative presence in the published debates. But
there are a number of other less known things which poit
out also deficiences of CIUR. As a rule, in publications, the
respective things are either ignored or mentioned with very
rare occasions. Now we attempt to re-examine the mentioned
things in a spirit similar with the one promoted in the remarks
R1–R6 from the upper part of this section. The announced re-
examination is given below in the next remarks.

R7: On the commutable observables
For commutable observables CIUR adopt the presumtion P3

because the right hand side term from RSUR (2) is a null
quantity. But as we have shown in remark R2 the respec-
tive RSUR is only a limited by-product of the general relation
which is the CSF (5). However by means of the alluded CSF
one can find examples where two commutable observable A
andB can have simultaneously non-null values for their stan-
dard deviations �A and �B.

An example of the mentioned kind is given by the carte-
sian momenta px and py for a particle in a 2D potential well.
The observables px and py are commutable because
[p̂x; p̂y] = 0. The well is delimited as follows: the poten-
tial energy V is null for 0 < x1 < a and 0 < y1 < b respecti-
vely V =1 otherwise, where 0<a<b, x1 = (x+y)p

2
and

y1 = (y�x)p
2

. Then for the particle in the lowest energetic state
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one finds

�	px = �	py = ~
�
ab

r
a2 + b2

2
; (26)

jh(�	p̂x	; �	p̂y	)ij =
�
~�
ab

�2

�
�
b2 � a2

2

�
: (27)

With these expressions it results directly that for the con-
sidered example the momenta px and py satisfy the CSF (5)
in a non-trivial form (i.e. as an inequality with a non-null
value for the right hand side term).

The above noted observations about commutable observ-
ables constitute a fact that conflicts with the basic presump-
tion P3 of CIUR. Consequently such a fact must be reported
as an element which incriminates the CIUR doctrine.
End of R7

R8: On the eigenstates
The RSUR (2) fails in the case when the wave function 	
describes an eigenstate of one of the operators Â or B̂. The
fact was mentioned in [49] but it seems to remain unremarked
in the subsequent publications. In terms of the here devel-
oped investigations the alluded failure can be discussed as
follows. For two non-commutable observables A and B in
an eigenstate of A one obtains the set of values: �	A = 0,
0 < �	B < 1 and h[Â; B̂]i	 , 0. But, evidently, the
respective values infringe the RSUR(2). Such situations one
finds particularly with the pairs Lz-' in some cases detailed
in [33] and N -� in situations presented above in R5.

Now one can see that the question of eigenstates does not
engender any problem if the quantities �	A and �	B are re-
garded as QM standard deviations (i.e.characteristics of quan-
tum fluctuations) (see the next Section). Then the mentioned
set of values show that in the respective eigenstate A has not
fluctuations (i.e. A behaves as a deterministic variable) while
B is endowed with fluctuations (i.e. B appears as a random
variable). Note also that in the cases of specified eigenstates
the RSUR (2) are not valid. This happens because of the fact
that in such cases the conditions (6) are not satisfied. The
respective fact is proved by the observation that its opposite
imply the absurd result

a � hBi	 =

�
Â; B̂

��
	 + a � hBi	 (28)

with h[Â; B̂]i	 , 0 and a= eigenvalue of Â (i.e. Â	 = a	).
But in the cases of the alluded eigenststes the CSF (5) remain
valid. It degenerates into the trivial equality 0 = 0 (because
�	Â	 = 0).

So one finds a contradiction with the basic presumption
P4 — i.e. an additional and distinct deficiency of CIUR.
End of R8

R9: On the multi-temporal relations
Now let us note the fact RSUR (2)/(8) as well as its precur-
sor CSF (5) are one-temporal formulas. This because all the

quantities implied in the respective formulas refer to the same
instant of time. But the mentioned formulas can be general-
ized into multi-temporal versions, in which the correspond-
ing quantities refer to different instants of time. So CSF (5) is
generalizable in the form

�	1A ��	2B >
�����	1Â	1; �	2B̂	2 ;

���� (29)

where 	1 and 	2 represent the wave function for two differ-
ent instants of time t1 and t2. If in (29) one takes jt2�t1j!1
in the CIUR vision the quantities �	1A and �	2B have to
refer to A and B regarded as independent solitary observ-
ables. But in such a regard if

�
�	1Â	1; �	2B̂	2

�
, 0 the

relation (29) refute the presumption P2 and so it reveals an-
other additional deficience of CIUR. Note here our opinion
that the various attempts [50, 51], of extrapolating the CIUR
vision onto the relations of type (29) are nothing but arti-
facts without any real (physical) justification. We think that
the relation (29) does not engender any problem if it is re-
garded as fluctuations formula (in the sense which will be dis-
cussed in the next Section). In such a regard the cases when�
�	1Â	1; �	2B̂	2

�
, 0 refer to the situations in which,

for the time moments t1 and t2, the corresponding fluctua-
tions of A and B are correlated (i.e. statistically dependent).

Now we can say that, the previuosly presented discussion
on the multi-temporal relations, disclose in fact a new defi-
ciency of CIUR.
End of R9

R10: On the many-observable relations
Mathematically the RSUR (2)/(8) is only a restricted by-
product of CSF (5) which follows directly from the two-
observable true relation (4). But further one the alluded rela-
tion (4) appear to be merely a simple two-observable version
of a more general many-observable formula. Such a genaral
formula has the form

det
h�
�	Âj	; �	Âk	

�i
> 0 : (30)

Here det [�jk] denotes the determinant with elements �jk
and j = 1; 2; : : : ; r; k = 1; 2; : : : ; r with r > 2. The for-
mula (30) results from the mathematical fact that the quanti-
ties
�
�	Âj	; �	Âk	

�
constitute the elements of a Hermitian

and non-negatively defined matrix ( an abstract presentation
of the mentioned fact can be found in [52]).

Then, within a consistent judgment of the things, for the
many-observable relations (30), CIUR must to give an inter-
pretation concordant with its own doctrine (summarized in its
basic presumptions P1–P5). Such an interpretation was pro-
posed in [53] but it remained as an unconvincing thing (be-
cause of the lack of real physical justifications). Other dis-
cussions about the relations of type (30) as in [38] elude any
interpretation of the mentioned kind. A recent attempt [54]
meant to promote an interpretation of relations like (30), for
three or more observables. But the respective attempt has not
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a helping value for CIUR doctrine. This is because instead of
consolidating the CIUR basic presumptions P1–P5) it seems
rather to support the idea that the considered relations are
fluctuations formulas (in the sense which will be discussed
bellow in the next Section). We opine that to find a CIUR-
concordant interpretation for the many-observable relations
(30) is a difficult (even impossible) task on natural ways (i.e.
without esoteric and/or non-physical considerations). An ex-
emplification of the respective difficulty can be appreciated
by investigating the case of observables A1 = p, A2 = x and
A3 = H = energy in the situations described by the wave
functions (14) of a QO.

Based on the above noted appreciations we conclude that
the impossibility of a natural extension of CIUR doctrine to
a interpretation regarding the many-observable relations (30)
rveal another deficience of the respective doctrine.
End of R10

R11: On the quantum-classical probabilistic similarity
Now let us call attention on a quantum-classical similarity
which directly contradicts the presumption P5 of CIUR. The
respective similarity is of probabilistic essence and regards
directly the RSUR (2)/(8) as descendant from the CSF (5).
Indeed the mentioned CSF is completely analogous with cer-
tain two-observable formula from classical (phenomenolgi-
cal) theory of fluctuations for thermodynamic quantities. The
alluded classical formula can be written [55, 56] as follows

�wA ��wB > jh�wA � �wBiwj : (31)

In this formula A and B signify two classical global ob-
servables which characterize a thermodynamic system in its
wholeness. In the same formula w denotes the phenomeno-
logical probability distribution, h(: : :)iw represents the mean
(expected value) of the quantity (: : :) evaluated by means of
w while �wA, �wB and h�wA � �wBiw stand for character-
istics (standard deviations respectively correlation) regarding
the fluctuations of the mentioned observables. We remind
the appreciation that in classical physics the alluded char-
acteristics and, consequently, the relations (31) describe the
intrinsic (own) properties of thermodynamic systems but not
the aspects of measurements performed on the respective sys-
tems. Such an appreciation is legitimated for example by the
research regarding the fluctuation spectroscopy [57] where
the properties of macroscopic (thermodynamic) systems are
evaluated through the (spectral components of) characteris-
tics like �wA and h�wA � �wBiw.

The above discussions disclose the groundlessness of idea
[58–60] that the relations like (31) have to be regarded as
a sign of a macroscopic/classical complementarity (similar
with the quantum complementarity motivated by CIUR pre-
sumption P4). According to the respective idea the quantities
�wA and �wB appear as macroscopic uncertainties. Note
that the mentioned idea was criticized partially in [61,62] but
without any explicit specification that the quantities �wA and

�wB are quatities which characterise the macroscopic fluctu-
ations.

The previously notified quantum-classical similarity to-
gether with the reminded significance of the quantities im-
plied in (31) suggests and consolidates the following regard
(argued also in R3). The quantities �	A and �	B from
RSUR (2)/(8) as well as from CSF (5) must be regarded as
describing intrinsic properties (fluctuations) of quantum ob-
servables A and B but not as uncertainties of such observ-
ables.

Now, in conclusion, one can say that the existence of clas-
sical relations (31) contravenes to both presumptions P1 and
P5 of CIUR. Of course that such a conclusion must be an-
nounced as a clear deficience of CIUR.
End of R11

R12: On the higher order fluctuations moments
In classical physics the fluctuations of thermodynamic ob-
servables A and B implied in (31) are described not only by
the second order probabilistic moments like �wA, �wB or
h�wA �wBiw. For a better evaluation the respective fluctua-
tions are characterized additionally [63] by higher order mo-
ments like



(�wA)r (�wB)s

�
w with r + s > 3. This fact

suggests the observation that, in the context considered by
CIUR, we also have to use the quantum higher order prob-
abilistic moments like

��
�	Âj

�r	; ��	Âk�s	�, r + s > 3.
Then for the respective quantum higher order moments CIUR
is obliged to offer an interpretation compatible with its own
doctrine. But it seems to be improbable that such an interpre-
tation can be promoted through credible (and natural) argu-
ments resulting from the CIUR own presumptions.

That improbability reveal one more deficience of CIUR.
End of R12

R13: On the so-called “macroscopic operators”
Another obscure aspect of CIUR was pointed out in connec-
tion with the question of the so called “macroscopic opera-
tors”. The question was debated many years ago (see [64,65]
and references) and it seems to be ignored in the lsat decades,
although until now it was not elucidated. The question ap-
peared due to a forced transfer of RSUR (2) for the cases of
quantum statistical systems. Through such a transfer CIUR
partisans promoted the formula

��A ���B >
1
2

���
�Â; B̂������ : (32)

This formula refers to a quantum statistical system in a
state described by the statistical operator (density matrix) �̂.

With A and B are denoted two macroscopic (global) ob-
servables associated with the operators Â and B̂. The quantity

��A =
n

Tr
h�
Â� 
A���2io 1

2

denotes the standard deviation of the macroscopic observable
A regarded as a (generalised) random variable. In its expres-
sion the respective quantity imply the notation hAi�=Tr

�
Â�̂
�
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for the mean (expected) value of the macroscopic observ-
able A.

Relation (32) entailed discussions because of the conflict
between the following two findings:

(i) On the one hand (32) is introduced by analogy with
RSUR (2) on which CIUR is founded. Then, by ex-
trapolating CIUR, the quantities ��A and ��B from
(32) should be interpreted as (global) uncertainties sub-
jected to stipulations as the ones indicated in the basic
presumption P1;

(ii) On the other hand, in the spirit of the presumption P5,
CIUR agrees the posibility that macroscopic observ-
ables can be measured without any uncertainty (i.e.
with unbounded accuracy). For an observable the men-
tioned possibility should be independent of the fact that
it is measured solitarily or simultaneously with other
observables. Thus, for two macroscopic (thermody-
namic) observables, it is senselessly to accept CIUR
basic presumptions P3 and P4.

In order to elude the mentioned conflict it was promoted
the idea to abrogate the formula (32) and to replace it with an
adjusted macroscopic relation concordant with CIUR vision.
For such a purpose the global operators Â and B̂ from (32)
were substituted [64,65] by the so-called “macroscopic oper-
ators” Â and B̂. The respective “macroscopic operators” are
considered to be representable as quasi-diagonal matrices (i.e.
as matrices with non-null elements only in a “microscopic
neighbourhood” of principal diagonal). Then one supposes
that

�Â; B̂� = 0 for any pairs of “macroscopic observables”
A and B. Consequently instead of (32) it was introduced the
formula

��A ���B > 0 : (33)

In this formula CIUR partisans see the fact that the un-
certainties ��A and ��B can be unboundedly small at the
same time moment, for any pair of observables A and B and
for any system. Such a fact constitute the CIUR vision about
macroscopic observables. Today it seems to be accepted the
belief that mentioned vision solves all the troubles of CIUR
caused by the formula (32).

A first disapproval of the mentioned belief results from
the following observations:

(i) Relation (32) cannot be abrogated if the entire mathe-
matical apparatus of quantum statistical physics is not
abrogated too. More exactly, the substitution of oper-
ators from the usual global version Â into a “macro-
scopic” variant Â is a senseless invention as long as
in practical procedures of quantum statistical physics
[66, 67] for lucrative operators one uses Â but not Â;

(ii) The substitution Â! Â does not metamorphose auto-
matically (32) into (33), because if two operators are
quasi-diagonal, in sense required by the partisans of
CIUR, it is not surely that they commute.

For an ilustration of the last observatiom we quote [68]
the Cartesian components of the global magnetization ~M of a
paramagnetic system formed of N independent 1

2 -spins. The
alluded components are described by the global operators

M̂� =
~
2
�̂(1)
� � ~

2
�̂(2)
� � � � � � ~

2
�̂(N)
� ; (34)

where � = x; y; z;  = magneto-mechanical factor and
�̂(i)
� = Pauli matrices associated to the i-th spin (particle).

Note that the operators (34) are quasi-diagonal in the sense
required by CIUR partisans, i.e. M̂� � M̂�. But, for all that,
they do not commute because

�M̂�;M̂�
�

= i~ �"��� �M̂�
( "��� denote the Levi-Civita tensor).

A second disproval of the belief induced by the substitu-
tion Â ! Â is evidenced if the relation (32) is regarded in
an ab original QM approach like the one presented in R2. In
such regard it is easy to see that in fact the formula (32) is
only a restrictive descendant from the generally valid relation

��A ���B >
���h��A � ��Bi���� ; (35)

where ��Â = Â � hAi�. In the same regard for the “macro-
scopic operators” A and B instead of the restricted relation
(33) it must considered the more general formula

��A ���B >
���h��A � ��Bi���� : (36)

The above last two relations justify the following affirma-
tions:

(i) Even in the situations when
�Â; B̂� = 0 the product

��A ���B can be lower bounded by a non-null quan-
tity. This happens because it is possible to find cases in
which the term from the right hand side of (36) has a
non-null value;

(ii) In fact the substitution Â! Â replace (35) with (36).
But for all that the alluded replacement does not guar-
anttee the validity of the relation (33) and of the corre-
sponding speculations.

The just presented facts warrant the conclusion that the
relation (32) reveal a real deficiency of CIUR. The respec-
tive deficiency cannot be avoided by resorting to the so-called
“macroscopic operators”. But note that the same relation does
not rise any problem if it is considered together with (35)
as formulas which refer to the fluctuations of macroscopic
(global) observables regarding thermodynamic systems.
End of R13

R14: On the similarities between calassical Boltzmann’s
and quantum Planck’s constants kB and ~
The quantum-classical similarity revealed in R11 entails also
a proof against the CIUR presumption P5. According to the
respective presumptions the Planck constant ~ has no analog
in classical (non-quantum) physics. The announced proof can
be pointed out as follows.
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The here discussed similarity regards the groups of classi-
cal respectively quantum relations (31) and (5) (the last ones
including their restricted descendant RSUR (2)/(8)). The re-
spective relations imply the standard deviations �wA or
�	A associated with the fluctuations of the corresponding
classical and quantum observables. But mathematically the
standard deviation indicate the randomness of an observable.
This in the sense that the alluded deviation has a positive or
null value as the corresponding observable is a random or, al-
ternatively, a deterministic (non-random) variable. Therefore
the quantities �wA and �	A can be regarded as similar in-
dicators of randomness for the classical respectively quantum
observables.

For diverse cases (of observables, systems and states) the
classical standard deviations �wA have various expressions
in which, apparently, no common element seems to be im-
plied. Nevertheless such an element can be found out [69]
as being materialized by the Boltzmann constant kB . So, in
the framework of phenomenological theory of fluctuations (in
Gaussian approximation) one obtains [69]

(�wA)2 = k� �X
�

X
�

@ �A
@ �X�

� @ �A
@ �X�

�
�

@2�S
@ �X�@ �X�

��1

: (37)

In this relation �A = hAiw, �S = �S(�X�) denotes the en-
tropy of the system written as a function of independent ther-
modynamic variables �X� , (� = 1; 2; : : : ; r) and (a��)�1

represent the elements for the inverse of matrix (a��). Then
from (37) it result that the expressions for (�wA)2 consist of
products of kB with factors which are independent of kB .
The respective independence is evidenced by the fact that
the alluded factors must coincide with deterministic (non-
random) quantities from usual thermodynamics (where the
fluctuations are neglected). Or it is known that such quantities
do not imply kB at all. See [69] for concrete exemplifications
of the relations (37) with the above noted properties.

Then, as a first aspect, from (37) it results that the fluctu-
ations characteristics (�wA)2 (i.e. dispersions = squares of
the standard deviations ) are directly proportional to kB and,
consequently, they are non-null respectively null quantities as
kB , 0 or kB ! 0. (Note that because kB is a physical
constant the limit kB ! 0 means that the quantities directly
proportional with kB are negligible comparatively with other
quantities of same dimensionality but independent of kB .) On
the other hand, the second aspect (mentioned also above) is
the fact that �wA are particular indicators of classical ran-
domness. Conjointly the two mentioned aspects show that
kB has the qualities of an authentic generic indicator of ther-
mal randomness which is specific for classical macroscopic
(thermodynamic) systems. (Add here the observation that the
same quality of kB can be revealed also [69] if the thermal
randomness is studied in the framework of classical statisti-
cal mechanics).

Now let us discuss about the quantum randomness whose

indicators are the standard deviations �	A. Based on the
relations (26) one can say that in many situations the expres-
sions for (�	A)2 consist in products of Planck constant ~
with factors which are independent of ~. (Note that a similar
situation can be discovered [33] for the standard deviations of
the observables Lz and ' in the case of quantum torsion pen-
dulum.) Then, by analogy with the above discussed classical
situations, ~ places itself in the posture of generic indicator
for quantum randomness.

In the mentioned roles as generic indicators kB and ~, in
direct connections with the quantities �wA and �	A, regard
the onefold (simple) randomness, of classical and quantum
nature respectively. But in physics is also known a twofold
(double) randomness, of a combined thermal and quantum
nature. Such a kind of randomness one encounters in cases
of quantum statistical systems and it is evaluated through the
standard deviations ��A implied in relations (32) and (35).
The expressions of the mentioned deviations can be obtained
by means of the fluctuation-dissipation theorem [70] and have
the form

(�� A)2 =
~

2�

1Z
�1

coth
�

~!
2kBT

�
�
00

(!) d! : (38)

Here �
00

(!) denote the imaginary parts of the suscepti-
bility associated with the observable A and T represents the
temperature of the considered system. Note that �

00
(!) is

a deterministic quantity which appear also in non-stochastic
framework of macroscopic physics [71]. That is why �

00
(!)

is independent of both kB and ~. Then from (38) it results that
kB and ~ considered together appear as a couple of generic
indicators for the twofold (double) randomness of thermal
and quantum nature. The respective randomness is negligi-
ble when kB ! 0 and ~ ! 0 and significant when kB , 0
and ~ , 0 respectively.

The above discussions about the classical and quantum
randomness respectively the limits kB ! 0 and ~ ! 0 must
be supplemented with the following specifications.

(i) In the case of the classical randomness it must consid-
ered the following fact. In the respective case one as-
sociates the limits kB! 0 respectively “(classical) mi-
croscopic approach” ! “(classical) macroscopic ap-
proach”. But in this context kB! 0 is concomitant
with the conditionN! 0 (N = number of microscopic
constituents (molecules) of the considered system).
The respective concomitance assures the transforma-
tion kBN! �R, i.e. transition of physical quantities
from “microscopic version” into a “macroscopic ver-
sion” (because R sidnify the macoscopic gass constant
and � denotes the macroscopic amount of substance;

(ii) On the other hand in connection with the quantum case
it must taken into account the following aspect. The
corresopnding randomness regards the cases of observ-
ables of orbital and spin types respectively;
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(iii) In the orbital cases the limit ~ ! 0 is usually associ-
ated with the quantum ! classical limit. The respec-
tive limit implies an unbounded growth of the values of
some quantum numbers so as to ensure a correct limit
for the associated observables regarding orbital move-
ments. Then one finds [72, 73] that, when ~ ! 0, the
orbital-type randomness is in one of the following two
situations:
(a) it converts oneself in a classical-type randomness
of the corresponding observables (e.g. in the cases of
' and Lz of a torsional pendulum or of x and p of a
rectilinear oscillator), or

(b) it disappears, the corresponding observables be-
coming deterministic classical variables (e.g. in the
case of the distance r of the electron in respect with
the nucleus in a hydrogen atom);

(iv) The quantum randomness of spin-type regards the spin
observables. In the limit ~! 0 such observables disap-
pear completely (i.e. they lose both their mean values
and the affined fluctuations).

In the alluded posture the Planck constant ~ has an au-
thentic classical analog represented by the Boltzmann con-
stant kB . But such an analogy contradicts strongly the pre-
sumption P5 and so it reveals a new deficience of CIUR.
End of R14

Within this section, throgh the remarks R1–R14, we exam-
ined a collection of things whose ensemble point out defi-
ciencies which incriminate all the basic presumptions P1–R5

of CIUR, considered as single or grouped pieces. In regard
to the truth qualities of the respective deficiences here is the
place to note the folloving completion remark:

R15: On the validity of the above signallized CIUR defi-
ciences
The mentioned deficiencies are indubitable and valid facts
which can not be surmounted (avoided or rejected) by solid
and verisimilar arguments taken from the inner framework of
CIUR doctrine.
End of R15

4 Consequences of the previous examination

The discussions belonging to the examination from the previ-
ous section impose as direct consequences the following re-
marks:

R16: On the indubitable failure of CIUR
In the mentioned circumstances CIUR proves oneself to be
indubitably in a failure situation which deprives it of neces-
sary qualities of a valid scientific construction. That is why
CIUR must be abandoned as a wrong doctrine which, in fact,
has no real value.
End of R16

R17: On the true significance of the relations (1) and (2)
The alluded abandonment has to be completed by a natural re-
interpretation of the basic CIUR’s relations (1) and (2). We
opine that the respective re-interpretation have to be done and
argued by taking into account the discussions from the previ-
ous Section, mainly those from the remarks R1, R2 and R3.
We appreciate that in the alluded re-interpretation must be in-
cluded the following viewpoints:

(i) On the one hand the relations (1) remain as provisional
fictions destitute of durable physical significance;

(ii) On the other hand the relations (2) are simple fluctua-
tions formulae, from the same family with the micro-
scopic and macroscopic relations from the groups (4),
(5), (29), (30) respectively (31), (32), (35);

(iii) None of the relations (1) and (2) or their adjustments
have not any connection with the description of QMS.

Consequently in fact the relations (1) and (2) must be re-
garded as pieces of fiction respectively of mathematics with-
out special or extraordinary status/significance for physics.
End of R17

R18: On the non-influences towards the usual QM
The above noted reconsideration of CIUR does not disturb in
some way the framework of usual QM as it is applied con-
cretely in the investigations of quantum microparticles. (Few
elements from the respective framework are reminded above
in the remark R2).
End of R18

5 Some considerations on the quantum and classical
measurements

The question regarding the QMS description is one of the
most debated subject associated with the CIUR history. It
generated a large diversity of viewpoints relatively to its im-
portance and/or approach (see [1–9] and references). The re-
spective diversity inserts even some extreme opinions such
are the ones noted in the Section 1 of the present paper. As a
notable aspect many of the existing approaches regarding the
alluded question are grounded on some views which presume
and even try to extend the CIUR doctrine. Such views (v.)
are:

(v.1) The descriptions of QMS must be developed as confir-
mations and extensions of CIUR concepts;

(v.2) The peculiarities of QMS incorporated in CIUR pre-
sumptions P2–P4 are connected with the correspond-
ing features of the measuring perturbations. So in the
cases of observables refered in P2–P3 respectively in
P4 the alluded perturbations are supposed to have an
avoidable respectively an unavoidable character;

(v.3) In the case of QMS the mentioned perturbations cause
specific jumps in states of the measured quantum mi-
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croparticles (systems). In many modern texts the re-
spective jumps are suggested to be described as fol-
lows. For a quantum observable A of a microparticle
in the state 	 a QMS is assumed to give as result a
single value say an which is one of the eigenvalues of
the associated operator Â. Therefore the description of
the respective QMS must include as essential piece a
“collapse” (sudden reduction) of the wave function i.e
a relation of the form:

	
�

before
measurement

�! 	n

�
after
measurement

�
; (39)

where 	n (after measurement) denotes the eigen-
function of the operator Â corresponding to the eigen-
value an;

(v.4) With regard to the observables of quantum and classical
type respectively the measuring inconveniences (per-
turbations and uncertainties) show an essential differ-
ence. Namely they are unavoidable respectively avoid-
able characteristics of measurements. The mentioned
difference must be taken into account as a main point
in the descriptions of the measurements regarding the
two types of observables;

(v.5) The description of QMS ought to be incorporated as an
inseparable part in the framework of QM. Adequately
QM must be considered as a unitary theory both of
intrinsic properties of quantum microparticles and of
measurements regarding the respective properties.

Here is the place to insert piece-by-piece the next remark:

R19: Counter-arguments to the above views
The above mentioned views about QMS must be appreciated
in conformity with the discussions detailed in the previous
sections. For such an appreciation we think that it must taken
into account the following counter-arguments (c-a):

(c-a.1) According to the remark R16, in fact CIUR is noth-
ing but a wrong doctrine which must be abandoned.
Consequently CIUR has to be omitted but not extended
in any lucrative scientific question, particularly in the
description of QMS. That is why the above view (v.1)
is totally groundless;

(c-a.2) The view (v.2) is inspired and argued by the ideas
of CIUR about the relations (1) and (2). But, accord-
ing to the discussions from the previous sections, the
respective ideas are completely unfounded. Therefore
the alluded view (v.2) is deprived of any necessary and
well-grounded justification;

(c-a.3) The view (v.3) is inferred mainly from the belief that
the mentioned jumps have an essential importance
for QMS.
But the respective belief appears as entirely unjustified
if one takes into account the following natural and in-
dubitable observation [74]: “it seems essential to the

notion of measurement that it answers a question about
the given situation existing before the measurement.
Whether the measurement leaves the measured system
unchanged or brings about a new and different state of
that system is a second and independent question”.
Also the same belief apperars as a fictitious thing if
we take into account the quantum-classical probabilis-
tic similarity presented in the remark R11. According
to the respective similarity, a quantum observable must
be regarded mathematically as a random variable.Then
a measurement of such a observable must consist not in
a single trial (which give a unique value) but in a sta-
tistical selection/sampling (which yields a spectrum of
values). For more details regarding the measurements
of random observables see below in this and in the next
sections.
So we can conclude that the view (v.3) is completely
unjustified;

(c-a.4) The essence of the difference between classical and
quantum observables supposed in view (v.4) is ques-
tionable at least because of the following two reasons:

(a) In the classical case the mentioned avoidance of
the measuring inconveniences have not a significance
of principle but only a relative and limited value (de-
pending on the performances of measuring devices and
procedures). Such a fact seems to be well known by
experimenters.

(b) In the quantum case until now the alluded unavoid-
ableness cannot be justified by valid arguments of ex-
perimental nature (see the above remark R16 and the
comments regarding the relation (3));

(c-a.5) The viev (v.5) proves to be totally unjustified if the
usual conventions of physics are considered. Accord-
ing to the respective conventions, in all the basic chap-
ters of physics, each observable of a system is regarded
as a concept “per se” (in its essence) which is denuded
of measuring aspects. Or QM is nothing but such a
basic chapter, like classical mechanics, thermodynam-
ics, electrodynamics or statistical physics. On the other
hand in physics the measurements appear as main pour-
poses for experiments. But note that the study of the
experiments has its own problems [75] and is done in
frameworks which are additional and distinct in respect
with the basic chapters of physics. The above note is
consolidated by the observation that [76]: “the proce-
dures of measurement (comparison with standards) has
a part which cannot be described inside the branch of
physics where it is used”.
Then, in contrast with the view (v.5), it is natural to
accept the idea that QM and the description of QMS
have to remain distinct scientific branches. However
the two branches have to use some common concepts
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and symbols. This happens because, in fact, both of
them also imply elements regarding the same quantum
microparticles (systems).

The here presented counter-arguments contradict all the
above oresented views (v.1)–(v.5) promoted in many of the
existing approaches regarding the QMS description.
End of R19

On the basis of discussions presented in R11 and reminded
in (c-a.3) from R19 a quantum observables must be consid-
ered as random variables having similar characteristics which
corespond to the classical random observables. Then it results
that, on principle, the description of QMS can be approached
in a manner similar with the one regarding the corresponding
classical measurements. That is why below we try to resume
a model promoted by us in [77, 78] and destined to describe
the measurement of classical random observables.

For the announced resume we consider a classical ran-
dom observable from the family discussed in R11. Such an
observable and its associated probability distribution will be
depicted with the symbols eA respectively w = w(a). The in-
dividual values a of eA belong to the spectrum a 2 (�1;1)).
For the considered situation a measurement preserve the spec-
trum of eA but change the dustribution w(a) from a “in” (in-
put) version win(a) into an “out” (output) reading wout(a).
Note thatwin(a) describes the intrinsic properties of the mea-
sured system while wout(a) incorporates the information
about the same system, but obtained on the recorder of mea-
suring device. Add here the fact that, from a general per-
spective, the distributions win(a) and wout(a) incorporate
informations referring to the measured system. That is why
a measurement appears as an “informational input ! out-
put transmision process”. Such a process is symbolized by
a transformation of the form win(a) ! wout(a). When the
measurement is done by means of a device with stationary
and linear characteristics, the the mentioned transformation
can described as follows:

wout (a) =
1Z
�1

G (a; a0)win (a0) da0: (40)

Here the kernelG (a; a0) represents a transfer probability
with the significances:

(i) G (a; a0) da enotes the (infnitesimal) probability that
by measurement the in-value a0 of eA to be recorded
in the out-interval (a; a+ da);

(ii) G (a; a0) da0 stands for the probability that the out-
value a to result from the in-values which belong to
the interval (a0; a0 + da0).

Due to the mentioned significances the kernel G (a; a0)
satisfies the conditions

1Z
�1

G (a; a0) da =
1Z
�1

G (a; a0) da0 = 1 : (41)

Add here the fact that, from a physical perspective, the
kernel G (a; a0) incorporates the theoretical description of all
the characteristics of the measuring device. For an ideal de-
vice which ensure wout(a) = win(a) it must be of the form
G (a; a0) = �(a � a0) (with �(a � a0) denoting the Dirac’s
function of argument a� a0).

By means of w�(a) (� = in; out) the corresponding
global (or numerical) characteristics of eA regarded as random
variable can be introduced. In the spirit of usual practice of
physics we refer here only to the two lowest order such char-
acteristics. They are the � — mean (expected) value hAi� and
� — standard deviations ��A defined as follows

hAi� =
1Z
�1

aw� (a) da

(��A)2 =
D�
A� 
A���2E�

9>>>>=>>>>; : (42)

Now, from the general perspective of the present paper, it
is of interest to note some observations about the measuring
uncertainties (errors). Firstly it is important to remark that
for the discussed observable A, the standard deviations �inA
and �outA are not estimators of the mentioned uncertainties.
Of course that the above remark contradicts some loyalities
induced by CIUR doctrine. Here it must be pointed out that:

(i) On the one hand �inA together with hAiin describe
only the intrinsic properties of the measured system;

(ii) On the other hand �outA and hAiout incorporate com-
posite information about the respective system and the
measuring device.

Then, in terms of the above considerations, the measur-
ing uncertainties of A are described by the following error
indicators (characteristics)

" fhAig = jhAiout � hAiinj
" f�Ag = j�outA��inAj

)
: (43)

Note that because A is a random variable for an accept-
able evaluation of its measuring uncertainties it is completely
insufficient the single indicator " fhAig. Such an evaluation
requires at least the couple " fhAigand " f�Ag or even the
differences of the higher order moments like

"
�


(�A)n
�	

=
��
(�outA)n

�
out �



(�inA)n

�
in

�� ; (44)

where ��A = eA� hAi� ; � = in; out ; n > 3).
Now we wish to specify the fact that the errors (uncertain-

ties) indicators (43) and (44) are theoretical (predicted) quan-
tities. This because all the above considerations consist in a
theoretical (mathematical) modelling of the discussed mea-
suring process. Or within such a modelling we operate only
with theoretical (mathematical) elements presumed to reflect

62 Spiridon Dumitru. Reconsideration of the Uncertainty Relations and Quantum Measurements



April, 2008 PROGRESS IN PHYSICS Volume 2

in a plausible manner all the main characteristics of the re-
spective process. On the other hand, comparatively, in exper-
imental physics, the indicators regarding the measuring errors
(uncertainties) are factual entities because they are estimated
on the basis of factual experimental data. But such entities
are discussed in the framework of observational error studies.

6 An informational model for theoretical description
of QMS

In the above, (c-a.5) from R19, we argued forthe idea that QM
and the description of QMS have to remain distinct scientific
branches which nevertheless have to use some common con-
cepts and symbols. Here we wish to put in a concrete form
the respective idea by recommending a reconsidered model
for description of QMS. The announced model will assimilate
some elements discussed in the previous section in connecton
with the measuremens of classical random observables.

We restrict our considerations only to the measurements
of quantum observables of orbital nature (i.e. coordinates,
momenta, angles, angular momenta and energy). The re-
spective observables are described by the following operators
Âj (j = 1; 2; : : : ; n) regarded as generalized random vari-
ables. As a measured system we consider a spinless mi-
croparticle whose state is described by the wave function 	 =
	 (~r), taken in the coordinate representation (~r stand for mi-
croparticle position). Add here the fact that, because we con-
sider only a non-relativistic context, the explicit mention of
time as an explicit argument in the expression of 	 is unim-
portant.

Now note the observation that the wave function 	 (~r) in-
corporate information (of probabilistic nature) about the mea-
sured system. That is why a QMS can be regarded as a pro-
cess of information transmission: from the measured micro-
particle (system) to the recorder of the measuring device.
Then, on the one hand, the input (in) information described
by 	in (~r) refers to the intrinsic (own) properties of the re-
spective micropraticle (regarded as information source). The
expression of 	in (~r) is deducible within the framework of
usual QM (e.g. by solving the adequate Schrödinger equa-
tion). On the other hand, the output (out) information, de-
scribed by the wave function 	out (~r), refers to the data ob-
tained on the device recorder (regarded as information re-
ceiver). So the measuring device plays the role of the trans-
mission channel for the alluded information. Accordingly the
measurement appears as a processing information operation.
By regarding the things as above the description of the QMS
must be associated with the transformation

	in (~r)! 	out (~r) : (45)

As in the classical model (see the previous section), with-
out any loss of generality, here we suppose that the quantum
observables have identical spectra of values in both in- and
out-situations. In terms of QM the mentioned supposition

means that the operators Âj have the same mathematical ex-
pressions in both in- and out-readings. The respective ex-
pressions are the known ones from the usual QM.

In the framework delimited by the above notifications the
description of QMS requires to put the transformation (45) in
concrete forms by using some of the known QM rules. Ad-
ditionally the same description have to assume suggestions
from the discussions given in the previous section about mea-
surements of classical random obsevables. That is why, in our
opinion, the transformation (45) must be detailed in terms of
quantum probabilities carriers. Such carriers are the proba-
bilistic densities �� and currents ~J� defined by

�� = j	�j2 ; ~J� =
~

m0
j	�j2 � r�� : (46)

Here j	�j and �� represents the modulus and the argu-
ment of 	� respectively (i.e. 	� = j	�j exp(i��)) and m0
denotes the mass of microparticle.

The alluded formulation is connected with the observa-
tions [79] that the couple �– ~J “encodes the probability dis-
tributions of quantum mechanics” and it “is in principle mea-
surable by virtue of its effects on other systems”. To be added
here the possibility [80] of taking in QM as primary entity the
couple �in– ~Jin but not the wave function 	in (i.e. to start
the construction of QM from the continuity equation for the
mentioned couple and subsequently to derive the Schrödinger
equation for 	in).

According to the above observations the transformations
(45) have to be formulated in terms of �� and ~J� . But �� and
~J� refer to the position and the motion kinds of probabilities
respectively. Experimentally the two kinds can be regarded as
measurable by distinct devices and procedures. Consequently
the mentioned formulation has to combine the following two
distinct transformations

�in ! �out ; ~Jin ! ~Jout : (47)

The considerations about the classical relation (40) sug-
gest that, by completely similar arguments, the transforma-
tions (47) admit the following formulations

�out (~r) =
$

� (~r; ~r0) �in
�
*r
0�
d3~r0 (48)

Jout; � =
3X

�=1

$
��� (~r; ~r0) Jin; � (~r0) d3~r0 : (49)

In (49) J�;� with � = in; out and � = 1; 2; 3 = x; y; z
denote Cartesian components of ~J� .

Note the fact that the kernels � and ��� from (48) and
(49) have significance of transfer probabilities, completely
analogous with the meaning of the classical kernel G(a; a0)
from (40). This fact entails the following relations

$
� (~r; ~r0) d3~r =

$
� (~r; ~r0) d3~r0 = 1 ; (50)
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3X
�=1

$
��� (~r; ~r0) d3~r =

=
3X

�=1

$
��� (~r; ~r0) d3~r0 = 1 :

(51)

The kernels � and ��� describe the transformations in-
duced by QMS in the data (information) about the measured
microparticle. Therefore they incorporate some extra-QM el-
ements regarding the characteristics of measuring devices and
procedures. The respective elements do not belong to the
usual QM framework which refers to the intrinsic (own) char-
acteristics of the measured microparticle (system).

The above considerations facilitate an evaluation of the
effects induced by QMS on the probabilistic estimators of
here considered orbital observables Aj . Such observables are
described by the operators Âj whose expressions depend on ~r
and r. According to the previous discussions the mentioned
operators are supposed to remain invariant under the transfor-
mations which describe QMS. So one can say that in the situa-
tions associated with the wave functions 	� (� = in; out) the
mentioned observables are described by the following proba-
bilistic estimators/characteristics (of lower order): mean val-
ues hAji� , correlations C� (Aj ; Ak) and standard deviations
��Aj . With the usual notation (f; g) =

R
f�g d3~r for the

scalar product of functions f and g, the mentioned estimators
are defined by the relations

hAji� =
�

	�; Âj	�

�
��Âj = Âj � hAji�
C� (Aj ; Ak) =

�
��Âj 	�; ��Âk 	�

�
��Aj =

q
C� (Aj ; Aj)

9>>>>>>>>>=>>>>>>>>>;
: (52)

Add here the fact that the in-version of the estimators (52)
are calculated by means of the wave function 	in, known
from the considerations about the inner properties of the in-
vestigated system (e.g. by solving the corresponding Schrö-
dinger equation).

On the other hand the out-version of the respective esti-
mators can be evaluated by using the probability density and
current �out and ~Jout. So if Âj does not depend on r (i.e.
Âj = Aj(~r)) in evaluating the scalar products from (52) one
can use the evident equality 	�Âj 	� = Âj �� . When Âj
depends onr (i.e. Âj = Aj(r)) in the same products can be
appealed to the substitution

	��r	� =
1
2
r�� +

im
~
~J� ; (53)

	��r2	� = �
1
2
� r2 �

1
2
� +

im
~
r ~J� � m2

~2

~J2
�

��
: (54)

The mentioned usage seems to allow the avoidance of the
implications regarding [79] “a possible nonuniqueness of cur-
rent” (i.e. of the couple ��– ~J�).

Within the above presented model of QMS the errors (un-
certainties) associated with the measurements of observables
Aj can be evaluated through the following indicators

" fhAjig =
��hAjiout � hAjiin��

" fC (Aj ; Ak)g = jCout (Aj ; Ak)�Cin (Aj ; Ak)j
" f�Ajg = j�outAj ��inAj j

9>>=>>; : (55)

These quantum error indicators are entirely similar
with the classical ones (43). Of course that, mathematic-
ally, they can be completed with error indicators like
"
���

�	Âj
�r	; ��	Âk�s	�	, r+ s> 3, which regard the

higher order probabilistic moments mentioned in R12.
The above presented model regarding the description of

QMS is exemplified in the end of this paper in Annex.
Now is the place to note that the out-version of the esti-

mators (52), as well as the error indicators (55), have a theo-
retical significance.

In practice the verisimilitude of such estimators and
indicators must be tested by comparing them with their
experimental (factual) correspondents (obtained by sampling
and processing of the data collected from the recorder
of the measuring device). If the test is confirmative both
theoretical descriptions, of QM intrinsic properties of sys-
tem (microparticle) and of QMS, can be considered as ade-
quate. But if the test gives an invalidation of the results, at
least one of the mentioned descriptions must be regarded as
inadequate.

In the end of this section we wish to add the following
two observations:

(i) The here proposed description of QMS does not im-
ply some interconnection of principle between the mea-
suring uncertainties of two distinct observables. This
means that from the perspective of the respective de-
scription there are no reasons to discuss about a mea-
suring compatibility or incompatibility of two observ-
ables;

(ii) The above considerations from the present section refer
to the QMS of orbital observables. Similar considera-
tions can be also done in the case of QMS regarding the
spin observables. In such a case besides the probabili-
ties of spin-states (well known in QM publications) it is
important to take into account the spin current density
(e.g. in the version proposed recently [81]).

7 Some conclusions

We starred the present paper from the ascertained fact that in
reality CIUR is troubled by a number of still unsolved defici-
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encies. For a primary purpose of our text, we resumed the
CIUR history and identified its basic presumptions.Then, we
attempt to examine in details the main aspects as well as
the validity of CIUR deficiencies regarded in an elucidative
collection.

The mentioned examination, performed in Section 3 re-
veal the following aspects:

(i) A group of the CIUR deficiencies appear from the ap-
plication of usual RSUR (2) in situations where, math-
ematically, they are incorrect;

(ii) The rest of the deficiencies result from unnatural as-
sociations with things of other nature (e.g. with the
thought experimental relations or with the presence/

absence of ~ in some formulas);
(iii) Moreover one finds that, if the mentioned applications

and associations are handled correctly, the alluded de-
ficiencies prove themselves as being veridic and un-
avoidable facts. The ensemble of the respective facts
invalidate all the basic presumptions of CIUR.

In consensus with the above noted findings, in Section
4, we promoted the opinion that CIUR must be abandoned
as an incorrect and useless (or even misleading) doctrine.
Conjointly with the respective opinion we think that the
primitive UR (the so called Heisenberg’s relations) must be
regarded as:

(i) fluctuation formulas — in their theoretical RSUR ver-
sion (2);

(ii) fictitious things, without any physical significance —
in their thought-experimental version (1).

Abandonment of CIUR requires a re-examination of the
question regarding QMS theoretical description. To such a re-
quirement we tried to answer in Sections 5 and 6. So, by a de-
tailed investigation, we have shown that the CIUR-connected
approaches of QMS are grounded on dubitable (or even in-
correct) views.

That is why we consider that the alluded question must
be reconsidered by promoting new and more natural models
for theoretical description of QMS. Such a model, of some-
what informational concept, is developed in Section 6 and it
is exemplified in Annex.

Of course that, as regards the QMS theoretical descrip-
tion, our proposal from Section 6, can be appreciated as only
one among other possible models. For example, similarly
with the discussions regarding classical errors [77, 78], the
QMS errors can be evaluated through the informational
(Shannon) entopies.

It is to be expected that, in connection with QMS, other
models will be also promoted in the next moths/years. But
as a general rule all such models have to take into account
the indubitable fact that the usual QM and QMS theoreti-
cal description must be refered to distinct scientific questions
(objectives).

Annex: A simple exemplification for the model presented
in Section 6

For the announced exemplification let us refer to a micropar-
ticle in a one-dimensional motion along the x-axis. We take
	in (x) = j	in (x)j � exp fi�in (x)g with

j	in (x)j / exp

(
� (x� x0)2

4�2

)
; �in (x) = kx : (56)

Note that here as well as in other relations from this An-
nex we omit an explicit notation of the normalisation con-
stants which can be added easy by the interesed readers.

Correspondingly to the 	 and � from (56) we have

�in (x) = j	in (x)j2 ; Jin (x) =
~k
m0
j	in (x)j2 : (57)

So the intrinsic properties of the microparticle are de-
scribed by the parameters x0, � and k.

If the errors induced by QMS are small the kernels � and
� in (48)–(49) can be considered of Gaussian forms like

� (x; x0) / exp

(
� (x� x0)2

22

)
; (58)

� (x; x0) / exp

(
� (x� x0)2

2�2

)
; (59)

where  and � describe the characteristics of the measuring
devices. Then for �out and Jout one finds

�out (x) / exp

(
� (x� x0)2

2 (�2 + 2)

)
; (60)

Jout (x) / ~k � exp

(
� (x� x0)2

2 (�2 + �2)

)
: (61)

It can been seen that in the case when both  ! 0 and
� ! 0 the kernels �(x; x0) and �(x; x0) degenerate into the
Dirac’s function �(x�x0). Then �out ! �in and Jout ! Jin.
Such a case corresponds to an ideal measurement. Alterna-
tively the cases when  , 0 and/or � , 0 are associated with
non-ideal measurements.

As observables of interest we consider coordinate x
and momentum p described by the operators x̂=x� and
p̂=�i~ @

@x . Then, in the measurement modeled by the ex-
pressions (56),(58) and (59), for the errors (uncertainties) of
the considered observables one finds

" fhxig = 0 ; " fhpig = 0 ; " fC (x; p)g = 0 ; (62)

" f�xg =
p
�2 + 2 � � ; (63)
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" f�pg = ~

����� k2(�2+2)p
(�2+�2)(�2+22��2)

�

� k2 + 1
4(�2+2)

i 1
2 � k

���� : (64)

If in (56) we restrict to the values x0 = 0, k = 0 and �=
=
q

~
2m0! our system is just a linear oscillator in its ground

state (m0 = mass and ! = angular frequency). This means
that the “in”-wave function (56) has the same expression with
the one from (14) for n = 0. As observable of interest we
consider the energy described by the Hamiltonian

Ĥ = � ~2

2m0

d2

dx2 +
m0 !2

2
x2: (65)

Then for the respective observable one finds

hHiin =
~!
2
; �inH = 0 ; (66)

hHiout =
!
h
~2 +

�
~+ 2m! 2�2i

4 (~+ 2m0 ! 2)
; (67)

�outH =
p

2m!2 2 �~+m! 2�
(~+ 2m! 2)

: (68)

The corresponding errors of mean value resoectively of
standard deviation of oscillator energy have the expressions

" fhHig = jhHiout � hHiinj , 0 ; (69)

" f�Hg = j�outH ��inHj , 0 : (70)
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and phase complementary observables? Journal of Physics A:
Math. Gen., 2001, v.34, 5923–5935; arXiv: quant-ph/0105036.

42. Kitajima S., Shingu-Yano M., Shibata F. Number-phase uncer-
tainty relation. J. Phys. Soc. Japan, 2003, v.72, 2133–2136.

43. Busch P. and Lahti P.J. The complementarity of quantum ob-
servables: theory and experiments. Rivista del Nuovo Cimento,
1995, v.18(4), 1; arXiv: quant-ph/0406132.

44. Aharonov Y., Bohm D. Time in the quantum theory and the un-
certainty relation for time and energy. Phys. Rev., 1961, v.122,
1649–1658; Answers of Fock concerning the time energy in-
determinacy relation. Phys. Rev., 1964, v.134B, 1417–1418.

45. Alcook G.R. The time of arrival in quantum mechanics I. For-
mal considerations. Ann. Phys., 1969, v.53, 253–285; The time
of arrival in quantum mechanics II. The individual measure-
ment. Ann. Phys., 1969, v.53, 286–310; The time of arrival
in quantum mechanics III. The measurement ensemble. Ann.
Phys., 1969, v.53, 311–348.

46. Bauer M., Mello P.A. The time-energy uncertainty relation.
Ann. Phys., 1978, v.111, 38–60.

47. Vorontsov Yu.I. Energy-measurement time uncertainty relation.
Usp. Fiz. Nauk, 1981, v.133, 351–365 (in Russian).

48. Bush P. The time energy uncertainty relation. Book chapter.
In: Time in Quantum Mechanics, Muga J.G., Sala Mayato R.,
Egusquiza I.L. (eds.), Springer, Berlin, 2002, 69–98.

49. Davidson R. E. On derivations of the uncertainty principle.
J. Chem. Phys., 1965, v.42, 1461–1462.

50. Levy-Leblond J.-M. Uncertainty relations for nonsimultaneous
measurements. Am. J. Phys., 1972, v.40, 899–901.

51. Ghanapragasam B., Srinivas M.D. Uncertainty relation for suc-
cessive measurements. Pranama, 1979, v.12, 699–705.

52. Korn G.A., Korn T.M. Mathematical handbook (for scientists
and engineers). Mc Graw Hill, New York, 1968.

53. Synge J.L. Geometrical approach to the Heisenberg uncertainty
relation and its generalization. Proc. Roy. Soc. London, 1971,
v.A325, 151–156.

54. Shirokov M.I. Interpretation of uncertainty relations for three or
more observables. arXiv: quant-ph/0404165; JINR-E4-2003-
84.

55. Dumitru S. Fluctuations and thermodynamic inequalities. Phys-
ica Scripta, 1974, v.10, 101–103.

56. Dumitru S., Boer A. Fluctuations in the presence of fields —
phenomenological Gaussian approximation and a class of ther-
modynamic inequalities. Phys. Rev. E, 2001, v.64, 021108.

57. Weissman M.B. Fluctuation spectroscopy. Annual Review of
Physical Chemistry, 1981, v.32, 205–232.

58. Frank-Kamenetzkii D.A. Zh. Exp. Theor. Fiz., 1940, v.10, 700.

59. Rosenfeld L. Foundations of quantum theory and complemen-
tarity. Nature, 1961, v.190, 384–388; reprinted in: Selected
Papers of Leon Rosenfeld, Cohen E.R.S. and Stachel (eds.),
D. Reidel, Dordrecht, 1979.

60. Terletsky Ya.P. Proc. of Patrice Lumumba University, Theoret-
ical Physics, 1974, v.70/8, 3.

61. Schaposhnikov I.G. Zh. Exp. Theor. Phys., 1947, v.17, 485.

62. Bazarov I.P. Methodological problems of statistical physics and
thermodynamics. Moscow Univ. Press, Moscow, 1979 (in Rus-
sian).

63. Boer A., Dumitru S. Higher order correlations in the presence
of fields. Phys. Rev. E, 2002, v.66, 046116.

64. Jancel R. Foundations of classical and quantum statistical me-
chanics. Pergamon Press, New York, 1973.

Spiridon Dumitru. Reconsideration of the Uncertainty Relations and Quantum Measurements 67



Volume 2 PROGRESS IN PHYSICS April, 2008

65. Munster A. Statistical thermodynamics. Vol. I. Springer Verlag,
Berlin, 1969.

66. Zubarev D.N. Nonequilibrium statistical thermodynamics.
Nauka, Moscow, 1974 (in Russian); English version published
by Consultants Bureau, New York, 1974.

67. Schwabl F. Statistical mechanics. Springer Verlag, Berlin,
2002.

68. Dumitru S. On the fluctuations in paramagnetic systems. Revue
Roumaine de Physique, 1989, v.34, 329–335.

69. Dumitru S. The Plank and Boltzmann constants as similar
generic indicators of stochasticity: some conceptual implica-
tions of quantum-nonquantum analogies. Physics Essays, 1993,
v.6, 5–20.

70. Zubarev D.N. Nonequilibrium statistical thermodynamics.
Nauka, Moscow, 1974 (in Russian); English version published
by Consultants Bureau, New York, 1974.

71. De Groot S.R., Mazur P. Nonequilibrium thermodynamics.
North-Holland, Amsterdam, 1962.

72. Dumitru S., Veriest E. Behaviour patterns of observables in
quantum-classical limit. Int. J. Theor. Phys., 1995, v.34, 1785–
1790.

73. Dumitru S. Similarities between thermal and quqntum fluctua-
tions and some features of quantum-classical limit. Roumanian
Reports in Physics, 1996, v.48, 891–899.

74. Albertson J. Quantum-mechanical measurement operator.
Phys. Rev., 1963, v.129, 940–943.

75. Franklin A. Experiment in physics. Stanford Encyclope-
dia of Philosophy, http://plato.stanford.edu/entries/physics-
experiment/

76. Klyshko D.N., Lipkine A.I. About the “reduction of wave func-
tion”, quantum theory of measurement, and “incomprehension”
of Quantum Mechanics. Electronic Journal “Investigated in
Russia”, 2000, 703–735, http://zhurnal.ape.relarn.ru/articles/
2000/053e.pdf

77. Dumitru S. Phenomenological theory of recorded fluctuations.
Phys. Lett. A, 1974, v.48, 109–110.

78. Dumitru S. Are the higher order correlations resistant against
additional noises? Optik, 1999, v.110, 110–112.

79. Holland P. Uniqueness of conserved currents in quantum me-
chanics. arXiv: quant-ph/0305175.

80. Madelung E. Die Mathematischen Hilfsmittel der Physikers.
Springer Verlag, Berlin 1957 (Russian version published by
Gosizdat, Moscow, 1961).

81. Sun Quing-feng. The spin continuity equation and the definition
of spin current density. arXiv: cond-mat/0502317; Sun Qing-
feng and Xie X.C. Definition of the spin current: the angular
spin current and its physical consequences. Phys. Rev. B, 2005,
v.72, 245305.

68 Spiridon Dumitru. Reconsideration of the Uncertainty Relations and Quantum Measurements


