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The problem of thermoelasticity, based on the theory of Lord and Shulman with one
relaxation time, is used to solve a boundary value problem of one dimensional semi-
infinite medium heated by a laser beam having a temporal Dirac distribution. The sur-
face of the medium is taken as traction free. The general solution is obtained using the
Laplace transformation. Small time approximation analysis for the stresses, displace-
ment and temperature are performed. The convolution theorem is applied to get the
response of the system on temporally Gaussian distributed laser radiation. Results are
presented graphically. Concluding that the small time approximation has not affected
the finite velocity of the heat conductivity.

1 Introduction

The classical theory (uncoupled) of thermoelasticity based on
the conventional heat conduction equation. The conventional
heat conduction theory assumes that the thermal disturbances
propagate at infinite speeds. This prediction may be suitable
for most engineering applications but it is a physically unac-
ceptable situation, especially at a very low temperature near
absolute zero or for extremely short-time responses.

Biot [1] formulated the theory of coupled thermoelastic-
ity to eliminate the shortcoming of the classical uncoupled
theory. In this theory, the equation of motion is a hyperbolic
partial differential equation while the equation of energy is
parabolic. Thermal disturbances of a hyperbolic nature have
been derived using various approaches. Most of these ap-
proaches are based on the general notion of relaxing the heat
flux in the classical Fourier heat conduction equation, thereby,
introducing a non Fourier effect.

The first theory, known as theory of generalized thermoe-
lasticity with one relaxation time, was introduced by Lord and
Shulman [2] for the special case of an isotropic body. The ex-
tension of this theory to include the case of anisotropic body
was developed by Dhaliwal and Sherief [4].

In view of the experimental evidence available in favor of
finiteness of heat propagation speed, generalized thermoelas-
ticity theories are supposed to be more realistic than the con-
ventional theory in dealing with practical problems involving
very large heat fluxes and/or short time intervals, like those
occurring in laser units and energy channels.

The purpose of the present work is to study the thermoe-
lastic interaction caused by heating a homogeneous and iso-
tropic thermoelastic semi-infinite body induced by a Dirac
pulse having a homogeneous infinite cross-section by em-
ploying the theory of thermo-elasticity with one relaxation
time. The problem is solved by using the Laplace transform
technique. Approximate small time analytical solutions to

stress, displacement and temperature are obtained. The con-
volution theorem is applied to get the spatial and temporal
temperature distribution induced by laser radiation having a
temporal Gaussian distribution. At the end of this work we
present the computed results obtained from the theoretical re-
lations applied on a Cu target.

2 Formulation of the problem

We consider a thermoelastic, homogeneous, isotropic semi-
infinite target occupying the region z > 0, and initially at
uniform temperature T0. The surface of the target z = 0
is heated homogeneously by a leaser beam and assumed to
be traction free. The Cartesian coordinates (x; y; z) are con-
sidered in the solution and z-axis pointing vertically into the
medium. The equation of motion in the absence of the body
forces has the form

�ji;j = � �ui ; (1)

where �ij is the components of stress tensor, ui is the com-
ponents of displacement vector and � is the mass density.
Due to the Lord and Shalman theory of coupled thermoelas-
ticity [2] (L-S) who considered a wave-type heat equation by
postulating a new law of heat conduction equation to replace
the Fourier’s law
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where T0 is a uniform reference temperature, 
=(3�+2�)�t,
�, and � are Lame’s constants. �t is the linear thermal expan-
sion coefficient, cE is the specific heat at constant strain and
k is the thermal conductivity. The boundary conditions:

�zz = 0; z = 0 ; (3)

44 I. A. Abdallah, et. al. Thermoelastic Property of a Semi-Infinite Medium Induced by a Homogeneously Illuminating Laser Radiation



October, 2008 PROGRESS IN PHYSICS Volume 4

� k dT
dz

= A0 q0 �(t) ; z = 0 ; (4)

whereA0 is an absorption coefficient of the material, q0 is the
intensity of the laser beam and �(t) is the Dirac delta function
[5]. The initial conditions:
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Due to the symmetry of the problem and the external ap-
plied thermal field, the displacement vector u has the compo-
nents:

ux = 0 ; uy = 0 ; uz = w(z; t) : (6)

From equation (6) the strain components eij , and the re-
lation of the strain components to the displacement read;

exx = eyy = exy = exz = eyz = 0

ezz =
@w
@z

eij =
1
2

(ui;j + uj;i)

9>>>>>=>>>>>; : (7)

The volume dilation e takes the form

e = exx + eyy + ezz =
@w
@z

: (8)

The stress components are given by:

�xx = �e� 
(T � T0)

�yy = �e� 
(T � T0)

�zz = 2�
@w
@z
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9>>>>=>>>>; ; (9)

where
�xy = 0
�xz = 0
�yz = 0

9>=>; : (10)

The equation of motion (1) will be reduces to

�zz;z + �xz;x + �yz;y = � �uz : (11)

Substituting from (9) and (10) into the last equation and
using � = T � T0 we get,
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where � is the temperature change above a reference temper-
ature T0. Differentiating (12) with respect to z and using (8),
we obtain
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The energy equation can be written in the form:�
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For convenience, the following non-dimensional quanti-
ties are introduced

z� = c1�z ; w� = c1�w ; t� = c21� t

t�0 = c21� t0 ; ��ij =
�ij
�
; �� =

T � T0

T0

� =
�cE
k

; c21 = ��ij =
�+ 2�
�

9>>>>>=>>>>>; : (15)

Substituting from (15) into (12) we get after dropping the
asterisks and adopting straight forward manipulation

r2e� g1r2� =
@2e
@t2

r2� =
�
@
@t

+ t0
@2e
@t2

�
(� + g2e)
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where g1 = 
T0
(2�+�) and g2 = 


�cE .
Substituting from (15) into (9) we get,

�xx = �yy = �e� �1�

�zz = �e� �1�

)
; (17)

where � = 
(2�+�)
� , � = �

� and �1 = 
T0
� . We now intro-

duce the Laplace transform defined by the formula:

�f(z; s) =
Z 1

0
e�stf(z; t)dt : (18)

Applying (18) to both sides of equation (16) we get,

(r2 � s2) �e� g1r2 �� = 0 ; (19)

(r2 � s(1 + t0s)) �� � s(1 + t0s) g2 �e = 0 : (20)

Eliminating �� and �e between equation (19) and (20) we
get the following fourth-order differential equations satisfied
by �e and ��; respectively

(r4 � Ar2 + C) �e = 0 ; (21)

(r4 � Ar2 + C) �� = 0 ; (22)

withA= s2 +s(1+t0s)(1+g1g2) and C = s3(1+t0s). One
can solve these fourth order ordinary differential equations by
using e�kz and finding the roots of the inditial equation

k4 � Ak2 + C = 0 ; (23)
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suppose that ki (i = 1; 2) are the positive roots, then the so-
lution of (23) for z > 0 and ki > 0 are; respectively
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depending only on s and ki are functions of s. Substituting
by (24) and (25) into (20) we get the relation,
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Therefore it is easy to determine Ai and A
0
i for i = 1; 2
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3 Small time approximation

We now determine inverse transforms for the case of small
values of time (large values of s). This method was used by

Hetnarski [6] to obtain the fundamental solution for the cou-
pled thermelasticity problem and by Sherief [7] to obtain the
fundamental solution for generalized thermoelasticity with
two relaxation times for point source of heat. k1 and k2 are
the positive roots of the characteristic equation (23), given by
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Expanding f1(v) and f2(v) in the Maclaurin series
around v = 0 and consider only the first four terms, can be
written fi(v) (i = 1; 2) as

fi(v) = ai0 + ai1v + ai2v2 + ai3v3; i = 1; 2 ; (39)

where the coefficients of the first four terms are given by
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: (40)
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Next, we expand [fi(v)]
1
2 in the Maclaurin series around

v = 0 and retaining the first three terms, we obtain finally the
expressions for k1 and k2 which can be written in the form

ki = v�1 �bi0 + bi1v + bi2v2� ; i = 1; 2 ; (41)
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bi0 =

p
ai0 ;

bi1 =
ai1

2
p
ai0

;

and

bi2 =
1

8a
3
2
i0(9ai2ai0 � a2

i0)
:

Consider ki to be written as
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I. A. Abdallah, et. al. Thermoelastic Property of a Semi-Infinite Medium Induced by a Homogeneously Illuminating Laser Radiation 47



Volume 4 PROGRESS IN PHYSICS October, 2008

From equation (39), we obtain

e�k1z = e�(b10s+b11)z = e�b11ze�b10sz ;

and
e�k2z = e�(b20s+b21)z = e�b21ze�b20sz:

Applying the inverse Laplace transform for equations
(43, 44, 45, 46) we get �, w, �xx, �yy and �zz in the fol-
lowing form
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�xx = �yy = e�b11z

��
c�0+c�1(t�b10z) +

+ c�2

2
(t�b10z)2+'2c�2

4

� p
�

2
'erf

� t
'

�
� c�2'

4
te�

t2

'2 +

+ (c�1+c�2(t�b10z))'
2

2

�
1�e� t2

'2
��

+

+ e�b21z
��

c�3+c�4(t�b20z)+ c�5

2
((t�b10z)2 +

+ c�5'2

4

�
'
p
�

2
erf
� t
'

�
�'c�5

4
te�

t2

'2 +

+ (c�4+c�5(t�b10z))'
2

2

�
1�e� t2

'2
��
:

(55)

4 Computation and discussions

We have calculated the spatial temperature, displacement and
stress �, w, �xx, �yy and �zz with the time as a parameter
for a heated target with a spatial homogeneous laser radia-
tion having a temporally Gaussian distributed intensity with
a width of (10E-3 s). We have performed the computation for
the physical parameters T0 = 293 K, � = 8954 Kg/m3,

A = 0:01; cE = 383:1 J/kgK;

' = 10�3 s; � = g1g2 = 0:01680089;

�t = 1:78(10�5) K�1; k = 386 W/mK;

� = 7:76(1010) kg/m sec2; � = 3:86(10)10 kg/m sec2

and
t0 = 0:02 sec

for Cu as a target. We obtain the results displayed in the fol-
lowing figures.

Considering surface absorption the obtained results in
Figure 1 show the temperature �, Figure 2 display the tem-
poral temperature distribution and the temporal behavior of
the laser radiation, Figure 3 for the displacement w, Figure 4
for the stress �zz and Figure 5 for the stresses �xx and �yy .

The coupled system of differential equations describing
the thermoelasticity treated through the Laplace transform of
a temporally Dirac distributed laser radiation illuminating ho-
mogeneous a semi-infinite target and absorbed at its irradi-
ated surface. Since the system is linear the response of the
system on the Dirac function was convoluted with a tem-
porally Gaussian distributed laser radiation. The theoretical
obtained results were applied on the Cu target. Figure 1 il-
lustrates the calculated spatial distribution of the temperature
per unit intensity at different values of the time parameter
(t = 0:005; 0:007; 0:01; 0:015; and 0:02). From the curves it
is evident that the temperature has a finite velocity expressed
through the strong gradient of the temperature which moves
deeper in the target as the time increases.

Fig. 1: The temperature distribution � per unit intensity versus z
with the time as a parameter.

Fig. 2: (A) The temporal temperature distribution � per unit inten-
sity form the. (B) The temporal behavior of the laser radiation which
is assumed to have a Gaussian distribution with width ' = 10�3s.

Figure 2 represent the calculated front temporal tempera-
ture distribution per unit intensity (curve A); as a result of the
temporal behavior of the laser radiation which is assumed to
have a Gaussian distribution with a width equals to (10E-3 s)
(curve B). From the figure it is evident that the temperature
firstly increases with increasing the time this can be attributed
to the increased absorbed energy which over compensates the
heat losses given by the heat conductivity inside the material.
As the absorbed power equals the conducted one inside the
material the temperature attains its maximum value. the max-
imum of the temperature occurs at later time than the maxi-
mum of the radiation this is the result of the heat conductivity
of Cu and the relatively small gradient of the temperature in
the vicinity of z = 0 as seen from Figure 1. After the ra-
diation becomes week enough such that it can not compen-
sate the diffused power inside the material the temperature
decreases monotonically with increasing time.

Figure 3 shows the calculated spatial displacement per
unit intensity at different times(0:01; 0:015 and 0:02). The
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Fig. 3: The displacement distribution u per unit intensity versus z
with the time as a parameter.

Fig. 4: The stress �zz distribution per unit intensity versus z with
the time as a parameter.

displacement increases monotonically with time. It attains
smaller gradient with increasing z. Both effects can be at-
tributed to the temperature behavior. The negative displace-
ment results from the co-ordinate system which is located at
the front surface with positive direction of the z-axis pointing
down words.

Figure 4 illustrates the spatial distribution of stress �zz
per unit intensity at the times (0.01, 0.015 and 0.02). Since,
�zz = �e��1�, thus from Figure 3 �zz attains maxima at the
locations for which the gradient of the displacement exhibits
maxima and this is practically at the same points for which
�zz is maximum. The calculations showed that �xx and �yy
have the same behavior as �zz .

5 Results and conclusions

The thermoelasticity problem formulated by a coupled linear
system of partial differential equations was discussed. The
system was decoupled to provide a fourth order linear differ-
ential equations which were solved analytically using Laplace

Fig. 5: The stress distribution �xx and �yy per unit intensity versus
z with the time as a parameter.

transform. The small time approximation analysis was per-
formed for the solution of temperature, displacement and for
the stresses; showing that the finite velocity of the temper-
ature described by the D.Es system was not affected by the
small time approximation.
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