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The role of potentials and sources in electromagnetic and gravitational fields is investi-
gated. A critical analysis leads to the result that sources have to be replaced by integra-
tion constants. The existence of spatial boundaries gives reasons for this step. Potentials
gain physical relevance first with it. The common view, that fields are “generated” by
sources, appears as not tenable. Fields do exist by their own. These insights as well as
results from numerical simulations force the conclusion that a Riemannian-geometrical
background of electromagnetism and even quantum phenomena cannot be excluded.
Nature could differ from abstract geometry in a way that distances and intervals never
become infinitesimally small.

1 Introduction

In Physics a unified theory including all phenomena of nature
is considered as the greatest challenge. All attempts founded
on the present definition of matter have manifested to fail. It
will require a redefinition of this term.

The traditional view consists on the assumption that mat-
ter “generates” fields. All effort aims at the description of
this matter, detached from fields, at least from gravitation.
This single-edged view led to the known problems and cannot
bring more than stagnation. One had to unify different meth-
ods being used for handling of different physical situations.
Also new mathematical procedures cannot help to master this
unsolvable problem.

The traditional mathematical description puts the matter
on the right-hand-side of partial differential equations, while
the left-hand-side contains differential terms of the field quan-
tities. However, practice demonstrates that only field quanti-
ties are measurable, never any form of matter terms. If we
consider the practice impartially, the right-hand-sides of the
field equations have to become zero. That means, there are
no sources of fields.

There are severe caveats in physics against this conclu-
sion. However, it will be demonstrated that any infinities like
singular points are physically irrelevant. Connecting electro-
magnetism to gravitation without obstacles is only possible
avoiding sources.

In this paper, solutions of known linear field equations
(electromagnetism and gravitation) with and without sources
are compared, in which, integration constants from source-
free equations take the role of sources. Mass, spin, charge,
magnetic momentum are first integration constants. The non-
linear case will validate the linear basic approach. Bound-
aries, introduced to solve linear source-free equations, reveal
to be geometric limits in the space-time, described by non-
linear equations. This fact makes any artifacts unnecessary.
The theory can be managed with exclusively classical mathe-
matical methods.

These insights are not familiar in physics, because the
present standard is the Quantum Field Theory [1, 2], in which
the most known part, the Standard Model, is told to be very
successful and precise [3, 4]. The existence of subatomic par-
ticles has been deduced from scattering experiments [3]. The
field term, used in these theories, differs considerably from
the classical field term. Actually, these theories are founded
on building block models which more seem to aim at a phe-
nomenology of a “particle zoo” than a description of nature
based on first principles. In order to describe the interactions
between particles respectively sub-particles, it needs the in-
troduction of virtual particles like the Higgs, which have not
been experimentally verified to date.� By principle, the sub-
atomic particles cannot be observed directly. — Are the limits
of classical methods really so narrow, that they would justify
these less strict methods of natural philosophy?

The mathematical methods are more and more advanced
(for example introducing several “gauge fields”) according to
the requirements by the building block models. However,
these methods approach to limits [3, 4]. Gravitation must
be handled external to the model and appears as an external
force. The deeper reason is that the standard model is based
on Special Relativity while gravitation is the principal item
of General Relativity. These differences are inherent and do
not lead to a comprehensive model which reflects the fact that
gravitation and electromagnetism have analogous properties.
Pursuing theories like string theory (quoted by [4]) do not re-
ally close this gap. Any predictions or conjectures are not
validated, as demonstrated for example in [6].

The central question of modern physics is: How to quan-
tize field theory? [4] In view of the looming limits, another
question is proposed instead: Which quantities have discrete
values? — In order to answer this alternative question, we
�Manfred Geilhaupt claims to “provide” a kind of “Higgs field” in his

theory, called GR+QTD (General Relativity + Quantum Thermodynamics)
by him [5]. It were a step beyond virtual particles “because they possess
restmass itself due to TD principles. Second it also seems to be obvious that
the fine structure constant of space fundamentally can be derived by GR but
not without precursor extended by QTD” [5].
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have to go back to the roots. That are Maxwell’s theory
and General Theory of Relativity as Einstein himself taught
in his Four Lectures [7]. The simple approach of these ba-
sics should be a specific benefit, and a low standard by no
means. We have to take notice of any proportions of forces
(how extreme these may ever be), and to accept the direct con-
sequences like the non-existence of sources (as explained in
this paper) and the non-applicability of building block mod-
els. We have to compare not forces but the fields with respect
to metrics.� The following lines will make General Relativity
provide the basis which can describe all real forces of nature.

2 Electromagnetism

As known, electromagnetic fields in the vacuum can be de-
scribed by Maxwell’s equations, with tensor notationy

Fij;k + Fjk;i + Fki;j = 0 ; (1)

F ia;a = Si (2)

where S is the vector of source terms. With Eq. (1), the field
tensor is identically representable from a vector potential A
with

Fik = Ai;k � Ak;i : (3)

The six independent components of the field tensor are
reduced to four components of the vector potential. These
four components can be put in the four equations (2).

If one changes the vector potential for the gradient of an
arbitrary scalar

Ai =) Ai +  ;i ; (4)

field tensor and source S (currents and charges) do not
change. These quantities are told to be gauge-invariant [9]z.

The vector potential has been introduced to solve equa-
tions (2). It is at first an auxiliary quantity. Reasons for pos-
sible physical relevance are mentioned later. However, the
Aharonov-Bohm effect (for example) does not give evidence
for the physical relevance of vector potential and gauge, as
Bruhn [10] demonstrated.

2.1 The Poisson equation

In order to get more close solutions, one can apply the Lorenz
convention (see [9])

Ai;i = 0 : (5)

One may not confuse the Lorenz convention with a gauge,
because it is an arbitrary condition.x This condition could
reduce the possible set of solutions.

�See more Section 6.1
yThe tensor equations have been normalized, see Kästner [8] and ap-

pendix.
zBruhn explains these basics with traditional notation.
xThis condition is mostly met, but it is not ensured.

Simplified equations result with Cartesian coordinates

�A = �S ; (6)

with the retarded potential

A =
1

4�

Z S(r0; ct� jr� r0j)
jr� r0j dV0 (7)

as solution (without spatial boundaries).
Time-independent solutions

A =
1

4�

Z S(r0)
jr� r0j dV0 (8)

can be decomposed into several multipoles. As well, the term
1=jr � r0j is developed in series. The vector potential re-
sults in

A =
1

4�

1X
i=0

1
ri+1

Z
r0
i Pi

�
r � r0

r r0

�
� S(r0) dV0 (9)

with r= jrj, r0 = jr0j. Pi are Legendre’s polynoms (Wunsch
[11]).

Introducing spherical coordinates with

x = r sin# sin' ; y = r sin# cos' ; z = r cos# ; (10)

in which

x1 = r ; x2 = # ; x3 = ' ; x4 = jct (11)

(with j2 = �1 ), the argument is

r � r0

r r0
= sin# sin#0 cos('� '0) + cos# cos#0 : (12)

By this, the fixed volume integrals become functions of #
and '. Rotationally symmetric ansatzes

�(r0; #0; '0) = �(r0; #0) (13)

(charge density), and{

J'(r0; #0; '0) = J'(r0; #0; ') � cos('� '0) (14)

(current density) lead to momenta that will be compared with
the solutions from wave equations. The calculation of the first
momenta, i.e. charge and magnetic momentum, is demon-
strated in [12]. As well, the charge follows directly as a first
approximation of the volume integral from Eq. (8). The mag-
netic momentum is calculated with a current loop model, see
[12].

2.2 The wave equation

The wave equation follows from the Poisson equation if the
sources vanish, i.e.

�A = 0 : (15)
{Condition (14) excludes the existence of magnetic monopoles.
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2.2.1 The plane wave

A known solution is the plane wave, for propagation in direc-
tion of x1 (with Cartesian coordinates, without gravitation)

A2 = A2(ct� x1) : (16)

One can take A3 instead of A2. However, A1 and A4 are
irrelevant for the Lorenz convention, because this takes

A4
0 = jA1

0 ; (17)

in which the apostrophe means the total derivative with re-
spect to ct � x1. The component F41 is always zero for that
reason, and F23 vanishes anyway. It is the reason for the
very fact that longitudinal electromagnetic waves (also called
scalar waves) do not exist. The Lorenz convention is the pre-
requisite of the wave equation.

This solution is not physical, and has to be discussed in
context with gravitation. A special kind of boundary could
make plane waves physical. A possible context with Planck’s
constant is discussed in [17].

2.2.2 The spherical wave

The central symmetrical ansatz can be written for any scalar
potential, and components treated by this means,

c2
@2

@r2 (r�) =
@2

@t2
(r�) (18)

with the solution
r� = Z(ct� r) (19)

(Reichardt [13]), in which only the minus sign might be rele-
vant here.

Transforming to the potential itself becomes problemati-
cal at r = 0. We shall see that this critical point proves to be
physically irrelevant. Aware of this, one could take this solu-
tion as element of the retarded potential according to Eq. (7).

A spherical boundary around r = 0 does not change this
solution at and outside of the boundary, and eliminates the
mathematical problem. The solution is linked with the poten-
tial of the boundary then.

Since the boundary is part of the field, the question for
cause and effect becomes irrelevant.

2.2.3 Time-independent solutions

Static solutions of the wave equation require the existence of
spatial boundaries. That may be ideal conductors in electric
fields, or hard bodies in sound fields. These problems are
known as “marginal-problems” (for example [14, 15]). The
values of integration constants in the solutions are linked with
the potentials of the boundaries against infinity�. That may

�as long as we have to do with a quasi flat space-time

grant certain physical relevance to potentials. Of course, the
wave equation is valid only out of the boundary. We shall see
that regions within close boundaries are physically irrelevant.y

Let us confine the problem to a close boundary around
r = 0 . This restriction allows development of series (see
[12, 16]), which were otherwise singular just at this point.

The wave equations for several components become for
rotational symmetry with spherical coordinates

@2A4

@r2 +
2
r
@A4

@r
+

1
r2
@2A4

@#2 +
1
r2
@A4

@#
cot# = 0 (20)

(electric potential) and

@2A3

@r2 +
1
r2
@2A3

@#2 � 1
r2
@A3

@#
cot# = 0 (21)

(magnetic vector potential). The magnetic vector potential
consists of only one component in direction of the azimuth

A3 = A' r sin# ; (22)

in which A' means the physical component.z
The differently looking equations (20) and (21) follow

from coordinate transformation.
Developments of series with ansatzes

A4 =
X
i;k

a[4]i;kri cosk # ;

A3 =
X
i;k

a[3]i;kri sink # (23)

lead, by means of comparison of the coëfficients, to the per-
forming laws

0 = a[4]i;k � [i(i+1)�k (k+1)]+a[4]i;k+2 � (k+1)(k+2) ;

0 = a[3]i;k � [i(i�1)�k (k�1)]+a[3]i;k+2 �k(k+2) : (24)

Physically meaningful are only the cases i< 0 and k> 0 .
With this, the series become

A4 =
a[4]�1;0

r
+
a[4]�2;1

r2 � cos#+

+
a[4]�3;2

r3 �
�
�1

3
+ cos2 #

�
+ : : : ;

A' = sin# �
�
a[3]�1;2

r2 +
a[3]�2;3

r3 � sin#+

+
a[3]�3;4

r4 �
�
�4

5
+ sin2 #

�
+ : : :

�
: (25)

yWho insists on sources may take these regions as source. Lastly the
connection of electromagnetism with gravitation will show, that this step is
illogical.
zOn physical components see Kästner [8].

Ulrich E. Bruchholz. Key Notes on a Geometric Theory of Fields 109



Volume 2 PROGRESS IN PHYSICS April, 2009

A comparison of these solutions with static solutions of
the Poisson equation results for the first integration con-
stants in

a[4]�1;0 = �j
�0

1
2 Q

4�
(26)

(charge) and

a[3]�1;2 = � "0
1
2 M
4�

(27)

(magnetic momentum).
Integration constants take the role of the sources. In more

complex solutions, the 1=r field from point charges (for ex-
ample) is assumed only for a large radius.

3 Gravitation

Another kind of potential can be derived from Einstein’s [7]
gravitation equations

Rik � 1
2
gik R = �� Tik ; (28)

or
Rik = �� (Tik � 1

2
gik T ) = �� Tik� (29)

with T = Taa. These equations indicate the relations of the
Ricci tensor with energy and momentum components. The
Ricci tensor is a purely geometrical quantity of the space-
time. It contains differential terms of metrics components.

One can approximate metrics, with Cartesian coordina-
tes, as

gik = �(ik) + (ik) with j(ik)j � 1 : (30)

The (ik) are “physical components” of metrics and have
the character of a potential.

The arbitrary conditions

0 =
@(ia)

@xa
� 1

2
@(aa)

@xi
(31)

may be the analogy of the Lorenz convention. These lead to
Poisson equations

�(ik) = 2� Tik� ; (32)

with retarded potentials as solution

(ik) = � �
2�

Z
Tik�(r0; ct� jr� r0j)

jr� r0j dV0 : (33)

Using the energy-momentum tensor of the distributed
mass

T ik = �
dxi

ds
dxk

ds
; (34)

in which � be the mass density, static solutions result approx-
imately in

(11) = (22) = (33) = +
�
4�

Z
�(r0)
jr� r0j dV0 ; (35)

(44) = � �
4�

Z
�(r0)
jr� r0j dV0 ; (36)

the rest zero (Einstein [7]). This approximation is not more
sufficient for the calculation of the spin.

The actual field quantity might be the curvature vector
(Eisenhart [19]) of the world-line described by the test body

ki =
dxa

ds

�
dxi

ds

�
;a

=
d2xi

ds2 + f a i b g dxa

ds
dxb

ds
; (37)

because it acts as a force to the body by its mass.
With distributed mass, the force density becomes

Ki = T ia;a = �ki : (38)

The force balance� is given only with �= 0, unless one
uses discrete masses. These are integration constants from
�(44) = 0. In this case, force balance is obtained with the
equations of geodesics [19]

ki = 0 : (39)

The curvature vector also contains accelerated motion,
this is the most simple interpretation of the equivalence prin-
ciple. The equations of geodesics become equations of mo-
tion with it.

The wave equations are analogous to those of electromag-
netism, that means also analogous series and analogous inte-
gration constants (using spherical coordinates)

a[44]�1;0 = � � m
4�

(40)

(mass) and
a[34]�1;2 = j

� s
4�c

(41)

(spin). The analogy of the current loop is a spinning torus
[12]. It must be explicitly pointed out that this model is not
sufficient to represent the known proportions between mass
and spin, or charge and magnetic momentum, respectively.
This inconsistency is removed by integration constants.

Another derivation tries to omit boundaries [16], however,
it is not supported by numerical simulations. The boundaries
will have a direct geometrical meaning.

4 Connection of electromagnetism with gravitation

Electromagnetism can be connected with gravitation via the
energy-momentum tensor of the electromagnetic field

Tik = FiaFka � 1
4
gikFabF ab ; (42)

with the force density

Ki = T ia;a = F iaSa : (43)
�Respectively energy conservation, mathematically expressed with the

Bianchi identities [19] in Einstein’s equations.

110 Ulrich E. Bruchholz. Key Notes on a Geometric Theory of Fields



April, 2009 PROGRESS IN PHYSICS Volume 2

Fig. 1: Tests with parameters around the Helium nucleus

Force balance is only given with Si = 0. Using this energy-
momentum tensor means, there is no choice: The sources
must vanish, with them the divergences of the field tensor

F ia;a = 0 : (44)

Einstein stated this already in his Four Lectures [7]. This step
is possible, as explained.

The necessity of this energy-momentum tensor to have
just this form is also derived by Montesinos and Flores [21]
based on Noether’s theorem [22], but only without sources.

Numerical simulations according to source-free Einstein-
Maxwell equations [18] demonstrate that the areas around
possible formal singularities do not exist at all. Also known
analytic solutions of Einstein’s equations like the isotropic
Schwarzschild solution [7],[19] indicate this. The event hori-
zon here is the boundary. In general, a geometric boundary
is given when physical components of metrics take an abso-
lute value of 1. It is a kind of horizon in any case. We have
to suppose it at the conjectural radius of the particle respec-
tively nucleus, for chaos from the non-linear field equations
(see next section).

However, any additional terms or extended methods can-
not really repair the inconsistencies from the sources.

For T = 0 and R= 0, Einstein’s equations now result in

Rik = �
�

1
4
gikFabF ab � FiaFka

�
: (45)

Equations (1), (44), and (45) involve a special Rieman-
nian geometry of the space-time, as explained in [12] and
[20]. The field tensor becomes a curve parameter of the
world-lines like the curvature vector.

5 On numerical simulations

The precedingly explained insights are supported by numer-
ical simulations according to equations (3), (44), and (45).

Fig. 2: Tests with parameters around the electron

Recent robust results can be seen at [23], including the Pascal
code of the used program, and a program visualizing these
results.

Algorithms and simulation techniques are discussed in
[18], as well as the method of approximating the partial dif-
ferential equations by discrete ones. The principle consists in
going from the known (e.g. the distant field of a point charge)
to the unknown. In this paper, two visualized samples are
shown.

The particle quantities like mass, spin, charge, magnetic
momentum are integration constants from mentioned tensor
equations, and are inserted as parameters into the initial con-
ditions. The initial conditions start from point charges, or
analogous functions for the other integration constants re-
spectively, and are assumed only for great radius.� The non-
linearities are absolutely negligible at this place.

The number of iterations during the computation up to
terminating the actual test means a degree of stability of the
solution, and is marked in the graphs as a more or less fat
“point”. The reference point (according to literature [24]) is
displayed as small circle.

In tests only with mass and charge (remaining parame-
ters zero), masses of preferably small nuclei emerge signifi-
cantly, together with the right charge at the Helium nucleus,
Figure 1.y Unfortunately, the procedure is too inaccurate for
the electron mass. In return, the other parameters emerge very
significantly, see Figure 2.

Above mentioned stability could have to do with chaos.
The author had to take notice of the fact, that the numerical
solutions are fundamentally different from analytic solutions.
Any singularities from analytic solutions are always replaced
by boundaries, which can be interpreted as geometrical limits.

The non-linear equations (which behave chaotically) lead

�Concrete initial conditions see [23], also [18].
yThe masses of proton and deuteron are in a sense an add-on of the

Helium nucleus tests.
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always to these geometrical boundaries, which are 1) finite
and 2) outside of possible singular points. Areas with singular
points do not exist, i.e. are irrelevant.

One could understand this fundamental contrast by the
fact that the differences in time and length are never made
zero in a numerical way. The results, exclusively achieved
this way, support the view that one has to assume a discrete
space-time that does not give reasons for action at a distance.
The continuum is only defined with action from point to
point, independently on distance or interval between adjacent
points.

In order to correctly depict nature, it is apparently nec-
essary to take into consideration the deviations, appearing
during the calculation with finite differences. In nature ap-
parently these deviations do not vanish with the transition to
very small differences.

Konrad Zuse asked the question, if the possibility to ar-
bitrarily subdivide quantities is “conceivable at all” in na-
ture [25]. Common imagination of a consequent quantization
leads to the problem of privileged coordinates, or a privileged
frame [25]. Nature has never indicated it. However, it is suc-
cessful practice in electrical engineering to adapt the coor-
dinates to the actual problem (Wunsch [11]). Linear equa-
tions showed to be insensitive to the selection of coordinates.
It requires intense research work to prove the chaotic be-
haviour of the non-linear equations dependent on the coordi-
nates. The author was so fortunate to see the mentioned cor-
relations with spherical coordinates. As well, the correlations
became highly significant when the raster distances were the
same tangentially as well as radially (dr= r d#) just at the
conjectural particle radius.

6 Concluding remarks

If the obtained insights are right, all quantum phenomena
should be understandable by them. At this place, tunnel ef-
fects are mentioned. This example is supplemented with very
brief but essential remarks on causality.

6.1 On tunnel effects

Equations (1), (44), and (45) allow structures, in which a fi-
nite distance (as the outer observer sees it) can locally become
zero, but metrics does not become singular. That were a real
tunnel with an “inner” length of zero. An event at the one side
is “instantaneously” seen at the other side. A known effect,
that could be interpreted this way, is the EPR effect [26, 27].
Such tunnels might arise by accident.�

This view is supported with changes of metrics by electro-
magnetism. Distances are locally shortened (at electric fields
in direction of the field strength), what can lead to a feedback.
Trump and van de Graaf have measured the flashover in the
vacuum, dependent on the distance of the electrodes (Kapcov
�See also the joke with Mozart’s Fortieth symphony by Nimtz.

[28]). As well, the product of voltage and field strength was
nearly constant

U � E � 1013V2 m�1 : (46)

That means
@g11

@r
� �2�10�41 m�1 : (47)

One will not see these tiny changes, but they are appar-
ently enough to release lightning etc.

On the whole, the influence of gravitation prevails, so that
the space-time is macroscopically stable. Table 1 shows the
arithmetical deviations of metrics at a radius of 10�15 m, that
is roughly the conjectural radius of nuclei.

proton free electron

(11)(�(44)) from mass 2:48�10�39 1:30�10�42

(11) from charge �1:85�10�42 �1:85�10�42

(34) from spin j 2:60�10�40 j 2:60�10�40

(34) from charge times
magn. momentum �j 5:57�10�43 �j 3:6�10�40

(33) from magn. momen-
tum (ambiguous) �1:64�10�43 �6:84�10�38

Table 1: The arithmetical deviations of metrics at 10�15 m.

The influence by mass decreases with 1=r, however, that
by charge and spin with 1=r2, and that by magnetic momen-
tum with 1=r4.

6.2 On causality

Firstly, equations (3), (44), and (45) provide 10 independent
equations for 14 components gik ; Ai . With it, causality is
not given in principle. It is false to claim, a geometric ap-
proach would imply causality. Geometry has nothing to do
with causality, because causality has not been geometrically
defined at all.

If we see something causal, it comes from approximations
by wave equations, as precedingly explained. These provide
close solutions.

Appendix

“Classical” electric and magnetic fields in the vacuum are
joined to an antisymmetric tensor of 2nd rank

D = "0E = j�0
� 1

2

0@ F(14)
F(24)
F(34)

1A ;

B = �0H = "0
� 1

2

0@ F(23)
F(31)
F(12)

1A : (48)
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Current density and charge density result in a source vec-
tor S
J = c�0

� 1
2

0@ S(1)
S(2)
S(3)

1A ; � = �j�0
� 1

2S(4) : (49)

The indices in parentheses stand for physical components.
See also Kästner [8].
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