Higgsless Glashow's and Quark-Gluon Theories and Gravity without Superstrings

Gunn Alex Quznetsov

Chelyabinsk State University, Chelyabinsk, Ural, Russia E-mail: gunn@mail.ru, quznets@yahoo.com

This is the probabilistic explanation of some laws of physics (gravitation, red shift, electroweak, confinement, asymptotic freedom phenomenons).

1 Introduction

I do not construct any models because Physics does not need any strange hypotheses. Electroweak, quark-gluon, and gravity phenomenons are explained purely logically from spinor expression of probabilities:

Denote:

$$\begin{split} \mathbf{1}_2 := \left[\begin{array}{cc} \mathbf{1} & \mathbf{0} \\ \mathbf{0} & \mathbf{1} \end{array} \right], \mathbf{0}_2 := \left[\begin{array}{cc} \mathbf{0} & \mathbf{0} \\ \mathbf{0} & \mathbf{0} \end{array} \right], \\ \boldsymbol{\beta}^{[0]} := - \left[\begin{array}{cc} \mathbf{1}_2 & \mathbf{0}_2 \\ \mathbf{0}_2 & \mathbf{1}_2 \end{array} \right] = -\mathbf{1}_4, \end{split}$$

the Pauli matrices:

$$\sigma_1 = \left[egin{array}{cc} 0 & 1 \ 1 & 0 \end{array}
ight], \sigma_2 = \left[egin{array}{cc} 0 & -\mathrm{i} \ \mathrm{i} & 0 \end{array}
ight], \sigma_3 = \left[egin{array}{cc} 1 & 0 \ 0 & -1 \end{array}
ight].$$

A set \widetilde{C} of complex $n \times n$ matrices is called a Clifford set of rank n if the following conditions are fulfilled [1]: if $\alpha_k \in \widetilde{C}$ and $\alpha_r \in \widetilde{C}$ then $\alpha_k \alpha_r + \alpha_r \alpha_k = 2\delta_{k,r}$;

if $\alpha_k \alpha_r + \alpha_r \alpha_k = 2\delta_{k,r}$ for all elements α_r of set \widetilde{C} then $\alpha_k \in \widetilde{C}$.

If n = 4 then a Clifford set either contains 3 (a Clifford triplet) or 5 matrices (a Clifford pentad).

Here exist only six Clifford pentads [1]: one which I call *light pentad* β :

• *light pentad* β :

$$\beta^{[1]} := \begin{bmatrix} \sigma_1 & 0_2 \\ 0_2 & -\sigma_1 \end{bmatrix}, \quad \beta^{[2]} := \begin{bmatrix} \sigma_2 & 0_2 \\ 0_2 & -\sigma_2 \end{bmatrix},$$

$$\beta^{[3]} := \begin{bmatrix} \sigma_3 & 0_2 \\ 0_2 & -\sigma_3 \end{bmatrix},$$

$$\gamma^{[0]} := \begin{bmatrix} 0_2 & 1_2 \\ 1_2 & 0_2 \end{bmatrix},$$

$$\beta^{[4]} := i \cdot \begin{bmatrix} 0_2 & 1_2 \\ -1_2 & 0_2 \end{bmatrix};$$
(2)

three *coloured* pentads:

• the red pentad ζ :

$$\zeta^{[1]} := \begin{bmatrix} -\sigma_1 & 0_2 \\ 0_2 & \sigma_1 \end{bmatrix}, \quad \zeta^{[2]} := \begin{bmatrix} \sigma_2 & 0_2 \\ 0_2 & \sigma_2 \end{bmatrix},
\zeta^{[3]} := \begin{bmatrix} -\sigma_3 & 0_2 \\ 0_2 & -\sigma_3 \end{bmatrix},$$

$$\gamma_{\zeta}^{[0]} := \begin{bmatrix} 0_2 & -\sigma_1 \\ -\sigma_1 & 0_2 \end{bmatrix}, \zeta^{[4]} := i \begin{bmatrix} 0_2 & \sigma_1 \\ -\sigma_1 & 0_2 \end{bmatrix}; \quad (4)$$

• the green pentad η:

$$\begin{split} & \boldsymbol{\eta}^{[1]} := \left[\begin{array}{cc} -\sigma_1 & \mathbf{0}_2 \\ \mathbf{0}_2 & -\sigma_1 \end{array} \right], \quad \boldsymbol{\eta}^{[2]} := \left[\begin{array}{cc} -\sigma_2 & \mathbf{0}_2 \\ \mathbf{0}_2 & \sigma_2 \end{array} \right], \\ & \boldsymbol{\eta}^{[3]} := \left[\begin{array}{cc} \sigma_3 & \mathbf{0}_2 \\ \mathbf{0}_2 & \sigma_3 \end{array} \right], \end{split}$$

$$\gamma_{\eta}^{[0]} := \begin{bmatrix} 0_2 & -\sigma_2 \\ -\sigma_2 & 0_2 \end{bmatrix}, \quad \eta^{[4]} := i \begin{bmatrix} 0_2 & \sigma_2 \\ -\sigma_2 & 0_2 \end{bmatrix}; \quad (5)$$

• the blue pentad θ :

$$egin{aligned} heta^{[1]} &:= \left[egin{array}{ccc} \sigma_1 & 0_2 \\ 0_2 & \sigma_1 \end{array}
ight], & heta^{[2]} &:= \left[egin{array}{ccc} -\sigma_2 & 0_2 \\ 0_2 & -\sigma_2 \end{array}
ight], \ heta^{[3]} &:= \left[egin{array}{ccc} -\sigma_3 & 0_2 \\ 0_2 & \sigma_3 \end{array}
ight], \end{aligned}$$

$$\gamma_{\theta}^{[0]} := \begin{bmatrix} 0_2 & -\sigma_3 \\ -\sigma_3 & 0_2 \end{bmatrix}, \quad \theta^{[4]} := i \begin{bmatrix} 0_2 & \sigma_3 \\ -\sigma_3 & 0_2 \end{bmatrix}; \quad (6)$$

two *gustatory* pentads (about these pentads in detail, please, see in [2]):

• the sweet pentad $\underline{\Delta}$:

$$\underline{\Delta}^{[1]} := \begin{bmatrix} 0_2 & -\sigma_1 \\ -\sigma_1 & 0_2 \end{bmatrix}, \quad \underline{\Delta}^{[2]} := \begin{bmatrix} 0_2 & -\sigma_2 \\ -\sigma_2 & 0_2 \end{bmatrix},$$

$$\underline{\Delta}^{[3]} := \begin{bmatrix} 0_2 & -\sigma_3 \\ -\sigma_3 & 0_2 \end{bmatrix},$$

$$\underline{\Delta}^{[0]} := \left[egin{array}{cc} -1_2 & 0_2 \ 0_2 & 1_2 \end{array}
ight], \quad \underline{\Delta}^{[4]} := \mathrm{i} \left[egin{array}{cc} 0_2 & 1_2 \ -1_2 & 0_2 \end{array}
ight].$$

• the bitter pentad $\underline{\Gamma}$:

$$\begin{split} &\underline{\Gamma}^{[1]} := \mathrm{i} \left[\begin{array}{cc} 0_2 & -\sigma_1 \\ \sigma_1 & 0_2 \end{array} \right], \quad \underline{\Gamma}^{[2]} := \mathrm{i} \left[\begin{array}{cc} 0_2 & -\sigma_2 \\ \sigma_2 & 0_2 \end{array} \right], \\ &\underline{\Gamma}^{[3]} := \mathrm{i} \left[\begin{array}{cc} 0_2 & -\sigma_3 \\ \sigma_3 & 0_2 \end{array} \right], \\ &\underline{\Gamma}^{[0]} := \left[\begin{array}{cc} -1_2 & 0_2 \\ 0_2 & 1_2 \end{array} \right], \quad \underline{\Gamma}^{[4]} := \left[\begin{array}{cc} 0_2 & 1_2 \\ 1_2 & 0_2 \end{array} \right]. \end{split}$$

Denote: if A is a 2×2 matrix then

$$A1_4:=\left[egin{array}{cc}A&0_2\0_2&A\end{array}
ight] ext{ and } 1_4A:=\left[egin{array}{cc}A&0_2\0_2&A\end{array}
ight].$$

And if B is a 4×4 matrix then

$$A + B := A1_4 + B, AB := A1_4B$$

etc.

$$egin{aligned} \underline{x} &:= \langle x_0, \mathbf{x} \rangle := \langle x_0, x_1, x_2, x_3
angle \,, \ x_0 &:= \mathrm{c}t, \end{aligned}$$

with c = 299792458.

2 Probabilities' movement equations

Let $\rho_{A}(\underline{x})$ be a probability density [4] of a point event $A(\underline{x})$. And let real functions

$$u_{\mathtt{A},1}\left(\underline{x}
ight)$$
, $u_{\mathtt{A},2}\left(\underline{x}
ight)$, $u_{\mathtt{A},3}\left(\underline{x}
ight)$

satisfy conditions

$$u_{A,1}^2 + u_{A,2}^2 + u_{A,3}^2 < c^2$$

and if $j_{A,s} := \rho_A u_{A,s}$ then

$$ho_\mathtt{A}
ightarrow
ho_\mathtt{A}' = rac{
ho_\mathtt{A} - rac{v}{c^2} j_\mathtt{A,k}}{\sqrt{1 - \left(rac{v}{c}
ight)^2}}, \ j_\mathtt{A,k}
ightarrow j_\mathtt{A,k}' = rac{j_\mathtt{A,k} - v
ho_\mathtt{A}}{\sqrt{1 - \left(rac{v}{c}
ight)^2}}, \ j_\mathtt{A,s}
ightarrow j_\mathtt{A,s}' = j_\mathtt{A,s} ext{ for } s
eq k$$

for $s \in \{1, 2, 3\}$ and $k \in \{1, 2, 3\}$ under the Lorentz transformations:

$$egin{array}{lll} t &
ightarrow & t' = rac{t - rac{v}{c^2} x_k}{\sqrt{1 - rac{v^2}{c^2}}}, \ & x_k &
ightarrow & x_k' = rac{x_k - vt}{\sqrt{1 - rac{v^2}{c^2}}}, \ & x_c &
ightarrow & x' = x_c ext{ if } s
eq k \end{array}$$

In that case $\mathbf{u}_{\mathtt{A}} \langle u_{\mathtt{A},1}, u_{\mathtt{A},2}, u_{\mathtt{A},3} \rangle$ is called a vector of local velocity of an event A probability propagation and

$$\mathbf{j}_{A} \langle j_{A,1}, j_{A,2}, j_{A,3} \rangle$$

is called a current vector of an event A probability.

Let us consider the following set of four real equations with eight real unknowns:

$$b^2$$
 with $b > 0$, α , β , γ , θ , γ , υ , λ :

$$b^{2} = \rho_{A}$$

$$b^{2} \begin{pmatrix} \cos^{2}(\alpha) \sin(2\beta) \cos(\theta - \gamma) \\ -\sin^{2}(\alpha) \sin(2\chi) \cos(\upsilon - \lambda) \end{pmatrix} = -\frac{j_{A,1}}{c}$$

$$b^{2} \begin{pmatrix} \cos^{2}(\alpha) \sin(2\beta) \sin(\theta - \gamma) \\ -\sin^{2}(\alpha) \sin(2\chi) \sin(\upsilon - \lambda) \end{pmatrix} = -\frac{j_{A,2}}{c}$$

$$b^{2} \begin{pmatrix} \cos^{2}(\alpha) \cos(2\beta) \\ -\sin^{2}(\alpha) \cos(2\chi) \end{pmatrix} = -\frac{j_{A,3}}{c}$$

$$(7)$$

This set has solutions for any ρ_A and $j_{A,k}$. For example, one of these solutions is placed in [4].

If

$$\varphi_{1} := b \cdot \exp(i\gamma)\cos(\beta)\cos(\alpha),$$

$$\varphi_{2} := b \cdot \exp(i\theta)\sin(\beta)\cos(\alpha),$$

$$\varphi_{3} := b \cdot \exp(i\lambda)\cos(\chi)\sin(\alpha),$$

$$\varphi_{4} := b \cdot \exp(i\nu)\sin(\chi)\sin(\alpha)$$
(8)

then

$$\rho_{A} = \sum_{s=1}^{4} \varphi_{s}^{*} \varphi_{s},$$

$$\frac{j_{A,r}}{c} = -\sum_{k=1}^{4} \sum_{s=1}^{4} \varphi_{s}^{*} \beta_{s,k}^{[r]} \varphi_{k}$$
(9)

with $r \in \{1, 2, 3\}$. These functions φ_s are called *functions of* event A state.

If $\rho_{\rm A}(\underline{x})=0$ for all \underline{x} such that $|\underline{x}|>(\pi {\rm c/h})$ with $h:=6.6260755\cdot 10^{-34}$ then $\varphi_s(\underline{x})$ are Planck's functions [3]. And if

$$arphi := \left[egin{array}{c} arphi_1 \ arphi_2 \ arphi_3 \ arphi_4 \end{array}
ight]$$

then these functions obey [5] the following equation:

$$\sum_{k=0}^{3} \beta^{[k]} \left(\partial_{k} + i\Theta_{k} + i\Upsilon_{k} \gamma^{[5]} \right) \varphi + \left(\begin{array}{c} +iM_{0} \gamma^{[0]} + iM_{4} \beta^{[4]} - \\ -iM_{\zeta,0} \gamma_{\zeta}^{[0]} + iM_{\zeta,4} \zeta^{[4]} - \\ -iM_{\eta,0} \gamma_{\eta}^{[0]} - iM_{\eta,4} \eta^{[4]} + \\ +iM_{\theta,0} \gamma_{\theta}^{[0]} + iM_{\theta,4} \theta^{[4]} \end{array} \right) \varphi = 0$$
(10)

with real $\Theta_k(\underline{x})$, $\Upsilon_k(\underline{x})$, $M_0(\underline{x})$, $M_4(\underline{x})$, $M_{\zeta,0}(\underline{x})$, $M_{\zeta,4}(\underline{x})$, $M_{\eta,0}(\underline{x})$, $M_{\eta,4}(\underline{x})$, $M_{\theta,0}(\underline{x})$, $M_{\theta,4}(\underline{x})$ and with

$$\gamma^{[5]} := \begin{bmatrix} 1_2 & 0_2 \\ 0_2 & -1_2 \end{bmatrix}. \tag{11}$$

2.1 Lepton movement equation

If $M_{\zeta,0}\left(\underline{x}\right)=0$, $M_{\zeta,4}\left(\underline{x}\right)=0$, $M_{\eta,0}\left(\underline{x}\right)=0$, $M_{\eta,4}\left(\underline{x}\right)=0$, $M_{\theta,0}\left(\underline{x}\right)=0$, $M_{\theta,4}\left(\underline{x}\right)=0$ then the following equation is deduced from (10):

$$\begin{pmatrix} \beta^{[0]} \left(\frac{1}{c} i \partial_t - \Theta_0 - \Upsilon_0 \gamma^{[5]} \right) \\ + \sum_{\alpha=1}^3 \beta^{[\alpha]} \left(i \partial_\alpha - \Theta_\alpha - \Upsilon_\alpha \gamma^{[5]} \right) \\ - M_0 \gamma^{[0]} - M_4 \beta^{[4]} \end{pmatrix} \widetilde{\varphi} = 0$$
 (12)

I call it *lepton movement equation* [6]. If similar to (9):

$$j_{\mathcal{A},5} := -\mathbf{c} \cdot \boldsymbol{\varphi}^{\dagger} \boldsymbol{\gamma}^{[0]} \boldsymbol{\varphi} \text{ and } j_{\mathcal{A},4} := -\mathbf{c} \cdot \boldsymbol{\varphi}^{\dagger} \boldsymbol{\beta}^{[4]} \boldsymbol{\varphi}$$

and:

$$u_{A,4} := j_{A,4}/\rho_A \text{ and } u_{A,5} := j_{A,5}/\rho_A$$
 (13)

then from (8):

$$\begin{split} &-\frac{u_{\mathcal{A},5}}{\mathsf{c}} = \sin 2\alpha \left(\begin{array}{c} \sin\beta\sin\chi\cos\left(-\theta+v\right) \\ &+\cos\beta\cos\chi\cos\left(\gamma-\lambda\right) \end{array} \right), \\ &-\frac{u_{\mathcal{A},4}}{\mathsf{c}} = \sin 2\alpha \left(\begin{array}{c} -\sin\beta\sin\chi\sin\left(-\theta+v\right) \\ &+\cos\beta\cos\chi\sin\left(\gamma-\lambda\right) \end{array} \right). \end{split}$$

Hence from (7):

$$u_{\mathcal{A},1}^2 + u_{\mathcal{A},2}^2 + u_{\mathcal{A},3}^2 + u_{\mathcal{A},4}^2 + u_{\mathcal{A},5}^2 = c^2.$$

Thus only all five elements of a Clifford pentad provide an entire set of speed components and, for completeness, yet two "space" coordinates x_5 and x_4 should be added to our three x_1, x_2, x_3 . These additional coordinates can be selected so that

$$-\frac{\pi \mathsf{c}}{\mathsf{h}} \leqslant x_5 \leqslant \frac{\pi \mathsf{c}}{\mathsf{h}} \,, \quad -\frac{\pi \mathsf{c}}{\mathsf{h}} \leqslant x_4 \leqslant \frac{\pi \mathsf{c}}{\mathsf{h}} \,.$$

Coordinates x_4 and x_5 are not coordinates of any events. Hence, our devices do not detect them as actual space coordinates.

Let us denote:

$$\begin{split} \widetilde{\varphi}\left(t,x_{1},x_{2},x_{3},x_{5},x_{4}\right) &:= \varphi\left(t,x_{1},x_{2},x_{3}\right) \times \\ \times \left(\exp\left(\mathrm{i}\left(x_{5}M_{0}\left(t,x_{1},x_{2},x_{3}\right) + x_{4}M_{4}\left(t,x_{1},x_{2},x_{3}\right)\right)\right)\right). \end{split}$$

In this case a lepton movement equation (12) shape is the following:

$$\left(\sum_{s=0}^{3} \beta^{[s]} \left(\mathrm{i} \partial_{s} - \Theta_{s} - \Upsilon_{s} \gamma^{[5]} \right) - \gamma^{[0]} \mathrm{i} \partial_{5} - \beta^{[4]} \mathrm{i} \partial_{4} \right) \widetilde{\varphi} = 0$$

This equation can be transformated into the following form [7]:

$$\left(\begin{array}{c} \sum_{s=0}^{3} \beta^{[s]} \left(i\partial_{s} + F_{s} + 0.5g_{1}YB_{s} \right) \\ -\gamma^{[0]} i\partial_{5} - \beta^{[4]} i\partial_{4} \end{array}\right) \widetilde{\varphi} = 0$$
(14)

with real F_s , B_s , a real positive constant g_1 , and with *charge matrix* Y:

$$Y := - \begin{bmatrix} 1_2 & 0_2 \\ 0_2 & 2 \cdot 1_2 \end{bmatrix}. \tag{15}$$

If $\chi(t, x_1, x_2, x_3)$ is a real function and:

$$\widetilde{U}\left(\chi\right):=\left[\begin{array}{cc} \exp\left(\mathrm{i}\frac{\chi}{2}\right)\mathbf{1}_{2} & \mathbf{0}_{2} \\ \mathbf{0}_{2} & \exp\left(\mathrm{i}\chi\right)\mathbf{1}_{2} \end{array}\right]. \tag{16}$$

then equation (14) is invariant under the following transformations [8]:

$$x_{4} \rightarrow x'_{4} := x_{4} \cos \frac{\chi}{2} - x_{5} \sin \frac{\chi}{2};$$

$$x_{5} \rightarrow x'_{5} := x_{5} \cos \frac{\chi}{2} + x_{4} \sin \frac{\chi}{2};$$

$$x_{\mu} \rightarrow x'_{\mu} := x_{\mu} \text{ for } \mu \in \{0, 1, 2, 3\};$$

$$\tilde{\varphi} \rightarrow \tilde{\varphi}' := \tilde{U}\tilde{\varphi},$$

$$B_{\mu} \rightarrow B'_{\mu} := B_{\mu} - \frac{1}{g_{1}} \partial_{\mu} \chi,$$

$$F'_{\mu} \rightarrow F'_{\mu} := \tilde{U}F_{s}\tilde{U}^{\dagger}.$$

$$(17)$$

Therefore, B_{μ} are similar to components of the Standard Model gauge field B.

Further $\Im_{\mathbf{J}}$ is the space spanned by the following basis [9]:

$$J :=$$

$$\left\langle \begin{array}{c} \frac{\mathrm{h}}{2\pi\mathrm{c}} \exp\left(-\mathrm{i}\frac{\mathrm{h}}{\mathrm{c}}\left(s_{0}x_{4}\right)\right) \epsilon_{k}, \dots \\ \frac{\mathrm{h}}{2\pi\mathrm{c}} \exp\left(-\mathrm{i}\frac{\mathrm{h}}{\mathrm{c}}\left(n_{0}x_{5}\right)\right) \epsilon_{r}, \dots \end{array} \right\rangle$$
(18)

with some integer numbers s_0 and n_0 and with

$$\epsilon_1 := \left[egin{array}{c} 1 \ 0 \ 0 \ 0 \end{array}
ight], \; \epsilon_2 := \left[egin{array}{c} 0 \ 1 \ 0 \ 0 \end{array}
ight], \; \epsilon_3 := \left[egin{array}{c} 0 \ 0 \ 1 \ 0 \end{array}
ight], \; \epsilon_4 := \left[egin{array}{c} 0 \ 0 \ 0 \ 1 \end{array}
ight].$$

Further in this subsection U is any linear transformation of space $\mathfrak{F}_{\mathbf{J}}$ so that for every $\widetilde{\varphi}$: if $\widetilde{\varphi} \in \mathfrak{F}_{\mathbf{J}}$ then:

$$\int_{-\frac{\pi c}{h}}^{\frac{\pi c}{h}} dx_4 \int_{h}^{\frac{\pi c}{h}} dx_5 \cdot (U\widetilde{\varphi})^{\dagger} (U\widetilde{\varphi}) = \rho_{A},$$

$$\int_{-\frac{\pi c}{h}}^{\frac{\pi c}{h}} dx_4 \int_{h}^{\frac{\pi c}{h}} dx_5 \cdot (U\widetilde{\varphi})^{\dagger} \beta^{[s]} (U\widetilde{\varphi}) = -\frac{j_{A,s}}{c}$$
(19)

for $s \in \{1, 2, 3\}$.

Matrix *U* is factorized as the following:

$$U = \exp(i\varsigma) \, \widetilde{U} U^{(-)} U^{(+)}$$

with real ς , with \widetilde{U} from (16), and with

$$U^{(+)} := \begin{bmatrix} 1_2 & 0_2 & 0_2 & 0_2 \\ 0_2 & (u+iv) \, 1_2 & 0_2 & (k+is) \, 1_2 \\ 0_2 & 0_2 & 1_2 & 0_2 \\ 0_2 & (-k+is) \, 1_2 & 0_2 & (u-iv) \, 1_2 \end{bmatrix}$$
(20)

and

$$U^{(-)} := \begin{bmatrix} (a+ib) & 1_2 & 0_2 & (c+iq) & 1_2 & 0_2 \\ 0_2 & 1_2 & 0_2 & 0_2 \\ (-c+iq) & 1_2 & 0_2 & (a-ib) & 1_2 & 0_2 \\ 0_2 & 0_2 & 0_2 & 1_2 \end{bmatrix}$$
(21)

with real a, b, c, q, u, v, k, s.

Matrix $U^{(+)}$ refers to antiparticles (About antiparticles in detail, please, see [10] and about neutrinos - [11]). And transformation $U^{(-)}$ reduces equation (14) to the following shape:

$$\begin{pmatrix}
\sum_{\mu=0}^{3} \beta^{[\mu]} i \begin{pmatrix} \partial_{\mu} - i0.5g_{1}B_{\mu}Y \\ -i\frac{1}{2}g_{2}W_{\mu} - iF_{\mu} \end{pmatrix} \\
+ \gamma^{[0]} i\partial_{5} + \beta^{[4]} i\partial_{4}
\end{pmatrix} \widetilde{\varphi} = 0.$$
(22)

with a real positive constant g_2 and with

$$W_{\mu} :=$$

$$\begin{bmatrix} W_{0,\mu} 1_2 & 0_2 & (W_{1,\mu} - \mathrm{i} W_{2,\mu}) \ 1_2 & 0_2 \\ 0_2 & 0_2 & 0_2 & 0_2 \\ (W_{1,\mu} + \mathrm{i} W_{2,\mu}) \ 1_2 & 0_2 & -W_{0,\mu} 1_2 & 0_2 \\ 0_2 & 0_2 & 0_2 & 0_2 \end{bmatrix}$$

with real $W_{0,\mu}$, $W_{1,\mu}$ and $W_{2,\mu}$

Equation (22) is invariant under the following transformation:

$$egin{aligned} arphi &
ightarrow arphi' := U arphi, \ x_4
ightarrow x_4' := \left(\ell_\circ + \ell_st
ight) a x_4 + \left(\ell_\circ - \ell_st
ight) \sqrt{1 - a^2} x_5, \ x_5
ightarrow x_5' := \left(\ell_\circ + \ell_st
ight) a x_5 - \left(\ell_\circ - \ell_st
ight) \sqrt{1 - a^2} x_4, \ x_\mu
ightarrow x_\mu' := x_\mu, ext{ for } \mu \in \{0, 1, 2, 3\}, \ B_\mu
ightarrow B_\mu' := B_\mu, \ W_\mu
ightarrow W_\mu' := U W_\mu U^\dagger - rac{2\mathrm{i}}{g_2} \left(\partial_\mu U \right) U^\dagger \end{aligned}$$

with

Hence W_{μ} behaves the same way as components of the weak field W of Standard Model.

Field $W_{0,\mu}$ obeys the following equation [12]:

$$\left(-\frac{1}{c^2}\,\partial_t^2 + \sum_{s=1}^3 \partial_s^2\right) W_{0,\mu} =$$

$$= g_2^2 \left(\widetilde{W}_0^2 - \widetilde{W}_1^2 - \widetilde{W}_2^2 - \widetilde{W}_3^2\right) W_{0,\mu} + \Lambda \quad (23)$$

with

$$\widetilde{W}_
u := \left[egin{array}{c} W_{0,
u} \ W_{1,
u} \ W_{2,
u} \end{array}
ight]$$

and Λ is the action of other components of field W on $W_{0,\mu}$. Equation (23) looks like the Klein-Gordon equation of field $W_{0,\mu}$ with mass

$$m := \frac{\mathrm{h}}{\mathrm{c}} g_2 \sqrt{\widetilde{W}_0^2 - \sum_{s=1}^3 \widetilde{W}_s^2}$$
 (24)

and with additional terms of the $W_{0,\mu}$ interactions with other components of \widetilde{W} . Fields $W_{1,\mu}$ and $W_{2,\mu}$ have similar equations.

The "mass" (24) is invariant under the Lorentz transformations

$$\widetilde{W}_0' := rac{\widetilde{W}_0 - rac{v}{\mathrm{c}}\,\widetilde{W}_k}{\sqrt{1-\left(rac{v}{\mathrm{c}}
ight)^2}}\,, \quad \widetilde{W}_k' := rac{\widetilde{W}_k - rac{v}{\mathrm{c}}\,\widetilde{W}_0}{\sqrt{1-\left(rac{v}{\mathrm{c}}
ight)^2}}\,,$$

$$\widetilde{W}'_s := \widetilde{W}_s$$
, if $s \neq k$,

is invariant under the turns of the $\left<\widetilde{W}_1,\widetilde{W}_2,\widetilde{W}_3\right>$ space

$$\left\{ \begin{array}{l} \widetilde{W}_r' := \widetilde{W}_r \cos \lambda - \widetilde{W}_s \sin \lambda \\ \widetilde{W}_s' := \widetilde{W}_r \sin \lambda + \widetilde{W}_s \cos \lambda \end{array} \right.$$

and invariant under a global weak isospin transformation $U^{(-)}$:

$$W_{\nu} \to W_{\nu}' := U^{(-)}W_{\nu}U^{(-)\dagger},$$

but is not invariant for a local transformation $U^{(-)}$. But local transformations for $W_{0,\mu}$, $W_{1,\mu}$ and $W_{2,\mu}$ are insignificant since all three particles are very short-lived.

The form (24) can vary in space, but locally acts like mass - i.e. it does not allow particles of this field to behave the same way as massless ones.

$$Z_{\mu}:=\left(W_{0,\mu}\coslpha-B_{\mu}\sinlpha
ight), \ A_{\mu}:=\left(B_{\mu}\coslpha+W_{0,\mu}\sinlpha
ight) \ lpha:=rctanrac{g_{1}}{2}$$

then masses of Z and W fulfill the following ratio:

$$m_Z = rac{m_W}{\coslpha}\,.$$

If

$$\mathsf{e} := rac{g_1 g_2}{\sqrt{g_1^2 + g_2^2}}\,,$$

and

$$egin{aligned} \widehat{Z}_{\mu} := Z_{\mu} rac{1}{\sqrt{g_2^2 + g_1^2}} \, imes \ & imes \left[egin{array}{cccc} \left(g_2^2 + g_1^2
ight) 1_2 & 0_2 & 0_2 & 0_2 \ 0_2 & 2g_1^2 1_2 & 0_2 & 0_2 \ 0_2 & 0_2 & \left(g_2^2 - g_1^2
ight) 1_2 & 0_2 \ 0_2 & 0_2 & 0_2 & 2g_1^2 1_2 \end{array}
ight], \end{aligned}$$

$$\widehat{W}_{\mu} := g_2 \times$$

then equation (22) has the following form:

$$\left(\begin{array}{c}
\sum_{\mu=0}^{3} \beta^{[\mu]} i \begin{pmatrix} \partial_{\mu} + ie \widehat{A}_{\mu} \\
-i0.5 \left(\widehat{Z}_{\mu} + \widehat{W}_{\mu}\right) \end{pmatrix} \\
+ \gamma^{[0]} i \partial_{5} + \beta^{[4]} i \partial_{4}
\end{array}\right) \widetilde{\varphi} = 0. \quad (25)$$

Here [13] the vector field A_{μ} is similar to the electromagnetic potential and $\left(\widehat{Z}_{\mu}+\widehat{W}_{\mu}\right)$ is similar to the weak potential.

Colored equations 2.2

The following part of (10) I call colored movement equation [3]:

$$\begin{pmatrix} \sum_{k=0}^{3} \beta^{[k]} \left(-i\partial_{k} + \Theta_{k} + \Upsilon_{k} \gamma^{[5]} \right) - \\ -M_{\zeta,0} \gamma_{\zeta}^{[0]} + M_{\zeta,4} \zeta^{[4]} + \\ -M_{\eta,0} \gamma_{\eta}^{[0]} - M_{\eta,4} \eta^{[4]} + \\ +M_{\theta,0} \gamma_{\theta}^{[0]} + M_{\theta,4} \theta^{[4]} \end{pmatrix} \varphi = 0. \quad (26)$$

Here (4), (5), (6):

$$\gamma_{\zeta}^{[0]} = - \begin{bmatrix} 0 & 0 & 0 & 1 \\ 0 & 0 & 1 & 0 \\ 0 & 1 & 0 & 0 \\ 1 & 0 & 0 & 0 \end{bmatrix}, \quad \zeta^{[4]} = \begin{bmatrix} 0 & 0 & 0 & \mathrm{i} & 0 \\ 0 & 0 & \mathrm{i} & 0 \\ 0 & -\mathrm{i} & 0 & 0 \\ -\mathrm{i} & 0 & 0 & 0 \end{bmatrix} \qquad \qquad U_{2,3}\left(\alpha\right) := \begin{bmatrix} \cos \alpha & \mathrm{i} \sin \alpha & 0 & 0 \\ \mathrm{i} \sin \alpha & \cos \alpha & 0 & 0 \\ 0 & 0 & \cos \alpha & \mathrm{i} \sin \alpha \\ 0 & 0 & \mathrm{i} \sin \alpha & \cos \alpha \end{bmatrix}$$

are mass elements of red pentad;

$$\gamma_{\eta}^{[0]} = \left[egin{array}{cccc} 0 & 0 & 0 & \mathrm{i} \\ 0 & 0 & -\mathrm{i} & 0 \\ 0 & \mathrm{i} & 0 & 0 \\ -\mathrm{i} & 0 & 0 & 0 \end{array}
ight], \;\; \eta^{[4]} = \left[egin{array}{cccc} 0 & 0 & 0 & 1 \\ 0 & 0 & -1 & 0 \\ 0 & -1 & 0 & 0 \\ 1 & 0 & 0 & 0 \end{array}
ight]$$

are mass elements of green pentad;

$$\gamma_{ heta}^{[0]} = \left[egin{array}{cccc} 0 & 0 & -1 & 0 \ 0 & 0 & 0 & 1 \ -1 & 0 & 0 & 0 \ 0 & 1 & 0 & 0 \end{array}
ight], \;\; heta^{[4]} = \left[egin{array}{cccc} 0 & 0 & -\mathrm{i} & 0 \ 0 & 0 & 0 & \mathrm{i} \ -\mathrm{i} & 0 & 0 & 0 \ 0 & \mathrm{i} & 0 & 0 \end{array}
ight]$$

are mass elements of blue pentad.

I call:

- $M_{\zeta,0}$, $M_{\zeta,4}$ red lower and upper mass members;
- $M_{\eta,0}$, $M_{\eta,4}$ green lower and upper mass members;
- $M_{\theta,0}$, $M_{\theta,4}$ blue lower and upper mass members.

The mass members of this equation form the following

$$\widehat{M} := egin{pmatrix} -M_{\zeta,0} \gamma_{\zeta}^{[0]} + M_{\zeta,4} \zeta^{[4]} - \ -M_{\eta,0} \gamma_{ heta}^{[0]} - M_{\eta,4} \eta^{[4]} + \ +M_{ heta,0} \gamma_{ heta}^{[0]} + M_{ heta,4} heta^{[4]} \end{pmatrix} = \ = egin{bmatrix} 0 & 0 & -M_{ heta,0} & M_{\zeta,\eta,0} & \ 0 & 0 & M_{\zeta,\eta,0}^* & M_{ heta,0} & \ -M_{ heta,0} & M_{\zeta,\eta,0} & 0 & 0 & \ M_{\zeta,\eta,0}^* & M_{ heta,0} & 0 & 0 & \ \end{bmatrix} + \ + i egin{bmatrix} 0 & 0 & -M_{ heta,4} & M_{ heta,4} & 0 & 0 & \ -M_{ heta,4} & -M_{\zeta,\eta,4}^* & 0 & 0 & \ -M_{ heta,4} & -M_{\zeta,\eta,4}^* & 0 & 0 & \ -M_{\zeta,\eta,4} & M_{\theta,4} & 0 & 0 & \ \end{bmatrix}$$

with $M_{\zeta,\eta,0} := M_{\zeta,0} - \mathrm{i} M_{\eta,0}$ and $M_{\zeta,\eta,4} := M_{\zeta,4} - \mathrm{i} M_{\eta,4}$. Elements of these matrices can be turned by formula of shape [14]:

Let Colored equations

the following part of (10) I call colored movement equations

the following part of (10) I call colored movement equations

$$\begin{pmatrix}
\sum_{k=0}^{3} \beta^{[k]} \left(-i\partial_{k} + \Theta_{k} + \Upsilon_{k} \gamma^{[5]}\right) - \\
-M_{\zeta,0} \gamma_{\zeta}^{[0]} + M_{\zeta,4} \zeta^{[4]} + \\
-M_{\eta,0} \gamma_{\eta}^{[0]} - M_{\eta,4} \eta^{[4]} + \\
+M_{\theta,0} \gamma_{\theta}^{[0]} + M_{\theta,4} \theta^{[4]}
\end{pmatrix}$$

$$\varphi = 0. \quad (26)$$

$$\begin{pmatrix}
\cos \frac{\theta}{2} & i \sin \frac{\theta}{2} \\
i \sin \frac{\theta}{2} & \cos \frac{\theta}{2}
\end{pmatrix}$$

$$\times \begin{pmatrix}
\cos \frac{\theta}{2} & -i \sin \frac{\theta}{2} \\
-i \sin \frac{\theta}{2} & \cos \frac{\theta}{2}
\end{pmatrix} = \begin{pmatrix}
\cos \theta - Y \sin \theta & X - i \begin{pmatrix} Y \cos \theta \\ + Z \sin \theta \end{pmatrix} \\
X + i \begin{pmatrix} Y \cos \theta \\ + Z \sin \theta \end{pmatrix}$$
Here (4), (5), (6):

$$U_{2,3}\left(lpha
ight) := egin{bmatrix} \coslpha & \mathrm{i}\sinlpha & 0 & 0 \ \mathrm{i}\sinlpha & \coslpha & 0 & 0 \ 0 & 0 & \coslpha & \mathrm{i}\sinlpha \ 0 & 0 & \mathrm{i}\sinlpha & \coslpha \end{bmatrix}$$

and

$$\widehat{M}' := \begin{pmatrix} -M'_{\zeta,0} \gamma_{\zeta}^{[0]} + M'_{\zeta,4} \zeta^{[4]} - \\ -M'_{\eta,0} \gamma_{\eta}^{[0]} - M'_{\eta,4} \eta^{[4]} + \\ +M'_{\theta,0} \gamma_{\theta}^{[0]} + M'_{\theta,4} \theta^{[4]} \end{pmatrix} := U_{2,3}^{-1} \left(\alpha\right) \widehat{M} U_{2,3} \left(\alpha\right)$$

then

$$\begin{split} &M'_{\zeta,0} = M_{\zeta,0}\,, \ &M'_{\eta,0} = M_{\eta,0}\cos2\alpha + M_{\theta,0}\sin2\alpha\,, \ &M'_{\theta,0} = M_{\theta,0}\cos2\alpha - M_{\eta,0}\sin2\alpha\,, \ &M'_{\zeta,4} = M_{\zeta,4}\,, \ &M'_{\eta,4} = M_{\eta,4}\cos2\alpha + M_{\theta,4}\sin2\alpha\,, \ &M'_{\theta,4} = M_{\theta,4}\cos2\alpha - M_{\eta,4}\sin2\alpha\,. \end{split}$$

Therefore, matrix $U_{2,3}(\alpha)$ makes an oscillation between green and blue colours.

If α is an arbitrary real function of time-space variables $(\alpha = \alpha(t, x_1, x_2, x_3))$ then the following expression is received from equation (10) under transformation $U_{2,3}(\alpha)$ [3]:

$$\left(\frac{1}{c} \partial_t + U_{2,3}^{-1} (\alpha) \frac{1}{c} \partial_t U_{2,3} (\alpha) + i\Theta_0 + i\Upsilon_0 \gamma^{[5]} \right) \varphi =$$

$$= \begin{pmatrix} \beta^{[1]} \begin{pmatrix} \partial_1 + U_{2,3}^{-1} (\alpha) \partial_1 U_{2,3} (\alpha) \\ + i\Theta_1 + i\Upsilon_1 \gamma^{[5]} \end{pmatrix} \\ + \beta^{[2]} \begin{pmatrix} \partial_2' + U_{2,3}^{-1} (\alpha) \partial_2' U_{2,3} (\alpha) \\ + i\Theta_2' + i\Upsilon_2' \gamma^{[5]} \end{pmatrix} \\ + \beta^{[3]} \begin{pmatrix} \partial_3' + U_{2,3}^{-1} (\alpha) \partial_3' U_{2,3} (\alpha) \\ + i\Theta_3' + i\Upsilon_3' \gamma^{[5]} \end{pmatrix} \\ + i M_0 \gamma^{[0]} + i M_4 \beta^{[4]} + \widehat{M'} \end{pmatrix}$$

Here

$$egin{aligned} \Theta_2' &:= \Theta_2\cos2lpha - \Theta_3\sin2lpha\,, \ \Theta_3' &:= \Theta_2\sin2lpha + \Theta_3\cos2lpha\,, \ \Upsilon_2' &:= \Upsilon_2\cos2lpha - \Upsilon_3\sin2lpha\,, \ \Upsilon_3' &:= \Upsilon_3\cos2lpha + \Upsilon_2\sin2lpha\,, \end{aligned}$$

and x_2' and x_3' are elements of an another coordinate system so that:

$$\begin{split} \frac{\partial x_2}{\partial x_2'} &= \cos 2\alpha \,, \\ \frac{\partial x_3}{\partial x_2'} &= -\sin 2\alpha \,, \\ \frac{\partial x_2}{\partial x_3'} &= \sin 2\alpha \,, \\ \frac{\partial x_3}{\partial x_3'} &= \cos 2\alpha \,, \\ \frac{\partial x_3}{\partial x_2'} &= \frac{\partial x_1}{\partial x_2'} &= \frac{\partial x_0}{\partial x_3'} &= \frac{\partial x_1}{\partial x_3'} &= 0 \,. \end{split}$$

Therefore, the oscillation between blue and green colours curves the space in the x_2 , x_3 directions.

Similarly, matrix

$$U_{1,3}\left(artheta
ight) := \left[egin{array}{cccc} \cosartheta & \sinartheta & 0 & 0 \ -\sinartheta & \cosartheta & 0 & 0 \ 0 & 0 & \cosartheta & \sinartheta \ 0 & 0 & -\sinartheta & \cosartheta \end{array}
ight]$$

with an arbitrary real function $\vartheta(t, x_1, x_2, x_3)$ describes the oscillation between blue and red colours which curves the space in the x_1, x_3 directions. And matrix

$$U_{1,2}\left(arsigma
ight) := \left[egin{array}{cccc} e^{-\mathrm{i}arsigma} & 0 & 0 & 0 \ 0 & e^{\mathrm{i}arsigma} & 0 & 0 \ 0 & 0 & e^{-\mathrm{i}arsigma} & 0 \ 0 & 0 & 0 & e^{\mathrm{i}arsigma} \end{array}
ight]$$

with an arbitrary real function $\varsigma(t, x_1, x_2, x_3)$ describes the oscillation between green and red colours which curves the space in the x_1, x_2 directions.

Now, let

$$U_{0,1}\left(\sigma
ight) := \left[egin{array}{cccc} \cosh\sigma & -\sinh\sigma & 0 & 0 \ -\sinh\sigma & \cosh\sigma & 0 & 0 \ 0 & 0 & \cosh\sigma & \sinh\sigma \ 0 & 0 & \sinh\sigma & \cosh\sigma \end{array}
ight].$$

and

$$\widehat{M}'' := \begin{pmatrix} -M_{\zeta,0}'' \gamma_{\zeta}^{[0]} + M_{\zeta,4}'' \zeta^{[4]} - \\ -M_{\eta,0}'' \gamma_{\eta}^{[0]} - M_{\eta,4}'' \eta^{[4]} + \\ +M_{\theta,0}'' \gamma_{\theta}^{[0]} + M_{\theta,4}'' \theta^{[4]} \end{pmatrix} := U_{0,1}^{-1} \left(\sigma\right) \widehat{M} U_{0,1} \left(\sigma\right)$$

then:

Therefore, matrix $U_{0,1}(\sigma)$ makes an oscillation between green and blue colours with an oscillation between upper and lower mass members.

If σ is an arbitrary real function of time-space variables $(\sigma = \sigma(t, x_1, x_2, x_3))$ then the following expression is received from equation (10) under transformation $U_{0,1}(\sigma)$ [3]:

$$\begin{pmatrix} \beta^{[0]} \begin{pmatrix} \frac{1}{c} \partial_t' + U_{0,1}^{-1}(\sigma) \frac{1}{c} \partial_t' U_{0,1}(\sigma) \\ + i\Theta_0'' + i\Upsilon_0'' \gamma^{[5]} \end{pmatrix} \\ + \beta^{[1]} \begin{pmatrix} \partial_1' + U_{0,1}^{-1}(\sigma) \partial_1' U_{0,1}(\sigma) \\ + i\Theta_1'' + i\Upsilon_1'' \gamma^{[5]} \end{pmatrix} \\ + \beta^{[2]} \begin{pmatrix} \partial_2 + U_{0,1}^{-1}(\sigma) \partial_2 U_{0,1}(\sigma) \\ + i\Theta_2 + i\Upsilon_2 \gamma^{[5]} \end{pmatrix} \\ + \beta^{[3]} \begin{pmatrix} \partial_3 + U_{0,1}^{-1}(\sigma) \partial_3 U_{0,1}(\sigma) \\ + i\Theta_3 + i\Upsilon_3 \gamma^{[5]} \end{pmatrix} \\ + iM_0 \gamma^{[0]} + iM_4 \beta^{[4]} + \widehat{M}'' \end{pmatrix}$$

with

$$egin{aligned} \Theta_0'' &:= \Theta_0 \cosh 2\sigma + \Theta_1 \sinh 2\sigma \,, \ \Theta_1'' &:= \Theta_1 \cosh 2\sigma + \Theta_0 \sinh 2\sigma \,, \ \Upsilon_0'' &:= \Upsilon_0 \cosh 2\sigma + \Upsilon_1 \sinh 2\sigma \,, \ \Upsilon_1'' &:= \Upsilon_1 \cosh 2\sigma + \Upsilon_0 \sinh 2\sigma \end{aligned}$$

and t' and x'_1 are elements of an another coordinate system so that:

$$\frac{\partial x_1}{\partial x_1'} = \cosh 2\sigma$$

$$\frac{\partial t}{\partial x_1'} = \frac{1}{c} \sinh 2\sigma$$

$$\frac{\partial x_1}{\partial t'} = \cosh 2\sigma$$

$$\frac{\partial t}{\partial t'} = \cosh 2\sigma$$

$$\frac{\partial t}{\partial t'} = \cosh 2\sigma$$

$$\frac{\partial x_2}{\partial t'} = \frac{\partial x_3}{\partial t'} = \frac{\partial x_2}{\partial x_1'} = \frac{\partial x_3}{\partial x_1'} = 0$$
(27)

Therefore, the oscillation between blue and green colours with the oscillation between upper and lower mass members curves the space in the t, x_1 directions.

Similarly, matrix

$$U_{0,2}\left(\phi
ight) := \left[egin{array}{cccc} \cosh\phi & i\sinh\phi & 0 & 0 \ -i\sinh\phi & \cosh\phi & 0 & 0 \ 0 & 0& \cosh\phi & -i\sinh\phi \ 0 & 0& i\sinh\phi & \cosh\phi \end{array}
ight]$$

with an arbitrary real function $\phi(t, x_1, x_2, x_3)$ describes the oscillation between blue and red colours with the oscillation between upper and lower mass members curves the space in

the t, x_2 directions. And matrix

$$U_{0,3}\left(\iota
ight) := \left[egin{array}{cccc} e^{\iota} & 0 & 0 & 0 \ 0 & e^{-\iota} & 0 & 0 \ 0 & 0 & e^{-\iota} & 0 \ 0 & 0 & 0 & e^{\iota} \end{array}
ight]$$

with an arbitrary real function $\iota\left(t,x_{1},x_{2},x_{3}\right)$ describes the oscillation between green and red colours with the oscillation between upper and lower mass members curves the space in the t,x_{3} directions.

From (27):

$$rac{\partial x_1}{\partial t'} = \cosh 2\sigma \, ,$$
 $rac{\partial t}{\partial t'} = \cosh 2\sigma \, .$

Because

$$\sinh 2\sigma = rac{v}{\sqrt{1 - rac{v^2}{c^2}}},$$
 $\cosh 2\sigma = rac{1}{\sqrt{1 - rac{v^2}{c^2}}}$

where v is a velocity of system $\{t', x_1'\}$ as respects system $\{t, x_1\}$ then

$$v = \tanh 2\sigma$$
.

Let

$$2\sigma:=\omega\left(x_{1}
ight)rac{t}{x_{1}}$$

with

$$\omega\left(x_{1}
ight):=rac{\lambda}{\left|x_{1}
ight|}$$
 ,

where λ is a real constant bearing positive numerical value.

In that case

$$v\left(t,x_{1}
ight)= anh\left(\omega\left(x_{1}
ight)rac{t}{x_{1}}
ight)$$

and if g is an acceleration of system $\{t', x_1'\}$ as respects system $\{t, x_1\}$ then

$$g\left(t,x_{1}
ight)=rac{\partial v}{\partial t}=rac{\omega\left(x_{1}
ight)}{x_{1}\cosh^{2}\left(\omega\left(x_{1}
ight)rac{t}{x_{1}}
ight)}\,.$$

Figure 1 shows the dependency of a system $\{t', x_1'\}$ velocity $v(t, x_1)$ on x_1 in system $\{t, x_1\}$.

This velocity in point A is not equal to one in point B. Hence, an oscillator, placed in B has a nonzero velocity in respects an observer placed in point A. Therefore, from the Lorentz transformations this oscillator frequency for observer placed in point A is less than own frequency of this oscillator (red shift).

Figure 2 shows the dependency of a system $\{t', x_1'\}$ acceleration $g(t, x_1)$ on x_1 in system $\{t, x_1\}$.

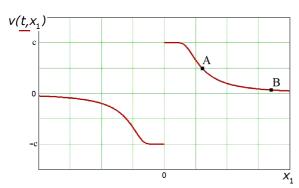


Fig. 1: Dependency of $v(t, x_1)$ from x_1 [3].

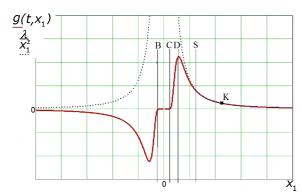


Fig. 2: Dependency of $g(t, x_1)$ from x_1 [3].

If an object immovable in system $\{t, x_1\}$ is placed in point K then in system $\{t', x_1'\}$ this object must move to the left with acceleration g and $g \simeq \lambda/x_1^2$.

I call:

- interval from S to ∞ : Newton Gravity Zone,
- interval from B to C: Asymptotic Freedom Zone,
- and interval from C to D: Confinement Force Zone.

Now let

$$ilde{ ilde{U}}\left(\chi
ight) := \left[egin{array}{cccc} e^{i\chi} & 0 & 0 & 0 \ 0 & e^{i\chi} & 0 & 0 \ 0 & 0 & e^{2i\chi} & 0 \ 0 & 0 & 0 & e^{2i\chi} \end{array}
ight]$$

and

$$\widehat{M}' := \left(egin{array}{ccc} -M_{\zeta,0}' \gamma_{\zeta}^{[0]} + M_{\zeta,4}' \zeta^{[4]} - \ -M_{\eta,0}' \gamma_{\eta}^{[0]} - M_{\eta,4}' \eta^{[4]} + \ + M_{\theta,0}' \gamma_{\theta}^{[0]} + M_{\theta,4}' \theta^{[4]} \end{array}
ight) \ := \widetilde{U}^{-1} \left(\chi
ight) \widehat{M} \widetilde{U} \left(\chi
ight)$$

then:

$$M_{\zeta,0}' = (M_{\zeta,0}\cos\chi - M_{\zeta,4}\sin\chi), \ M_{\zeta,4}' = (M_{\zeta,4}\cos\chi + M_{\zeta,0}\sin\chi),$$

$$egin{aligned} M_{\eta,4}' &= \left(M_{\eta,4} \cos \chi - M_{\eta,0} \sin \chi
ight), \ M_{\eta,0}' &= \left(M_{\eta,0} \cos \chi + M_{\eta,4} \sin \chi
ight), \ M_{\theta,0}' &= \left(M_{\theta,0} \cos \chi + M_{\theta,4} \sin \chi
ight), \ M_{\theta,4}' &= \left(M_{\theta,4} \cos \chi - M_{\theta,0} \sin \chi
ight). \end{aligned}$$

Therefore, matrix $\widetilde{U}\left(\chi\right)$ makes an oscillation between upper and lower mass members.

If χ is an arbitrary real function of time-space variables $(\chi = \chi(t, x_1, x_2, x_3))$ then the following expression is received from equation (26) under transformation $\tilde{U}(\chi)$ [3]:

$$\begin{split} &\left(\frac{1}{c}\,\partial_{t}+\frac{1}{c}\,\widetilde{U}^{-1}\left(\chi\right)\left(\partial_{t}\widetilde{U}\left(\chi\right)\right)+\mathrm{i}\Theta_{0}+\mathrm{i}\Upsilon_{0}\gamma^{[5]}\right)\varphi=\\ &=\left(\begin{array}{c} \sum\limits_{k=1}^{3}\beta^{[k]}\left(\begin{array}{c} \partial_{k}+\widetilde{U}^{-1}\left(\chi\right)\left(\partial_{k}\widetilde{U}\left(\chi\right)\right)\\ &+\mathrm{i}\Theta_{k}+\mathrm{i}\Upsilon_{k}\gamma^{[5]} \end{array}\right)+\\ &+\widetilde{U}^{-1}\left(\chi\right)\widehat{M}\widetilde{U}\left(\chi\right) \end{split}\right)\varphi\,. \end{split}$$

Now let:

$$\widehat{U}\left(\kappa
ight):=\left[egin{array}{cccc} e^{\kappa} & 0 & 0 & 0 \ 0 & e^{\kappa} & 0 & 0 \ 0 & 0 & e^{2\kappa} & 0 \ 0 & 0 & 0 & e^{2\kappa} \end{array}
ight]$$

and

$$\widehat{M}' := \left(egin{array}{ccc} -M_{\zeta,0}'\gamma_{\zeta}^{\left[0
ight]} + M_{\zeta,4}'\zeta^{\left[4
ight]} - \ -M_{\eta,0}'\gamma_{\eta}^{\left[0
ight]} - M_{\eta,4}'\eta^{\left[4
ight]} + \ +M_{ heta,0}'\gamma_{ heta}^{\left[0
ight]} + M_{ heta,4}' heta^{\left[4
ight]} \end{array}
ight) := \widehat{U}^{-1}\left(\kappa
ight)\widehat{M}\widehat{U}\left(\kappa
ight)$$

then

$$egin{aligned} M'_{ heta,0} &= \left(M_{ heta,0} \cosh \kappa - \mathrm{i} M_{ heta,4} \sinh \kappa
ight), \ M'_{ heta,4} &= \left(M_{ heta,4} \cosh \kappa + \mathrm{i} M_{ heta,0} \sinh \kappa
ight), \ M'_{ eta,0} &= \left(M_{ eta,0} \cosh \kappa - \mathrm{i} M_{ eta,4} \sinh \kappa
ight), \ M'_{ eta,4} &= \left(M_{ eta,4} \cosh \kappa + \mathrm{i} M_{ eta,0} \sinh \kappa
ight), \ M'_{\zeta,0} &= \left(M_{\zeta,0} \cosh \kappa + \mathrm{i} M_{\zeta,4} \sinh \kappa
ight), \ M'_{\zeta,4} &= \left(M_{\zeta,4} \cosh \kappa - \mathrm{i} M_{\zeta,0} \sinh \kappa
ight). \end{aligned}$$

Therefore, matrix $\widehat{U}\left(\kappa\right)$ makes an oscillation between upper and lower mass members, too.

If κ is an arbitrary real function of time-space variables $(\kappa = \kappa(t, x_1, x_2, x_3))$ then the following expression is received from equation (26) under transformation $\widehat{U}(\kappa)$ [3]:

$$\left(\frac{1}{c}\partial_{t} + \widehat{U}^{-1}(\kappa)\left(\frac{1}{c}\partial_{t}\widehat{U}(\kappa)\right) + i\Theta_{0} + i\Upsilon_{0}\gamma^{[5]}\right)\varphi = \\
= \left(\sum_{s=1}^{3} \beta^{[s]} \begin{pmatrix} \partial_{s} + \widehat{U}^{-1}(\kappa)\left(\partial_{s}\widehat{U}(\kappa)\right) \\ + i\Theta_{s} + i\Upsilon_{s}\gamma^{[5]} \end{pmatrix} \right)\varphi . \\
+ \widehat{U}^{-1}(\kappa)\widehat{M}\widehat{U}(\kappa)$$

Denote: $U_{0,1}:=U_1,\ U_{2,3}:=U_2,\ U_{1,3}:=U_3,\ U_{0,2}:=U_4,\ U_{1,2}:=U_5,\ U_{0,3}:=U_6,\ \widehat{U}:=U_7,\ \widetilde{U}:=U_8.$

In that case for every natural k ($1 \le k \le 8$) there a 4×4 constant complex matrix Λ_k exists [3] so that:

$$U_{k}^{-1}\left(\beta\right)\partial_{s}U_{k}\left(\beta\right)=\Lambda_{k}\partial_{s}\beta$$

and if $r \neq k$ then for every natural r ($1 \leq r \leq 8$) there real functions $a_s^{k,r}(\alpha)$ exist so that:

$$U_{k}^{-1}\left(lpha
ight)\Lambda_{r}U_{k}\left(lpha
ight)=\sum_{s=1}^{8}a_{s}^{k,r}\left(lpha
ight)\cdot\Lambda_{s}.$$

Hence, if \dot{U} is the following set:

$$\grave{U} := \left\{ U_{0,1}, U_{2,3}, U_{1,3}, U_{0,2}, U_{1,2}, U_{0,3}, \widehat{U}, \widetilde{U} \right\}$$

then for every product U of \dot{U} 's elements real functions $G_s^r(t,x_1,x_2,x_3)$ exist so that

$$U^{-1}\left(\partial_s U
ight) = rac{g_3}{2} \sum_{r=1}^8 \Lambda_r G_s^r$$

with some real constant g_3 (similar to 8 gluons).

3 Conclusion

Therefore, higgsless electroweak and quark-gluon theories and gravity without superstrings can be deduced from properties of probability.

Submitted on April 14, 2009 / Accepted on April 29, 2009

References

- For instance, Madelung E. Die Mathematischen Hilfsmittel des Physikers Springer Verlag, 1957, p. 29.
- Quznetsov G. Logical foundation of theoretical physics. Nova Sci. Publ., NY, 2006, p. 107
- 3. Quznetsov G. Progress in Physics, 2009, v. 2, 96-106
- 4. Quznetsov G. Probabilistic treatment of gauge theories. In series *Contemporary Fundamental Physics*, Nova Sci. Publ., NY, 2007, pp. 29, 40–41.
- 5. Ibidem, p. 61.
- 6. Ibidem, p. 62.
- 7. Ibidem, p. 63.
- 8. Ibidem, pp. 64-68.
- 9. Ibidem, pp. 96-100.
- 10. Ibidem, pp. 91-94.
- 11. Ibidem, pp. 100-117.
- 12. Ibidem, p. 127.
- 13. Ibidem, pp. 130-131.
- 14. For instance, Ziman J. M. Elements of advanced quantum theory. Cambridge University Press, 1969, formula (6.59).