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Gravity Model for Topological Features on a Cylindrical Manifold
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A model aimed at understanding quantum gravity in terms of Birkhoff’s approach is
discussed. The geometry of this model is constructed by using a winding map of
Minkowski space into a R3 � S1-cylinder. The basic field of this model is a field
of unit vectors defined through the velocity field of a flow wrapping the cylinder. The
degeneration of some parts of the flow into circles (topological features) results in in-
homogeneities and gives rise to a scalar field, analogous to the gravitational field. The
geometry and dynamics of this field are briefly discussed. We treat the intersections be-
tween the topological features and the observer’s 3-space as matter particles and argue
that these entities are likely to possess some quantum properties.

1 Introduction

In this paper we shall discuss a mathematical construction
aimed at understanding quantum gravity in terms of Birk-
hoff’s twist Hamiltonian diffeomorphism of a cylinder [1].
We shall also use the idea of compactification of extra dimen-
sions due to Klein [2]. To outline the main idea behind this
model in a very simple way, we can reduce the dimensional-
ity and consider the dynamics of a vector field defined on a
2-cylinder R1 � S1. For this purpose we can use the velocity
field u(x; � ) of a two-dimensional flow of ideal incompress-
ible fluid moving through this manifold.

Indeed, the dynamics of the vector field u(x; � ) with the
initial condition u(x; 0) is defined by the evolution equation

�
Z

��

Z
�x
dx ^ u(x; � )d� ! 0 ; (1.1)

where we use the restriction of the vector field onto an arbi-
trary cylinder’s element; �� is the evolution (time) interval,
and �x is an arbitrary segment of the cylinder’s element. In
other words, we assume the variation of the integral of the
mass carried by the flow through the segment during a finite
time interval to be vanishing. That is, as a result of the field
evolution, u(x; 0)!u(x;1), the functional of the flow mass
approaches to its maximal value. If, at the initial moment of
time, the regular vector field u(x; 0) corresponds to a unit
vector forming an angle ' with the cylinder’s element, then
the evolution of this field is described by the equation

�
Z

��

Z
�x
dx ^ u(x; � )d� =

= �
Z

��

Z
�x

sin'(� )dxd� = cos'(� )���x! 0 : (1.2)

Therefore, the case of '(0) = 0 corresponds to the ab-
solute instability of the vector field. During its evolution,
u(x; 0)!u(x;1), the field is relatively stable at
0<'(� )< �

2 , achieving the absolute stability at the end of
this evolution, when '(1) = �

2 . If, additionally, we fix the

vector field u(x; � ) at the endpoints of the segment �x by
imposing some boundary conditions on the evolution equa-
tion (1.1), we would get the following dynamical equation:

�
Z

��

Z
�x
dx ^ u(x; t)d� = 0 : (1.3)

Let some flow lines of the vector field u(x; � ) be degener-
ated into circles (topological features) as a result of the abso-
lute instability of the field and fluctuations during the initial
phase of its evolution. Since the dynamics of such topological
features is described by (1.3), the features would tend to move
towards that side of �x where the field u(x; � ) is more sta-
ble. Thus, the topological features serve as attraction points
for each other and can be used for modelling matter particles
(mass points).

We must emphasise that the plane (x; � ), in which our
variational equations are defined, has the Euclidean metric.
That is, in the case of the Euclidean plane (x; �) wrapping
over a cylinder we can identify the azimuthal parameter �
with the evolution parameter � . By choosing the observer’s
worldline coinciding with a cylinder’s element we can speak
of a classical limit, whereas by generalising and involving
also the azimuthal (angular) parameter we can speak of the
quantisation of our model. So, when the observer’s worldline
is an arbitrary helix on the cylinder, the variational equation
(1.3) reads

�
Z

�x0

Z
�x1

dx1 ^ g(x)dx0 = 0 ; (1.4)

where the varied is the vector field g(x) defined on the
pseudo-Euclidean plane (x0; x1) oriented in such a way that
one of its isotropic lines covers the cylinder-defining circle
and the other corresponds to a cylinder’s element. In this case
we can speak of a relativistic consideration. If the observer’s
worldline corresponds to a curved line orthogonal to the flow
lines of the vector field g(x), where g2(x)> 0, then we have
to use the variational equation defined on a two-dimensional
pseudo-Riemann manifold M induced by the vector field
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g(x), namely,

�
Z

�M
g2(x0)

p�det gij dx00 ^ dx01 = 0 ; (1.5)

where �M = �x00 ��x01 is an arbitrary region of the man-
ifold M ; x00(�) is the flow line of the vector field g(x) pa-
rameterised by the angular coordinate �; x01(r) is the spa-
tial coordinate on the cylinder (orthogonal to the observer
worldline) parameterised by the Euclidean length r; gij is
the Gram matrix corresponding to the pair of tangent vec-
tors

�dx00
d� ;

dx01
dr

�
. In this case the dynamics of the vector field

is described through the geometry of its flow lines [3–5].
Thus, we can say that our approach to the dynamics of the

vector field is based on maximisation of the mass carried by
the flow [6, 7], which is not exactly what is typically used in
the ergodic theory [8–10]. However, this principle is likely to
be related to the the minimum principle for the velocity field
[13–15], which is a special case of the more general principle
of minimum or maximum entropy production [11, 12].

Before a more detailed discussion of this model we have
to make a few preliminary notes. First, throughout this pa-
per we shall use a somewhat unconventional spherical coordi-
nates. Namely, latitude will be measured modulo 2� and lon-
gitude – modulo �. In other words, we shall use the following
spherical (�, ', �1; : : : ; �n�2) to Cartesian (x1; : : : ; xn) coor-
dinate transformation in Rn:

x1 = � cos';
x2 = � sin' cos �1;
x3 = � sin' sin �1;
: : : : : : : : : : : : : : : : : : : : :
xn�1 = � sin' : : : sin �n�3 cos �n�2;
xn = � sin' : : : sin �n�3 sin �n�2;

where 06 �<1, 06'< 2� and 06 �i<�. We shall also
be interpreting the projective space RPn as the space of cen-
trally symmetric lines in Rn+1, that is, as a quotient space
Rn+1nf0g under the equivalence relation x� rx, where
r 2 Rnf0g.

2 The geometry of the model

We can describe the geometry of our model in terms of the
mapping of the Euclidean plane into a 2-sphere, S2, by wind-
ing the former around the latter. We can also use similar
winding maps for the pseudo-Euclidean plane into a cylin-
der, R�S1, or a torus, S1�S1. More formally this could be
expressed in the following way [16]. Take the polar coordi-
nates ('; �) defined on the Euclidean plane and the spherical
coordinates (�; �) on a sphere. We can map the Euclidean
plane into sphere by using the congruence classes modulo �
and 2�. That is,

� = j' j mod �; � = j � �� j mod 2�; (2.1)

where the positive sign corresponds to the interval 0 6 ' < �
and negative — to the interval � 6 ' < 2�. If the projective
lines are chosen to be centrally symmetric then the Euclidean
plane can be generated as the product RP 1 � R. Here the
components of R are assumed to be Euclidean, i.e., rigid and
with no mirror-reflection operation allowed. Similarly, we
can define a space based on unoriented lines in the tangent
plane to the sphere. Therefore, the sphere can be generated by
the product RP 1�S1, the opposite points of the circle being
identified with each other. In this representation all centrally
symmetric Euclidean lines are mapped as

R! S1 : ei�x = e�i�� (2.2)

by winding them onto the corresponding circles of the sphere.
The winding mapping of Euclidean space onto a sphe-re

can be extended to any number of dimensions. Here we are
focusing mostly on the case of Euclidean space, R3, generated
as the productRP 2�R and also on the case of a 3-sphere gen-
erated as RP 2 � S1. In both cases we assume the Euclidean
rigidity of straight lines and the identification of the opposite
points on a circle. Euclidean space, R3, can be mapped into a
sphere, S3, by the winding transformation analogous to (2.1).
Indeed, for this purpose we only have to establish a relation
between the length of the radius-vector in Euclidean space
and the spherical coordinate (latitude) measured modulo 2�.
The relevant transformations are as follows:

�1 = # ; �2 = j' j mod �; � = j��� j mod 2�; (2.3)

where the sign is determined by the quadrant of '.
Let (e0; e1) be an orthonormal basis on a pseudo-

Euclidean plane with coordinates (x0; x1). Let the cylindrical
coordinates of R � S1 be (�; r). Then the simplest mapping
of this pseudo-Euclidean plane to the cylinder would be

� = j�(x0 + x1)j mod 2�; r = x0 � x1 : (2.4)

That is, the first isotropic line is winded here around the
cylinder’s cross-section (circle) and the second line is iden-
tified with the cylinder’s element. In this way one can make
a correspondence between any non-isotropic (having a non-
zero length) vector in the plane and a point on the cylinder.
For instance, if a vector x having coordinates (x0; x1) forms
a hyperbolic angle ' with the e0 or �e0, then

� = j � �e�'� j mod 2� = j�(x0 + x1)j mod 2�: (2.5)

If this vector forms the hyperbolic angle ' with the e1 or
�e1, then

r = �e'� = x0 � x1 ; (2.6)

where ' = � ln
���x0+x1

�

���; � = j(x0 + x1)(x0 � x1)j1=2.
By analogy, one can build a winding map of the pseudo-

Euclidean plane into the torus, with the only difference that in
the latter case the second isotropic line is winded around the
longitudinal (toroidal) direction of the torus.
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Now let us consider a 6-dimensional pseudo-Euclidean
space R6 with the signature (+;+;+;�;�;�). In this case
the analogue to the cylinder above is the product R3 � S3,
in which the component R3 is Euclidean space. In order to
wind the space R6 over the cylinder R3 � S3 we have to take
an arbitrary pseudo-Euclidean plane in R6 passing through
the (arbitrary) orthogonal lines xk, xp that belong to two Eu-
clidean subspaces R3 of the space R6. Each plane (xk; xp)
has to be winded onto a cylinder with the cylindrical coordi-
nates (�k; rp); the indices k; p correspond to the projective
space RP 2. We can take all the possible planes and wind
them over the corresponding cylinders. The mapping trans-
formation of the pseudo-Euclidean space R6 into the cylinder
R3 � S3 is similar to the expressions (2.5) and (2.6):

�k = j � �e�'�j mod 2� =
= j�(xk + xp)j mod 2� ; (2.7)

rp = �e'� = xk � xp : (2.8)

By fixing the running index k and replacing it with zero
we can get the winding map of the Minkowski space R4 into
the cylinder R3�S1, which is a particular case (reduction) of
(2.7) and (2.8). Conversely, by winding R3 over a 3-sphere,
S3, we can generalise the case and derive a winding map from
R6 into S3 � S3.

Let us consider the relationship between different ortho-
normal bases in the pseudo-Euclidean plane, which is winded
over a cylinder. It is known that all of the orthonormal bases
in a pseudo-Euclidean are equivalent (i.e., none of them can
be chosen as privileged). However, by defining a regular field
c of unit vectors on the pseudo-Euclidean plane it is, indeed,
possible to get such a privileged orthonormal basis (c; c1). In
turn, a non-uniform unitary vector field g(x), having a hyper-
bolic angle '(x) with respect to the field c, would induce a
non-orthonormal frame (g0(x); g01(x)). Indeed, if we assume
that the following equalities are satisfied:

� = j � �e�'�(e'g)j mod 2� =
= j � �e�'�(g0)j mod 2�; (2.9)

�1 = �e'�(e�'g1) = �e'�(g01) ; (2.10)

we can derive a non-orthonormal frame (g0(x); g01(x)) by us-
ing the following transformation of the orthonormal frame
(g(x); g1(x)):

g0(x) = e'g(x); g01(x) = e�'g1(x): (2.11)

Then the field g(x) would induce a 2-dimensional pseudo-
Riemann manifold with a metric tensor fg0ijg (i; j = 0; 1),
which is the same as the Gram matrix corresponding to the
system of vectors (g0(x); g01(x)). A unitary vector field g(x)
defined in the Minkowski space winded onto the cylinder
R3�S1 would induce a 4-dimensional pseudo-Riemann man-
ifold. Indeed, take the orthonormal frame (g; g1; g2; g3) de-
rived by hyperbolically rotating the Minkowski space by

the angle '(x) in the plane (g(x); c). Then the Gram ma-
trix g0ij (i; j= 0; 1; 2; 3) corresponding to the set of vectors
fe'g; e�'g1; g2; g3g would be related to the metric of the
pseudo-Riemann manifold. Note, that, since the determinant
of the Gram matrix is unity [17, 18], the induced metric pre-
serves the volume. That is, the differential volume element of
our manifold is equal to the corresponding volume element of
the Minkowski space.

3 The dynamics of the model

As we have already mentioned in Section 1, the dynamics of
the velocity field u(x; � ) of an ideal incompressible fluid on
the surface of a cylinder R3 � S1 can be characterised by
using the minimal volume principle, i.e., by assuming that the
4-volume of the flow through an arbitrary 3-surface � � R3

during the time T is minimal under some initial and boundary
conditions, namely:

�
Z T

0

Z
�
dV ^ u(x; � ) d� = 0 ; (3.1)

where dV is the differential volume element of a 3-surface �.
This is also equivalent to the minimal mass carried by the flow
through the measuring surface during a finite time interval.

In a classical approximation, by using the winding pro-
jection of the Minkowski space into a cylinder R3 � S1, we
can pass from the dynamics defined on a cylinder to the stat-
ics in the Minkowski space. Let the global time t be param-
eterised by the length of the flow line of the vector field c
in the Minkowski space corresponding to some regular vec-
tor field on the cylinder and let the length of a single turn
around the cylinder be h. Let us take in the Minkowski space
a set of orthogonal to c Euclidean spaces R3 in the Minkowski
space. The distance between these spaces is equal to hz,
where z 2Z. The projection of this set of spaces into the
cylinder is a three-dimensional manifold, which we shall re-
fer to as a global measuring surface. Then we can make
a one-to-one correspondence between the dynamical vector
field u(x; � ) and the static vector field g(x), defined in the
Minkowsky space. Thus, in a classical approximation there
exists a correspondence between the minimisation of the 4-
volume of the flow u(x; � ) on the cylinder and the minimisa-
tion of the 4-volume of the static flow defined in the Minkow-
ski space by the vector field g(x), namely:

�
Z x0

0

Z
�0
dV ^ g(x) dx0 = 0 ; (3.2)

where the first basis vector e0 coincides with the vector c, and
the 3-surfaces, �0, lie in the Euclidean sub-spaces orthogonal
to the vector c. Let f(cig) = (c0; c1; c2; c3) be an orthonor-
mal basis in R4 such that c0 = c. Let the reference frame
bundle be such that each non-singular point of R4 has a corre-
sponding non-orthonormal frame (gi(x)) = (g0; g1; g2; g3),
where g0 = g(x), g1 = c1, g2 = c2, g3 = c3. Let us form
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a matrix fgijg of inner products (ci; gj) of the basis vectors
fcig and the frame fgig. The absolute value of its determi-
nant, det(gij), is equal to the volume of the parallelepiped
formed by the vectors (g0; g1; g2; g3). It is also equal to the
scalar product, (g(x); c). On the other hand, the equation
(g(x); c)2 = jdetG(x)j holds for the Gram matrix, G(x),
which corresponds to the set of vectors fgi(x)g [21]. Then,
according to the principle (3.2), the vector field g(x) satisfies
the variational equation

�
Z



(g(x); c) dx4 = �

Z


jdetG(x)j 12 dx4 = 0 ; (3.3)

where dx4 is the differential volume element of a cylindri-
cal 4-region 
 of the Minkowski space, having the height
T . The cylinder’s base is a 3-surface � with the bound-
ary condition g(x) = c. In order to derive the differential
equation satisfying the integral variational equation (3.3), we
have to find the elementary region of integration, 
. Let
�� be an infinitesimal parallelepiped spanned by the vec-
tors �x0;�x1;�x2;�x3, with ! being a tubular neighbour-
hood with the base spanned by the vectors �x1;�x2;�x3.
This (vector) tubular neighbourhood is filled in with the vec-
tors j�x0jg(x) obtained from the flow lines of the vector
field g(x) by increasing the natural parameter (the pseudo-
Euclidean length) by the amount j�x0j. Then the localisation
expression of the equation (3.3) gives [19]:

�
Z

��
jdetG(x; t)j 12 dx4 = �Vol! = 0 : (3.4)

Since the field lines of a nonholonomy vector field g(x) are
nonparallel even locally, any variation of such a field (i.e, the
increase or decrease of its nonholonomicity) wo-uld result in
a non-vanishing variation of the volume Vol!. Conversely,
in the case of a holonomy field its variations do not affect the
local parallelism, so that the holonomicity of the field g(x)
appears to be the necessary condition for the zero variation
of Vol!. Given a vector field g(x) with an arbitrary absolute
value, the sufficient conditions for the vanishing variation of
the volume of the tubular neighbourhood ! are the potential-
ity of this field and the harmonic character of its potential. In
terms of differential forms these conditions correspond to a
simple differential equation:

d ? g(x) = 0 ; (3.5)

where d is the external differential; ? is the Hodge star oper-
ator; g(x) = d'(x); and '(x) is an arbitrary continuous and
smooth function defined everywhere in the Minkowski space,
except for the singularity points (topological features). Sub-
stituting the unitary holonomy fi-eld g(x) = k(x)d'(x) in
(3.5), where k(x) = 1=jd'(x)j, we shall find that the unitary
vector field g(x) must satisfy the minimum condition for the
integral surfaces of the co-vector field dual to g(x). In this
case the magnitude of the scalar quantity '(x) will be equal
to the hyperbolic angle between the vectors g(x) and c. We

can also note that the potential vector field g(x) = d'(x)
represented by the harmonic functions '(x) is the solution to
the following variational equation:

�
Z T

0

Z
�

"�
@'(x; t)
@t

�2
�r2'(x; t)

#
dx3dt = 0 ; (3.6)

in which � is a region in Euclidean space of the “global”
observer; the function '(x; t) is defined in the Minkowski
space. Thus, the stationary scalar field '(x) induced by a
topological feature in the global space is identical to the New-
tonian gravitational potential of a mass point.

We have to bear in mind that the space of a “real” observer
is curved, since the line for measuring time and the surface for
measuring the flux is defined by the vector field g(x), and not
by the field c as in the case of the global observer. Therefore,
if we wish to derive a variational equation corresponding to
the real observer, we have to define it on the pseudo-Riemann
manifold M induced in the Minkowski space by the holon-
omy field g(x), whose flux is measured through the surfaces
orthogonal to its flow lines and whose flow lines serve for
measuring time. The metric on M is given by the Gram ma-
trix of four tangent vectors, one of which corresponds to the
flow line x00(�) parameterised by the angular coordinate of
the cylindrical manifold, and the three others are tangent to
the coordinate lines of the 3-surface x01(r); x02(r); x03(r) pa-
rameterised by the Euclidean length. The following varia-
tional equation holds for an arbitrary region �M of M :

�
Z

�M
g2(x0) dV = 0 (3.7)

(under the given boundary conditions) where dV is the differ-
ential volume element of M . Note that the norm of the vec-
tor g(x) coincides with the magnitude of the volume-element
deformation of the pseudo-Riemann ma-nifold, which allows
making the correspondence between our functional and that
of the Hilbert-Einstein action.

Returning to the global space, let us consider some prop-
erties of the vector field g(x). Let a point in the Minkowski
space has a trajectory X(� ) and velocity _X . Its dynamics is
determined by the variational equation:

�
Z T

0

�
g(x); _X

�
d� = 0 : (3.8)

The varied here is the trajectory X(� ) in the Minkowski
space where the vector field g(x) is defined and where the
absolute time � plays the role of the evolution parameter.
For small time intervals the integral equation (3.8) can be re-
duced to

�
�
g(x); _X

�
= 0 ; (3.9)

which is satisfied by the differential equation

�X = g(X) : (3.10)
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Taking the orthogonal projection �(� ) = prR3 X(� ) of the
trajectory of a given topological feature in Euclidean space
of the global observer, as well as the projection r'(X) =
= prR3 g(X) of the vector field g(x) at the point X(� ) gives
a simple differential equation

��(� ) = r'(x); (3.11)

which (as in Newtonian mechanics) expresses the fact that the
acceleration of a mass point in an external gravitational field
does not depend on the mass.

4 Some implications

Let us consider some implications of our model for a real
observer in a classical approximation (by the real observer
we mean the reference frame of a topological feature). First,
we can note that a real observer moving uniformly along a
straight line in the Minkowski space cannot detect the “rel-
ative vacuum” determined by the vector c and, hence, can-
not measure the global time t. By measuring the velocities
of topological features (also uniformly moving along straight
lines) our observer would find that for gauging space and time
one can use an arbitrary unitary vector field c0 defined on the
Minkowski space. Therefore, the observer would conclude
that the notion of spacetime should be relative. It is seen
that the real observer can neither detect the unitary vector
field g(x) nor its deviations from the vector c. However, it
would be possible to measure the gradient of the scalar (grav-
itational) field and detect the pseudo-Riemann manifold in-
duced by g(x).

Indeed, in order to gauge time and distances in different
points of space (with different magnitudes of the scalar field)
one has to use the locally orthonormal basis fg0ig defined on
the 4-dimensional pseudo-Riemann manifold with its metric
tensor fg0ijg. Thus, for the real observer, the deformations of
the pseudo-Euclidean space could be regarded as if induced
by the scalar field. Locally, the deformations could be can-
celled by properly accelerating the mass point (topological
feature), which implies that its trajectory corresponds to a
geodesics of the manifold.

We can see that the dynamics of a topological feature in
our model is identical to the dynamics of a mass point in
the gravitational field. Indeed, the scalar field around a topo-
logical feature is spherically symmetric. At distance r from
the origin the metric will be e2'dt2 � e�2'dr2, which cor-
responds to the metric tensor of the gravitational field of a
point mass, given e2' � 1 + 2' for small '. If ' = H� ,
i.e., hyperbolic angle ' linearly depends from the evolution-
ary parameter � , then we can compare the constant H with
the cosmological factor.

Let us now consider some quantum properties of our
model. Let the absolute value of the vector field c be a con-
tinuous function jc(x)j in the Minkowski space. Then the
angular velocity of the flow will be:

_�(x) =
d�(x)
dt

=
�
h
jc(x)j ; (4.1)

where the angular function �(x) can be identified with the
phase action of the gauge potential in the observer space. On
the other hand, it is reasonable to associate the angular veloc-
ity X(� ) of the topological feature with the Lagrangian of a
point mass in the Minkowski space:

_�(X) =
d�(X)
d�

=
�
h
L(x) : (4.2)

Let us consider the random walk process of the topolog-
ical feature in the cylinder space R3 � S1. Let a probability
density function �(x) be defined on a line, such that �(x),Z +1

�1
�(x) dx = 1 : (4.3)

Let us calculate the expectation value for the random vari-
able ei�x, which arises when a line is compactified into a
circe:

M(ei�x) =
Z +1

�1
�(ei�x) dx =

=
Z +1

�1
ei�x�(x) dx = pei��: (4.4)

Here the quantity pei�� can be called the complex prob-
ability amplitude. It characterises two parameters of the ran-
dom variable distribution, namely, the expectation value it-
self, ei��, and the probability density, p, i.e. the magnitude
of the expectation value. If �(x) = �(�), then M(ei�x) =
= 1 � ei��. Conversely, if �(x) is uniformly distributed along
the line then the expectation value isM(ei�x) = 0. It follows
from these considerations that a distribution in R3 of a com-
plex probability amplitude is related to random events in the
cylinder space R3 � S1.

In order to specify the trajectoriesX(� ) in the Minkowski
space with an external angular potential �(x) we shall use the
procedure proposed by Feynman [22]. Let the probabilistic
behaviour of the topological feature be described as a Markov
random walk in the cylinder space R3 � S1. An elementary
event in this space is a free passage. In the Minkowski space
such an event is characterised by two random variables, dura-
tion, �� , and the random path vector, �X , whose projection
into Euclidean space of the absolute observer is ��. The ratio
��
�� is a random velocity vector, _�. On the other hand, the free
passage of a topological feature corresponds to an increment
in the phase angle ��(X) = _�(X)�� (phase action) in the
cylinder space R3 � S1.

Let the probability distribution of the phase action has an
exponential form, say, �(��) = e��� (neglecting the nor-
malisation coefficient). Then, the corresponding probability
density for the random variable ei�� will be

�(ei��) = e���ei��: (4.5)

Using the properties of a Markov chain [20], we can de-
rive the probability density for an arbitrary number of random
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walks:

�(ei�) =
TY
0

e� _�d�ei _�d� : (4.6)

To get the expectation value of the random variable ei�
we have to sum up over the all possible trajectories, that is, to
calculate the quantity

M(ei�) =
X TY

0

e� _�d�ei _�d� : (4.7)

It is known that any non-vanishing variation of the phase
action has a vanishing amplitude of the transitional proba-
bility and, on the contrary, that the vanishing variation cor-
responds to a non-vanishing probability amplitude [23–25].
Then it is seen that the integral action corresponding to the
topological feature must be minimal. It follows that the “pro-
babilistic trap” of a random walk [26] in the cylinder space
R3�S1 is determined by the variational principle — the same
that determines the dynamics of a mass point in classical me-
chanics.

5 Conclusions

In conclusion, we have made an attempt to describe the dy-
namics of spacetime (as well as of matter particles) in terms
of the vector field defined on a cylindrical manifold and based
on the principle of maximum mass carried by the field flow.
The analysis of the observational implications of our model
sheds new light on the conceptual problems of quantum
gravity.

Still many details of our model are left unexplored. For
example, it would be instructive to devise the relationship
between the vector field g(x) and the 4-potential of electro-
magnetic field A(x) and to consider the local perturbations
of g(x) as gravitons or/and photons. We also expect that the
most important properties of our model would be revealed by
extending it to the cylindrical manifold R3�S3. In particular,
we hope that within such an extended version of our frame-
work it would be possible to find a geometric interpretation
of all known gauge fields. It is also expected that studying
the dynamics of the minimal unit vector field on a 7-sphere
should be interesting for cosmological applications of our ap-
proach.
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