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A classical model of gravitation is proposed with time as an independent coordinate.
The dynamics of the model is determined by a proposed Lagrangian. Applying the
canonical equations of motion to its associated Hamiltonian gives conservation equa-
tions of energy, total angular momentum and the z component of the angular momen-
tum. These lead to a Keplerian orbit in three dimensions, which gives the observed
values of perihelion precession and bending of light by a massive object. An expression
for gravitational redshift is derived by accepting the local validity of special relativity at
all points in space. Exact expressions for the GEM relations, as well as their associated
Lorentz-type force, are derived. An expression for Mach’s Principle is also derived.

1 Introduction

The proposed theory is based on two postulates that respec-
tively establish the dynamics and kinematics of a system of
particles subject to a gravitational force. The result is a closed
particle model that satisfies the basic experimental observa-
tions of the force.

The details of applications and all derivations are included
in the doctoral thesis of the author [1].

2 Postulates

The model is based on two postulates:

Postulate 1: The dynamics of a system of particles subject
to gravitational forces is determined by the Lagrangian,

L = �m0(c2 + v2) exp
R
r
; (1)

wherem0 is gravitational rest mass of a test body mov-
ing at velocity v in the vicinity of a massive, central
body of mass M , 
 = 1=

p
1� v2=c2, R = 2GM=c2

is the Schwarzschild radius of the central body.
Postulate 2: Special Relativity (SR) is valid instantan-eously

and locally at all points in the reference system of the
central massive body. This gives the kinematics of the
system.

3 Conservation equations

Applying the canonical equations of motion to the Hamilto-
nian, derived from the Lagrangian, leads to three conservation
equations:

E = m0c2
eR=r


2 = total energy = constant ; (2)

L = eR=r M ; (3)
= total angular momentum = constant ;

Lz = eR=rm0r2 sin2� _� ; (4)
= z component of L = constant ;

where M = (r�m0v). Equations (2), (3) and (4) give the
quadrature of motion:

d	
du

= �
�
e2Ru

L2 � u2 � EeRu

L2

��1=2

; (5)

where u= 1=r, L=jLj and 	 is defined by

jMj = m0r2 d	
dt

: (6)

Expanding the exponential terms to second degree yields
a differential equation of generalized Keplerian form,

d	
du

= (au2 + bu+ c)�1=2; (7)

where

u =
1
r

a =
R2(4� E)

2L2 � 1

b =
R(2� E)

L2

c =
1� E
L2

9>>>>>>>>>>>>>=>>>>>>>>>>>>>;
; (8)

and the convention m0 = c = 1 was used.
Integrating (7) gives the orbit of a test particle as a gener-

alized conic,
u = K(1 + � cos k	) ; (9)

where the angles are measured from 	 = 0, and

k = (�a)
1
2 ; (10)

K = � b
2a
; (11)

� =
�

1� 4ac
b

� 1
2

: (12)
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Fig. 1: Deflection of light.

4 Gravitational redshift

Assuming the validity of 
d� = dt of SR at each point in
space and taking frequencies as the inverses of time, (2) yields

� = �0 e�R=2r (�0 = constant), (13)

which, to first approximation in exp(�R=2r), gives the ob-
served gravitational redshift.

5 Perihelion precession

In the case of an ellipse (� < 1), the presence of the coeffi-
cient k causes the ellipse not to be completed after a cycle of
� = 2� radians, i.e. the perihelion is shifted through a cer-
tain angle. This shift, or precession, can be calculated as (see
Appendix A.1):

�� =
3�R

�a (1� �2)
; (14)

where �a is the semi-major axis of the ellipse. This expression
gives the observed perihelion precession of Mercury.

6 Deflection of light

We define a photon as a particle for which v = c. From (2) it
follows that E = 0 and the eccentricity of the conic section
is found to be (see Appendix A.2)

� =
r0

R
; (15)

where r0 is the impact parameter. Approximating r0 by the
radius of the sun, it follows that � > 1. From Fig. 1 we see
that the trajectory is a hyperbola with total deflection equal to
2R=r0. This is in agreement with observation.

7 Lorentz-type force equation

The corresponding force equation is found from the associ-
ated Euler-Lagrange equations:

_p = Em+m0v �H ; (16)

where
p = m0 _r = m0v ; (17)

m =
m0


2 ; (18)

E = � r̂
GM
r2 ; (19)

H =
GM (v � r)

c2r3 : (20)

The force equation shows the deviation from Newton’s
law of gravitation. The above equations are analogous to the
gravitoelectromagnetic (GEM) equations derived by Mash-
hoon [2] as a lowest order approximation to Einstein’s field
equations for v � c and r � R.

8 Mach’s Principle

An ad hoc formulation for Mach’s Principle has been pre-
sented as [3, 4]

G �
Lc2

M
; (21)

where: L = radius of the universe,
M = mass of the universe � mass of the distant stars.

This relation can be found by applying the energy relation
of (2) to the system of Fig. 2.
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Fig. 2: Mutual gravitational interaction between a central mass M1

and the distant stars of total mass M2.

The potential atM2 due toM1 is �1=GM1=L=R1c2=2L
and the potential of the shell atM1 is �2=GM2=L=R2c2=2L.
Furthermore, since M1 and M2 are in relative motion, the
value of 
 will be the same for both of them. Applying (2)
to the mutual gravitational interaction between the shell of
distant stars and the central body then gives

E = M1c2 exp
R2

L
= M2c2 exp

R1

L
:
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Since L > R2 � R1 we can realistically approximate the
exponential to first order in R2=L. After some algebra we get
R2 � L, which gives the Mach relation,

2GM2

Lc2
� 1 :

9 Comparison with General Relativity

The equations of motion of General Relativity (GR) are ap-
proximations to those of the proposed Lagrangian. This can
be seen as follows.

The conservation equations of (2), (3) and (4) can also be
derived from a generalized metric,

ds2 = e�R=rdt2�eR=r(dr2 +r2d�2 +r2 sin2� d�2) : (22)

Comparing this metric with that of GR,

ds2 =
�

1� R
r

�
dt2 �

� 1
1� R

r

dr2 � r2d�2 � r2 sin2� d�2; (23)

we note that (23) is a first order approximation to the time
and radial coefficients, and a zeroth order approximation to
the angular coefficients of (22). It implies that all predictions
of GR will be accommodated by the Lagrangian of (1) within
the orders of approximation.

Comparing (5) with the corresponding quadrature of GR,

d�
du

= �
�

1� E
J2 +

uRE
J2 � u2 +Ru3

��1=2

; (24)

we note that it differs from the Newtonian limit, or the Keple-
rian form of (7), by the presence of the Ru3 term. The form
of this quadrature does not allow the conventional Keplerian
orbit of (9).

A Appendix

A.1 Precession of the perihelion

After one revolution of 2� radians, the perihelion of an el-
lipse given by the conic of (9) shifts through an angle ��=
= 2�

k � 2� or, from (10), as

�� = 2�
�
(�a)�1=2 � 1

�
; (25)

where a is given by (8). The constants of motion E and L
are found from the boundary conditions of the system, i.e.
du=d� = 0 at u = 1=r� and 1=r+, where r+ and r� are the
maximum and minimum radii respectively of the ellipse. We
find [1]

E � 1 +
R
2�a

R2

L2 � 2R
�a (1� �2)

9>>=>>; ; (26)

where �a = (r+ +r�)=2 is the semi-major axis of the approx-
imate ellipse. Substituting these values in (8) gives

a =
3R

�a(1� �2)
� 1 : (27)

Substituting this value in (25) gives (14).

A.2 Deflection of light

We first have to calculate the eccentricity � of the conic for
this case,

� =
�

1� 4ac
b2

�1=2
:

For a photon, setting v = c in (8) gives

�2 =
�
�1 +

L2

R2

�
: (28)

At the distance of closest approach, r = r0 = 1=u0, we
have d�=du = 0; so that from (5):

L2 =
e2Ru0

u2
0

= r2
0 e

2R=r0 : (29)

From (28) and (29), and ignoring terms of first and higher
order in R=r0, we find

� � r0

R
: (30)

For a hyperbola cos� = 1=�, so that (see Fig. 1):

sin� = 1=�
) � � 1=�
) 2� � 2R=r0 = total deflection.
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