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General Relativistic metric tensors for gravitational fields exterior to homogeneous
spherical mass distributions rotating with constant angular velocity about a fixed di-
ameter are constructed. The coefficients of affine connection for the gravitational field
are used to derive equations of motion for test particles. The laws of conservation of
energy and angular momentum are deduced using the generalized Lagrangian. The law
of conservation of angular momentum is found to be equal to that in Schwarzschild’s
gravitational field. The planetary equation of motion and the equation of motion for a
photon in the vicinity of the rotating spherical mass distribution have rotational terms
not found in Schwarzschild’s field.

1 Introduction

General Relativity is the geometrical theory of gravitation
published by Albert Einstein in 1915/1916 [1–3]. It unifies
Special Relativity and Sir Isaac Newton’s law of universal
gravitation with the insight that gravitation is not due to a
force but rather a manifestation of curved space and time,
with the curvature being produced by the mass-energy and
momentum content of the space time. After the publication
of Einstein’s geometrical field equations in 1915, the search
for their exact and analytical solutions for all the gravitational
fields in nature began [3].

The first method of approach to the construction of ex-
act analytical solutions of Einstein’s geometrical gravitational
field equations was to find a mapping under which the metric
tensor assumed a simple form, such as the vanishing of the
off-diagonal elements. This method led to the first analyti-
cal solution — the famous Schwarzschild’s solution [3]. The
second method was to assume that the metric tensor contains
symmetries — assumed forms of the associated Killing vec-
tors. The assumption of axially asymmetric metric tensor led
to the solution found by Weyl and Levi-Civita [4–11]. The
fourth method was to seek Taylor series expansion of some
initial value hyper surface, subject to consistent initial value
data. This method has not proved successful in generating
solutions [4–11].

We now introduce our method and approach to the con-
struction of exact analytical solutions of Einstein’s geomet-
rical gravitational field equations [12, 13] as an extension of
Schwarzschild analytical solution of Einstein’s gravitational
field equations. Schwarzschild’s metric is well known to be
the metric due to a static spherically symmetric body situated

in empty space such as the Sun or a star [3, 12, 13]. Schwarz-
schild’s metric is well known to be given as

g00 = 1� 2GM
c2r

; (1.1)

g11 = �
�
1� 2GM

c2r

��1

; (1.2)

g22 = �r2; (1.3)

g33 = �r2 sin2� ; (1.4)

g�� = 0 otherwise; (1.5)

where r >R, the radius of the static spherical mass, G is the
universal gravitational constant, M is the total mass of the
distribution and c is the speed of light in vacuum. It can be
easily recognized [12, 13] that the above metric can be writ-
ten as

g00 = 1 +
2f(r)
c2

; (1.6)

g11 = �
�
1 +

2f(r)
c2

��1

; (1.7)

g22 = �r2; (1.8)

g33 = �r2 sin2� ; (1.9)

g�� = 0 otherwise; (1.10)
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where

f(r) = �GM
r

: (1.11)

We thus deduce that generally, f(r) is an arbitrary func-
tion determined by the distribution. In this case, it is a func-
tion of the radial coordinate r only; since the distribution and
hence its exterior gravitational field possess spherical symme-
try. From the condition that these metric components should
reduce to the field of a point mass located at the origin and
contain Newton’s equations of motion in the field of the
spherical body, it follows that generally, f(r) is approximate-
ly equal to the Newtonian gravitational scalar potential in the
exterior region of the body, �(r) [12, 13].

Hence, we postulate that the arbitrary function f is solely
determined by the mass or pressure distribution and hence
possesses all the symmetries of the latter, a priori. Thus, by
substituting the generalized arbitrary function possessing all
the symmetries of the distribution in to Einstein’s gravitation-
al field equations in spherical polar coordinates, explicit equa-
tions satisfied by the single arbitrary function, f(t; r; �; �),
can be obtained. These equations can then be integrated ex-
actly to obtain the exact expressions for the arbitrary func-
tion. Also, a sound and satisfactory approximate expression
can be obtained from the well known fact of General Relativ-
ity [12,13] that in the gravitational field of any distribution of
mass;

g00 � 1 +
2
c2

�(t; r; �; �) : (1.12)

It therefore follows that:

f(t; r; �; �) � �(t; r; �; �) : (1.13)

In a recent article [13], we studied spherical mass distri-
butions in which the material inside the sphere experiences
a spherically symmetric radial displacement. In this article,
we now study general relativistic mechanics in gravitational
fields produced by homogeneous mass distributions rotating
with constant angular velocity about a fixed diameter within
a static sphere placed in empty space.

2 Coefficients of affine connection

Consider a static sphere of total mass M and density �. Also,
suppose the mass or pressure distribution within the sphere
is homogeneous and rotating with uniform angular velocity
about a fixed diameter. More concisely, suppose we have
a static spherical object filled with a gas say and the gas is
made to rotate with a constant velocity about a fixed diame-
ter. In otherwords, the material inside the sphere is rotating
uniformly but the sphere is static. Such a mass distribution
might be hypothetical or exist physically or exist astrophys-
ically. For this mass distribution, it is eminent that our arbi-
trary function will be independent of the coordinate time and

azimuthal angle. Thus, the covariant metric for this gravita-
tional field is given as

g00 = 1 +
2f(r; �)
c2

; (2.1)

g11 = �
�
1 +

2f(r; �)
c2

��1

; (2.2)

g22 = �r2; (2.3)

g33 = �r2 sin2� ; (2.4)

g�� = 0 otherwise; (2.5)

where f(r; �) is an arbitrary function determined by the mass
distribution within the sphere. It is instructive to note that
our generalized metric tensor satisfy Einstein’s field equa-
tions and the invariance of the line element; by virtue of their
construction [1, 12]. An outstanding theoretical and astro-
physical consequence of this metric tensor is that the resul-
tant Einstein’s field equations have only one unknown func-
tion, f(r; �). Solutions to these field equations give explicit
expressions for the function f(r; �). In approximate gravita-
tional fields, f(r; �) can be conveniently equated to the grav-
itational scalar potential exterior to the homogeneous spher-
ical mass distribution [1, 12–14]. It is most interesting and
instructive to note that the rotation of the homogeneous mass
distribution within the static sphere about a fixed diameter is
taken care of by polar angle, � in the function f(r; �). Also, if
the sphere is made to rotate about a fixed diameter, there will
be additional off diagonal components to the metric tensor.
Thus, in this analysis, the static nature of the sphere results in
the vanishing of the off diagonal components of the metric.

The contravariant metric tensor for the gravitational field,
obtained using the Quotient Theorem of tensor analysis [15]
is given as

g00 =
�
1 +

2f(r; �)
c2

��1

; (2.6)

g11 = �
�
1 +

2f(r; �)
c2

�
; (2.7)

g22 = �r�2; (2.8)

g33 = � �r2 sin2�
��1

; (2.9)

g�� = 0 otherwise; (2.10)

It is well known that the coefficients of affine connection
for any gravitational field are defined in terms of the metric
tensor [14, 15] as;

���� =
1
2
g�� (g��;� + g��;� � g��;�) ; (2.11)

Chifu E. N., Howusu S. X. K., Lumbi L. W. Relativistic Mechanics in Fields Exterior to Rotating Homogeneous Mass Distributions 19



Volume 3 PROGRESS IN PHYSICS July, 2009

�r +
�
1 +

2
c2
f(r; �)

�
@f(r; �)
@r

_t2 � 1
c2

�
1 +

2
c2
f(r; �)

��1 @f(r; �)
@r

_r2 � 2
c2

�
1 +

2
c2
f(r; �)

��1 @f(r; �)
@�

_r _��

� r
�
1 +

2
c2
f(r; �)

�
_�2 � r sin2�

�
1 +

2
c2
f(r; �)

��2 @f(r; �)
@�

_�2 = 0

(3.5)

where the comma as in usual notation designates partial dif-
ferentiation with respect to x�; x� and x� . Thus, we construct
the explicit expressions for the coefficients of affine connec-
tion in this gravitational field as;

�0
01 � �0

10 =
1
c2

�
1 +

2
c2
f(r; �)

��1 @f(r; �)
@r

; (2.12)

�0
02 � �0

20 =
1
c2

�
1 +

2
c2
f(r; �)

��1 @f(r; �)
@�

; (2.13)

�1
00 =

1
c2

�
1 +

2
c2
f(r; �)

�
@f(r; �)
@r

; (2.14)

�1
11 = � 1

c2

�
1 +

2
c2
f(r; �)

��1 @f(r; �)
@r

; (2.15)

�1
12 � �1

21 = � 1
c2

�
1 +

2
c2
f(r; �)

��1 @f(r; �)
@�

; (2.16)

�1
22 = �r

�
1 +

2
c2
f(r; �)

�
; (2.17)

�1
33 = �r sin2 �

�
1 +

2
c2
f(r; �)

��2 @f(r; �)
@�

; (2.18)

�2
00 =

1
r2c2

@f(r; �)
@�

; (2.19)

�2
11 =

1
r2c2

�
1 +

2
c2
f(r; �)

��2 @f(r; �)
@�

; (2.20)

�2
12 � �2

21 � �3
13 � �3

31 = �1
r
; (2.21)

�2
33 = �1

2
sin 2� ; (2.22)

�3
23 � �3

32 = cot � ; (2.23)

���� = 0 otherwise; (2.24)

Thus, the gravitational field exterior to a homogeneous
rotating mass distribution within regions of spherical geome-
try has twelve distinct non zero affine connection coefficients.
These coefficients are very instrumental in the construction of
general relativistic equations of motion for particles of non-
zero rest mass.

3 Motion of test particles

A test mass is one which is so small that the gravitational field
produced by it is so negligible that it doesn’t have any effect
on the space metric. A test mass is a continuous body, which
is approximated by its geometrical centre; it has nothing in
common with a point mass whose density should obviously
be infinite [16].

The general relativistic equation of motion for particles of
non-zero rest masses is given [1, 12–14, 17] as

d2x�

d� 2 + ����

�
dx�

d�

��
dx�

d�

�
= 0 ; (3.1)

where � is the proper time. To construct the equations of
motion for test particles, we proceed as follows

Setting � = 0 in equation (3.1) and substituting equations
(2.12) and (2.13) gives the time equation of motion as

�t+
2
c2

�
1 +

2
c2
f(r; �)

��1 @f(r; �)
@r

_t _r+

+
2
c2

�
1 +

2
c2
f(r; �)

��1 @f(r; �)
@�

_t _� = 0 ;

(3.2)

where the dot denotes differentiation with respect to proper
time. Equation (3.2) is the time equation of motion for parti-
cles of non-zero rest masses in this gravitational field. It re-
duces to Schwarzschild’s time equation when f(r; �) reduces
to f(r). The third term in equation (3.2) is the contribution
of the rotation of the mass within the sphere; it does not ap-
pear in Schwarzschild’s time equation of motion for test par-
ticles [1, 12–14, 17]. It is interesting and instructive to realize
that equation (3.2) can be written equally as

d
d�
�
ln _t
�

+
d
d�

�
ln
�

1 +
2
c2
f(r; �)

��
= 0 : (3.3)

Integrating equation (3.3) yields

_t = A
�

1 +
2
c2
f(r; �)

��1

; (3.4)

where A is the constant of integration (as t! � , f(r; �)! 0
and thus the constantA is equivalent to unity). Equation (3.4)
is the expression for the variation of the time on a clock mov-
ing in this gravitational field. It is of same form as that in
Schwarzschild’s gravitational field [1, 12–14, 17].

Similarly, setting � = 1 in equation (3.1) gives the radial
equation of motion as formula (3.5) on the top of this page.
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For pure radial motion _� � _� = 0 and hence equation
(3.5) reduces to

�r +
�
1 +

2
c2
f(r; �)

��1 @f(r; �)
@r

�
1� 1

c2
_r2
�

= 0 : (3.6)

The instantaneous speed of a particle of non-zero rest
mass in this gravitational field can be obtained from equa-
tions (3.5) and (3.6).

Also, setting � = 2 and � = 3 in equation (3.1) gives the
respective polar and azimuthal equations of motion as

�� +
1
r2
@f(r; �)
@�

_t2 +
1
r2c2

�
1 +

2
c2
f(r; �)

��2

�

� @f(r; �)
@�

_r2 +
2
r

_r _� � 1
2

( _�)2 sin 2� = 0

(3.7)

and
��+

2
r

_r _�+ 2 _� _� cot � = 0 : (3.8)

It is instructive to note that equation (3.7) reduces satis-
factorily to the polar equation of motion in Schwarzschild’s
gravitational field when f(r; �) reduces to f(r). Equation
(3.8) is equal to the azimuthal equation of motion for parti-
cles of non-zero rest masses in Schwarzschild’s field. Thus,
the instantaneous azimuthal angular velocity from our field
is exactly the same as that obtained from Newton’s theory of
gravitation [14] and Schwarzschild’s metric [1, 12, 13, 17].

4 Orbits

The Lagrangian in the space time exterior to any mass or pres-
sure distribution is defined as [17]

L =
1
c

�
� g�� dx

�

d�
dx�

d�

�1
2

= 0 : (4.1)

Thus, in our gravitational field, the Lagrangian can be
written as

L =
1
c

"
� g00

�
dt
d�

�2
� g11

�
dr
d�

�2# 1
2

�

� 1
c

"
g22

�
d�
d�

�2
� g33

�
d�
d�

�2# 1
2

= 0 :

(4.2)

Considering motion confined to the equatorial plane of
the homogeneous spherical body, � = �

2 and hence d� = 0.
Thus, in the equatorial plane, equation (4.2) reduces to

L =
1
c

"
� g00

�
dt
d�

�2
�

� g11

�
dr
d�

�2
� g33

�
d�
d�

�2 # 1
2

= 0 :

(4.3)

Substituting the explicit expressions for the components
of the metric tensor in the equatorial plane of the spherical
body yields

L =
1
c

�
�
�

1 +
2
c2
f(r; �)

�
_t2
� 1

2

+

+
1
c

"�
1 +

2
c2
f(r; �)

��1

_r2 + r2 _�2

# 1
2

;

(4.4)

where the dot as in usual notation denotes differentiation with
respect to proper time.

It is well known that the gravitational field is a conserva-
tive field. The Euler-lagrange equations of motion for a con-
servative system in which the potential energy is independent
of the generalized velocities is written as [17]

@L
@x�

=
d
d�

�
@L
@ _x�

�
; (4.5)

but
@L
@x0 � @L

@t
= 0 ; (4.6)

by the time homogeneity of the field and thus from equation
(4.5), we deduce that

@L
@ _t

= constant: (4.7)

From equation (4.4), it can be shown using equation (4.7)
that �

1 +
2
c2
f(r; �)

�
_t = k ; _k = 0 (4.8)

where k is a constant. This the law of conservation of en-
ergy in the equatorial plane of the gravitational field [17]. It
is of same form as that in Schwarzschild’s field. Also, the La-
grangian for this gravitational field is invariant to azimuthal
angular rotation (space is isotropic) and hence angular mo-
mentum is conserved, thus

@L
@�

= 0 ; (4.9)

and from Lagrange’s equation of motion and equation (4.4) it
can be shown that

r2 _� = l ; _l = 0 ; (4.10)

where l is a constant. This is the law of conservation of an-
gular momentum in the equatorial plane of our gravitational
field. It is equivalent to that obtained in Schwarzschild’s grav-
itational field. Thus, we deduce that the laws of conservation
of total energy and angular momentum are invariant in form
in the two gravitational fields.

To describe orbits in Schwarzschild’s space time, the La-
grangian for permanent orbits in the equatorial plane [17] is
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given as;

L =

(�
1� 2GM

c2r

��
dt
d�

�2
�

� 1
c2

"�
1� 2GM

c2r

��1� dr
d�

�2
+ r2

�
d�
d�

�2#) 1
2

:

(4.11)

For time-like orbits, the Lagrangian gives the planetary
equation of motion in Schwarzschild’s space time as

d2u
d�2 + u =

GM
h2 + 3

GM
c2

u2; (4.12)

where u = 1
r and h is a constant of motion. The solution

to equation (4.12) depicts the famous perihelion precession
of planetary orbits [1, 14, 17]. For null orbits, the equation
of motion of a photon in the vicinity of a massive sphere in
Schwarzschild’s field is obtained as

d2u
d�2 + u = 3

GM
c2

u2: (4.13)

A satisfactory theoretical explanation for the deflection of
light in the vicinity of a massive sphere in Schwarzschild’s
space time is obtained from the solution of equation (4.13).

It is well known [17] that the LagrangianL= �, with �= 1
for time like orbits and �= 0 for null orbits. Setting L= �
in equation (4.4) and squaring yields the Lagrangian in the
equatorial plane of the gravitational field exterior to a rotating
mass distribution within regions of spherical geometry as

�2 =
1
c2

�
�
�

1 +
2
c2
f(r; �)

�
_t2
�

+

+
1
c2

"�
1 +

2
c2
f(r; �)

��1

_r2 + r2 _�2

#
:

(4.14)

Substituting equations (4.8) and (4.10) into equation
(4.14) and simplifying yields

_r2 +
�

1 +
2
c2
f(r; �)

�
l2

r2 �
� 2�2f(r; �) = c2�2 + k2:

(4.15)

In most applications of general relativity, we are more in-
terested in the shape of orbits (that is, as a function of the
azimuthal angle) than in their time history [1, 14, 17]. Hence,
it is instructive to transform equation (4.15) into an equation
in terms of the azimuthal angle �. Now, let us consider the
following standard transformation

r = r(�) and u(�) =
1

r(�)
; (4.16)

then
_r = � l

1 + u2
du
d�

: (4.17)

Imposing the transformation equations (4.16) and (4.17)
on (4.15) and simplifying yields�

l
1 + u2

dt
d�

�2

+
�

1 +
2
c2
f(u; �)

�
u2�

� 2�2
f(u; �)
l2

=
c2�2 + k2

l2
:

(4.18)

Equation (4.18) can be integrated immediately, but it
leads to elliptical integrals, which are awkward to handle [14].
We thus differentiate this equation to obtain:

d2u
d�2 � 2u

�
1 + u2� du

d�
+ u

�
1 + u2�2�

�
�

1+
2
c2
f(u; �)

�
=
�

2�2

l2
�u2

c2

��
1+u2�2 @f

@u
:

(4.19)

For time like orbits, equation (4.19) reduces to;

d2u
d�2 � 2u

�
1 + u2� du

d�
+ u

�
1 + u2�2�

�
�

1+
2
c2
f(u; �)

�
=
�

2
l2
�u2

c2

��
1+u2�2 @f

@u
:

(4.20)

This is the planetary equation of motion in the equato-
rial plane of this gravitational field. It can be solved to ob-
tain the perihelion precision of planetary orbits. This equa-
tion has additional terms (resulting from the rotation of the
mass distribution), not found in the corresponding equation
in Schwarzschild’s field. Light rays travel on null geodesics
and thus equation (4.19) yields;

d2u
d�2 � 2u

�
1 + u2� du

d�
+ u

�
1 + u2�2�

�
�

1+
2
c2
f(u; �)

�
=�u2

c2
�
1+u2�2 @f

@u
:

(4.21)

as the photon equation of motion in the vicinity of the ho-
mogeneous rotating mass distribution within a static sphere.
The equation contains additional terms not found in the cor-
responding equation in Schwarzschild’s field. In the limit of
special relativity, some terms in equation (4.21) vanish and
the equation becomes

d2u
d�2 � 2u

�
1 + u2� du

d�
+ u

�
1 + u2�2 = 0 : (4.22)

The solution of the special relativistic equation, (4.22),
can be used to solve the general relativistic equation, (4.21).
This can be done by taking the general solution of equation
(4.21) to be a perturbation of the solution of equation (4.22).
The immediate consequence of this analysis is that it will pro-
duce an expression for the total deflection of light grazing the
massive sphere.
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5 Conclusion

The equations of motion for test particles in the gravitational
field exterior to a homogeneous rotating mass distribution
within a static sphere were obtained as equations (3.2), (3.5),
(3.7) and (3.8). Expressions for the conservation of energy
and angular momentum were obtained as equations (4.8) and
(4.10) respectively. The planetary equation of motion and the
photon equation of motion in the vicinity of the mass where
obtained as equations (4.19) and (4.20). The immediate theo-
retical, physical and astrophysical consequences of the results
obtained in this article are three fold.

Firstly, the planetary equation of motion and the pho-
ton equation have additional rotational terms not found in
Schwarzschild’s gravitational field. These equations are
opened up for further research work and astrophysical inter-
pretations.

Secondly, in approximate gravitational fields, the arbi-
trary function f(r; �) can be conveniently equated to the grav-
itational scalar potential exterior to the body. Thus, in approx-
imate fields, the complete solutions for the derived equations
of motion can be constructed.

Thirdly, Einstein’s field equations constructed using our
metric tensor have only one unknown function, f(r; �). So-
lution to these field equations give explicit expressions for
the function, f(r; �), which can then be interpreted physically
and used in our equations of motion. Thus, our method places
Einstein’s geometrical gravitational field theory on the same
footing with Newton’s dynamical gravitational field theory;
as our method introduces the dependence of the field on one
and only one dependent variable, f(r; �), comparable to one
and only one gravitational scalar potential function in New-
ton’s theory [12, 13].
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3. Schwarzschild K. Über das Gravitationsfeld eines Massen-
punktes nach der Einsteinschen Theorie. Sitzungsberichte der
Königlich Preussischen Akademie der Wissenschaften, 1916,
189–196 (published in English as: Schwarzschild K. On the
gravitational field of a point mass according to Einstein’s the-
ory. Abraham Zelmanov Journal, 2008, v. 1, 10–19).

4. Finster F., et al. Decay of solutions of the wave equation in
the Kerr geometry. Communications in Mathematical Physics,
2006, v. 264, 465–503.

5. Anderson L., et al. Assymptotic silence of generic cosmologi-
cal singularities. Physical Review Letters, 2001, v. 94, 51–101.

6. Czerniawski J. What is wrong with Schwarzschild’s coordi-
nates. Concepts of Physics, 2006, v. 3, 309–320.

7. MacCallum H. Finding and using exact solutions of the Ein-
stein equation. arXiv: 0314.4133.

8. Rendall M. Local and global existence theorems for the Ein-
stein equations. Living Reviews in Relativity, 2005; arXiv:
1092.31.

9. Stephani H., et al. Exact solutions of Einstein’s field equations.
Cambridge Monographs Publ., London, 2003.

10. Friedrich H. On the existence of n-geodesically complete or
future complete solutions of Einstein’s field equations with
smooth asmptotic structure. Communications in Mathematical
Physics, 1986, v. 107, 587–609.

11. Berger B., et al. Oscillatory approach to the singularity in vac-
uum spacetimes with T2 Isometry. Physical Reviews D, 2001,
v. 64, 6–20.

12. Howusu S.X.K. The 210 astrophysical solutions plus 210 cos-
mological solutions of Einstein’s geometrical gravitational field
equations. Jos University Press, Jos, 2007 (also available on
http://www.natphilweb.com).

13. Chifu E.N. and Howusu S.X.K. Gravitational radiation and
propagation field equation exterior to astrophysically real or hy-
pothetical time varying distributions of mass within regions of
spherical geometry. Physics Essays, 2009, v. 22, no. 1, 73–77.

14. Weinberg S. Gravitation and cosmology, J. Wiley & Sons, New
York, 1972.

15. Arfken G. Mathematical methods for physicists. Academic
Press, New York, 1995.

16. Rabounski D. and Borissova L. Reply to the “Certain Concep-
tual Anomalies in Einstein’s Theory of Relativity” and related
questions. Progress in Physics. 2008, v. 2, 166–168.

17. Dunsby P. An introduction to tensors and relativity. Shiva, Cape
Town, 2000.

Chifu E. N., Howusu S. X. K., Lumbi L. W. Relativistic Mechanics in Fields Exterior to Rotating Homogeneous Mass Distributions 23


