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We have used as the velocity field of a fluid the functional form derived in Casuso
(2007), obtained by studying the origin of turbulence as a consequence of a new de-
scription of the density distribution of matter as a modified discontinuous Dirichlet in-
tegral. As an interesting result we have found that this functional form for velocities is a
solution to the Navier-Stokes equation when considering asymptotic behaviour, i.e. for
large values of time.

1 Introduction

The Euler and Navier-Stokes equations describe the motion
of a fluid. These equations are to be solved for an unknown
velocity vector ~u(~r; t) and pressure P (~r; t), defined for po-
sition ~r and time t> 0. We restrict attention here to incom-
prenssible fluids filling all real space. Then the Navier-Stokes
equations are: a) Newton’s law ~f =m~a for a fluid element
subject to the external force ~g (gravity) and to the forces aris-
ing from pressure and friction, and b) The condition of in-
compressibility. A fundamental problem in the analysis is to
find any physically reasonable solution for the Navier-Stokes
equation, and indeed to show that such a solution exists.
Many numerical computations appear to exhibit blowup for
solutions of the Euler equations (the same as Navier-Stokes
equations but for zero viscosity), but the extreme numerical
instability of the equations makes it very hard to draw reli-
able conclusions (see Bertozzi and Majda 2002 [1]). Impor-
tant progress has been made in understanding weak solutions
of the Navier-Stokes equations (Leray 1934 [2], Khon and
Nirenberg 1982 [3], Scheffer 1993 [4], Schnirelman 1997 [5],
Caffarelli and Lin 1998 [6]). This type of solutions means
that one integrates the equation against a test function, and
then integrates by parts to make the derivatives fall on the test
function. In the present paper we test directly the validity of
a solution which was obtained previously from the study of
turbulence.

2 Demonstration of validity of the asymptotic solution

We start from the Navier-Stokes equation for one-dimension:
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where � is a positive coefficient (viscosity) and g means a
nearly constant gravitational force per unit mass (an exter-
nally applied force).

Taking from Casuso, 2007 [7], the functional form de-
rived for the velocity of a fluid
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eit(x+k) + const; (2)

where �xk 6x + k6xk, k describe the central positions of
real matter structures such as atomic nuclei and xk means
the size of these structures. Assuming a polytropic relation
between pressure P and density � via the sound speed s we
have:
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Puting equations (2) and (3) into equation (1) we obtain:
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Now taking the asymptotic approximation, at very large
time t, we obtain

� sin(xkt) eit(x+k) = �s2
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and differentiating and taking only the real part, we have

xk cos(xkt) = � s2

��
sin(xkt) ; (9)

which is the same as

�xk��
s2 = tan(xkt) (10)

then, in the limiting case (real case) xk! 0 and, again at very
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large time t, we have the solutions

xkt = 0; �; 2�; 3�; : : : ; n� (11)

with n being any integer number. So we have demonstrated
that the equation (2) is a solution for the Navier-Stokes equa-
tion in one dimension.

Now, for the general case of 3-dimensions we have to gen-
eralize the functional form which describes the nature of mat-
ter in Casuso, 2007 [7], in the sense of taking a new form for
the density
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where r=
p
x2 + y2 + z2, and applying the continuity eq-

uation
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Using the condition of incompressibility included in
Navier-Stokes equations

div~u = 0 (14)

and assuming isotropy for the velocity field ux'uy 'uz , we
have

ux = uy = uz = � r
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ei t(r+k) + const; (15)

where � rk 6 r + k6 rk. Including this expression for the
velocity in the 3-dimensional Navier-Stokes main equation
(taking into account the condition div~u = 0)
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we obtain
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where � means @2
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@z2 . Again taking the approxi-
mation of very large time, we have
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i.e.
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Taking the partial derivative with respect to time we ob-
tain
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or (which is the same),

eit(r+k) sin(rkt) = 0 ; (21)
i.e.

(cos[(r + k)t]� i sin[(r + k)t]) sin(rkt) = 0 : (22)

Taking only the real part

sin(rkt) cos[(r + k)t] = 0 : (23)

So, we have two solutions: (a) rkt= 0; �; 2�; : : : ; n�,
and (b) (r+ k)t= �

2 ; 3
�
2 ; : : : ; (2n+ 1)�2 . We must note that

the solution (a) is similar to the 1-dimension solution.

3 Conclusions

By using a new discontinuous functional form for matter den-
sity distribution, derived from consideration of the origin of
turbulence, we have found an asymptotic solution to the
Navier-Stokes equation for the three dimensional case. This
result, while of intrinsic interest, may point towards new ways
of deriving a general solution.
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