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This is the probabilistic explanation of some laws of physics (gravitation, red shift,
electroweak, confinement, asymptotic freedom phenomenons).

1 Introduction o] ._ 0, -0 4 ._ .| 02 o1 |,
Yo = |: —01 0o :| ’ C =1 —0o1 0y ’ @)
I do not construct any models because Physics does not need o the ereen pentad m-
any strange hypotheses. Electroweak, quark-gluon, and & p :
gra.wity phenomenons are fa)fplained purely logically from o[- 0 o [ —o2 0
spinor expression of probabilities: = 0, —oyp |’ = 0, oy |’
Denote: 0
o
>Tlo 1|2 o o]
1, 0 o._| 02 =02 4 ._ . 02 o2],
0] ._ 2 2 | _ = s =1 . (5
ﬁ”"_[oz 12]__14’ T [—02 02 } 7 | —02 02 )
the Pauli matrices: o the blue pentad 6
|0 1 |0 -1 |1 0 i
01 = 1 0 , 02 = i 0 , 03 = 0 -1 . 9[1} — (o2 02 9[2] _: —09 02
~ ' 02 o1 |’ ' 02 —og |’
A set C of complex n x n matrices is called a Clifford set 0 )
of rank n if the following conditions are fulfilled [1]: 6% .= { _003 2 } ,
if ay € C and a, € C then oo, + apag = 26 r; 2 I3
if axQr + arap = 20k, for all elements o, of set C' then o 02 —o3 g4l —; 02 o3 |, (6)
Qg € C ’}’6 T —03 02 ! B —03 02 ’
If n = 4 then a Clifford set either contains 3 (a Clifford
triplet) or 5 matrices (a Clifford pentad). two gustatory pentads (about these pentads in detail,
Here exist only six Clifford pentads [1]: one which I call please, see in [2]):
light pentad (3: o the sweet pentad A:
e [ight pentad [3:
Al .= 0, -0 Al2.— 0, —05
pl.— | or 0 g .= | 92 02 el R P I (A
02 —01 ’ 02 —02 ’
(D Al .— [ 02 —o03 }
0 = 7| = 0 ’
5[3] _ | O3 2 o3 2
02 —03 ’
-1, 0 .| 0 1
0, 1 A0 = 2 72 A=y 2 2.
20— [ o ] o & 0, 1,|' =2 ~1, 0,
gl =i [ 0, 1 ] ) 3) o the bitter pentad I':
-1y 09 0 0
three coloured pentads: .= { 02 001 } , rl.=j [ 02 002 ] ,
e the red pentad (: ! 2 2 2
3]._:| 02 —o3
m._ | =01 0z 2]._ | o2 02 =i { 0 } ,
¢ .—{02 01}’ ¢ ._{02 oy | 03 2
B . | —o3 02 o ._ | —1l2 02 4. | 02 Lo
¢ {02 —03}’ L {02 12 I 1, 0 |°
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Denote: if A is a 2 x 2 matrix then b = pa
Aly = { 64 OAQ } and 1,4 := [ 64 (342 } . b2 cos? () sin (28) cos (6 — ) _ Jal
2 2 —sin® (&) sin (2x) cos (v — ) c
And if B is a 4 x 4 matrix then 7
cos? (o) sin (2,8) sin (9 -9)

A+B = A14+B, AB = A14B

etc.

z := (Zo,X) = (%0, T1, T2, T3) ,

g := ct,

with ¢ = 299792458.

2 Probabilities’ movement equations

Let ps () be a probability density [4] of a point event A (z).
And let real functions

U (2) a2 (2),uas (z)
satisfy conditions
“12\,1 + uf\,z + uf\,3 < 2,

and if 7, 5 := paua s then

on — Pg _ - C2]A k
. . Jak — Y
Iake — ]Il\,k _ JA Pa

Ji- @7

jA,s — jII\,s = jA,s fors # k

for s € {1,2,3} and k£ € {1,2,3} under the Lorentz trans-
formations:

T, — T, =ug,ifs #k.

In that case uy (ua 1, ua,2, Ua,3) is called a vector of local
velocity of an event A probability propagation and

Ja (a1, Jaz2, Ia3)

is called a current vector of an event A probability.
Let us consider the following set of four real equations
with eight real unknowns:

b with b > 0, «, B, 0,9, v, A

_ _Jas
—sin® (a) cos (2x) c

This set has solutions for any ps and j, . For example,
one of these solutions is placed in [4].

If
1 := b exp (i) cos () cos (a),
@ :=b-exp(if) sin (B) cos (a),
w3 :=b-exp (iX) cos () sin (o) , (8)
w4 :=b-exp (iv) sin () sin (a)
then
4
Py = Y #ios ©)
i = 4 4
i:"‘ = - Z Z <ps :65 k‘pk
k=1s=1

with r € {1, 2, 3}. These functions g, are called functions of
event A state.
If ps(z) = O for all z such that |z|] > (wc/h) with

h := 6.6260755 - 1073* then ¢ (z) are Planck’s functions
[3]. And if

Y1

P2

3

P4

then these functions obey [5] the following equation:
3
> (8 +i0 +iTx™) o +
k=0

+ lMo’)’[O] + 1M4,6[4] —
—iMc,o []+1MC4C4]— o=0
— 1My oy — iMyanl® +

+1Mp o’Y[ L 1My 464

(10)

with real O (z), Tw(z), Mo(z), Mi(z), Mco(z),

M a(z), My (z), My a(z), Moo (z), Mg, (z) and with

5. | 12 02
A1 = { o _1, } (11)
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2.1 Lepton movement equation with real F, B, a real positive constant g;, and with charge
matrix Y':
If Meo(z) =0, Mea(z) =0, Mpo(z) =0, Mpa(z)=0, 1, 0,
Mg o (z) = 0, Mg 4 (z) = O then the following equation is Yi=- 0, 2-1, |- (15)
deduced from (10): ) )
If % (¢, 1, 22, x3) is a real function and:
0] (1i8, — @ — T !5
'[g (c t 0 oY ) [7_( ) exp(i%) 15 0, (16)
+ 3 Bl (10 — 0s — Tay®) | §=0 (12) X) = 0, exp(ix)1ls |~
a=1
~ Moy — Mp™ then equation (14) is invariant under the following transfor-

I call it lepton movement equation [6]. mations [8]:

If similar to (9): Ty — Ty 1= T4 COS % — T sin %;

jas = —c-ply%pand j44 := —c- oTple , X X
Ty — Tg = Ty COSE + 24 sma;
and: =g, 0,1,2,3}: (17
Upa = Jas/paandugs = Jas/pa (13) zy — zy, =zyforpe{0,1,2,3}; (17
then from (8): =@ :=Uq,
1
UAS _ o ( sin B sin x cos (—8 + v) ) B, — B, =By - o wXo
——22 —sin2a ,
c +cosfBcosycos(y—A) F,— F, = T r, 1.

_Uas sin 2a ( —sinfsin x 51r.1 (=6 +v) ) ) Therefore, B,, are similar to components of the Standard
c + cos B cos xsin(y — A) Model gauge field B.

S i ;
Hence from (7): Further <53 is the space spanned by the following

basis [9]:
Wy +uls Hufstud s +uls =t J:=
Thus only all five elements of a Clifford pentad provide h .h
an entire set of speed components and, for completeness, yet ome XP TS (s024) | €k, (18)
two “’space” coordinates zs and z, should be added to our
o . h .h
three z1, z2, z3. These additional coordinates can be selected ——exp | —i— (nozs) | €, ...
2mc c
so that
me mc e mC with some integer numbers sg and ng and with
—?<$5\?, _i<$4\?.
1 0 0 0
Coordinates z4 and x5 are not coordinates of any events. 0 1 0 0
Hence, our devices do not detect them as actual space coordi- €1 °= | g [ €2:= | g |» €= | | |» &= | g
nates. 0 0 0 1

Let us denote:
_ Further in this subsection U is any linear transformation
G (821,22, 23,75, 24) := ¢ (¢, 21, 22, T3) X of space S5 so that for every &: if € &y then:
x (exp (i(z5s Mo (¢, 21, T2, z3) + za My (¢, 21, T2, 23)))) .

iy iy
In this case a lepton movement equation (12) shape is the ot orrray
following: dz, dzs - (UP) (UG) = pa.
3 P (19)
[s] (-3 0. _7T [51) 55 — 418, | § =0 / / j
s — Ys — Ls - 105 — 1 = ~ ~ As
;ﬁ 1 vy Y 5 4 | @ / dz, / dzs - (U(p)TIB[s} (U(p) _ _?
This equation can be transformated into the following o P
form [7]: fors € {1,2,3}.

3 . Matrix U is factorized as the following:

> —oB¥ (10s + Fs + 0.50:Y Bs) \ ~
5= =0 14 N
( —7%%ig; — pl*lia, i (1 U = exp (is) OU U
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with real ¢, with U from (16), and with

12 02 02 02
g . | 02 (utiv)lz 0 (k+is)ls 0,
02 02 12 02
02 (—k+is)ly 0 (u-—iv)l;
and
(a+ib)1, 02 (c+ig)ly 0y
0 1 0 0
g |l B,
(—c+ig)ly 02 (a—ib)1ly O
02 02 02 12

with real a, b, ¢, q, u, v, k, s.

Matrix U(+) refers to antiparticles (About antiparticles in
detail, please, see [10] and about neutrinos - [11]). And trans-
formation U(~) reduces equation (14) to the following shape:

Zioﬁ“‘]i( 8, —i0.5g:B,Y )

~1592 Wy, — iF, g=0. (22
+71%ig5 + pl*lio,
with a real positive constant g, and with
W, =

Wo,ula 02 (Wi —iWsu)1la 02

02 02 02 02

(Wl,p + iW2:#) 12 02 —Wo,plz 02

02 02 02 02

with real Wy ,,, W1, and W, .

Equation (22) is invariant under the following transforma-
tion:

p— ¢ =Uep,

24 — zy = (b + i) aza + (Lo — £4) V1 — a’zs,
zs = zp = (b + L) azs — (b — £.) V1 — a?zy,
=z, for u € {0,1,2,3},

B, — B, := B,

/
wﬂ_>$p

”
W, = W, := UW, U — = (8,U) Ut

92
with
_ 1

* T /0= 8

[+ V- @-igu ]
X 5

[ (g +ic) 14 ( (1—a2)—b)14J
4 = _ X

21— a?)
) ( (1—a2)—b) 14 (—q +ic) 14
(~g-igl (b4 /(I-a))) L

Hence W, behaves the same way as components of the
weak field W of Standard Model.
Field Wo,,, obeys the following equation [12]:

3
1
<—C23t2 +Z‘9§> Wo,u =

s=1
=3 (W — W7 = W3 — W2 ) Wou+ A (23)

with
WO,I/
Wl,u J

W, = [ W

and A is the action of other components of field W on Wy ,,.
Equation (23) looks like the Klein-Gordon equation of
field Wy ,, with mass

(24)

and with additional terms of the Wy ,, interactions with other
components of W. Fields W1, and W5 , have similar equa-
tions.

The “mass” (24) is invariant under the Lorentz transfor-
mations

Wé:ziwo_%wk, Wé:ziwk_gwo,
1- ()’ 1-(9)°
Ws' =W, ifs#k,

is invariant under the turns of the <W1, Wg, W3> space

W’l

and invariant under a global weak isospin transformation
U):

W cos)\—w sin A
= W sm)\—l—W cos A

w, - W, =uOw,u-n,

but is not invariant for a local transformation U/(~). But local
transformations for Wo ,,, W1, and W5, are insignificant
since all three particles are very short-lived.

The form (24) can vary in space, but locally acts like mass
-1i.e. it does not allow particles of this field to behave the same
way as massless ones.

If

Zy =Wy ucosa — Bysina),
A, = (Bycosa + Wy, sina)

with

g1
o ;= arctan =—
g2
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then masses of Z and W fulfill the following ratio:

mw
mz = .
cos &
If
9192
€= s
V91t 93
and
= 1
Zu = Zﬂ’ﬁ X
V92t 97
(¢2+93) 12 0 02 0,
v 02 2¢71, 02 0,
0, 0o (gg - gf) 1, 0 !
02 02 02 29712
W# =02 X
02 02 (Wl’# — iWZ:N) 12 02
% 04 02 02 02
(lep + iWQ’#) 1, 0, 0, 05 !
0, 0, 0, 02
0y 0y 0y 0
~ 0 1 02 0O
Ap = A 02 02 1z 0o
0y 0 02 15
then equation (22) has the following form:
2 Bl , Ou tleA’i\
#=0 —i0.5 (Zu + Wy) =0. (25

+9%i5 + B4ig,

Here [13] the vector field A, is similar to the electromag-
netic potential and (2;4 + W#) is similar to the weak poten-

tial.

2.2 Colored equations

The following part of (10) I call colored movement equa-
tion [3]:

22:0 B (=B + O + Tiy¥) —
~ Mo + Ml +

—0. (26)

— 77’07,[70} — 7]7477[4] _|_

+Mo,0’)’£o] + M 464
Here (4), (5), (6):

0 0 0 1 0 0 0 1
o_ |00 10| g_| 0 0 io
= 0100 =0 -ioo

1 0 0 O —i 0 0 0

are mass elements of red pentad;

0 0 0 i 0 0 0 1
_| 0 O -1 0 @_[(0 0 -10
T o i o ol 0 -1 0 0
| -1 0 0 0 1 0 0 0]
are mass elements of green pentad;
0 0 -1 0 0 0 —i 0]
[0 _ 0 0 0 1 olal — 0 0 0 1
Tl 10 0 0|’ T | -0 0 0
0 1 0 O 0 i 0 0|
are mass elements of blue pentad.

I call:

o M¢ o, M¢ 4 red lower and upper mass members;,

o My o, My 4 green lower and upper mass members;
o My o, Mo 4 blue lower and upper mass members.

The mass members of this equation form the following
matrix sum:

~ Moo + Ml -

—

M= | — Moy — Myant¥l + | =
+ Mooy + Mp 46"
i 0 0 —Mpo M¢ygo
_ 0 0 Mo Mo |
~Mso Mepo O 0
| M, Mey O 0
i 0 0 —Mpy 4 MC*JIA
} 0 0 Mena Mgy
oM. oM, (dn’ 0
L _MCJIA M9’4 0 0

with MC,U,O = Mc’o — iMn,O and M<7,7’4 = M<’4 — iMn’4.
Elements of these matrices can be turned by formula of
shape [14]:

cos% ising Z X —1Y
X
ising cos% X +1iY -7
9 )
cos 2 —isin £
% . .2 2 _
—1s1ng cosg
. . Y cos@
~ Zcosf —Ysind X_l<+Zsin9>

- ) Y cos 6 .
X+1< +Zsin9> —Zcos8+Ysind
Hence, if:
cosa lisino 0 0
isina cosa 0 0
Uz (a) = 0 0 cosa isina
0 0 isina cosa
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and
—Mé,o’Yéo] + MY -

M = —M,g,oyy[,o} - M) ¥+ | = Uz_é (@) MUz 3 ()
+Mé,07’go] + Mé,49[4]

then

1
Meo = Mo,
M,’L0 = My,0 cos 2 + My g sin 2c,
My o = My o cos2a — M, osin2a,
Mé,4 =M,
M, 4 = My 4 cos 2a + My 4sin2a,
MéA = Mg cos2a — My 4sin2a.
Therefore, matrix Us 3 () makes an oscillation between
green and blue colours.
If o is an arbitrary real function of time-space variables

(a = a(t,z1,z2,z3)) then the following expression is re-
ceived from equation (10) under transformation Uy 3 () [3]:

1 - 1 . .
(c 8+ Uss (a) . 0:Us 3 (a) +10¢ + 1T07[5}> =

ﬁ[l} <
+IB[2] <
+IB[3] <

+ lMo’Y[O} + 1M4ﬁ[4] + J/\Z’

81 + Ui«; (a) 61U2,3 (a)
+i@; +iT b

05 + U;s} () B3U3,3 (@)
+i©} + iThyl®!

03 + U;s} () O5U3,3 (@)
+i©f 4 iTyyl®!

Here
©) 1= O, cos2a — Oz sin 2«

©f := O, sin2a + O3 cos 2a,
T, := Ty cos2a — T3sin e,
T4 := T3cos2a + Tysin2a,

and z4, and z% are elements of an another coordinate system
so that:

6.’1:2
32 = cos2a,
T
2
3.’1:3 .
32 = —sin2a,
T
2
6.’122 .
— =sin2«a,
oz
3
6123
32 = cos2a,
T
3
6120 - 81131 8.’120 6$1

T 1 1T 1
Oz, Oz, Ozz Ozj

Therefore, the oscillation between blue and green colours
curves the space in the z5, 23 directions.
Similarly, matrix

cos¥ sin? 0 0

—sin?d cos? 0 0
1s(9) = 0 0 cos?¥  sin?
0 0 —sind¥ cos?¥

with an arbitrary real function 9 (¢,z1,z2,z3) describes
the oscillation between blue and red colours which curves the
space in the z;, z3 directions. And matrix

e 0 0 0
0 €< 0 0
0 0
0 0 0 &

Uiz (s) =

)

with an arbitrary real function ¢ (¢, z1, 2, z3) describes the
oscillation between green and red colours which curves the
space in the z;, 2, directions.

Now, let
coshoc —sinho 0 0
—sinho cosho 0 0
Uo,i (o) := .
0 0 cosho sinho
0 0 sinho cosho
and

_ él,07£01 +Mé',4C[4]—

M" = —M,;”Oyr[,o] — M! ¥+ | :=Ugi (o) MUo, (o)
M+ g0
then:

My =My,
no = (Mpocosh20 — Mg 4sinh 20) ,
Mg”o = My, cosh20 + M, 4sinh 20,
21,4 =M,
M,’,"4 = M, 4 cosh 20 + My g sinh 20,
My 4 = Mg 4 cosh20 — My osinh20.

Therefore, matrix Ug 1 (0) makes an oscillation between
green and blue colours with an oscillation between upper and
lower mass members.
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If o is an arbitrary real function of time-space variables
(o = o(t,z1,22,23)) then the following expression is re-
ceived from equation (10) under transformation Up 1 (o) [3]:

gor [ <0+ U (0) L 8o (<)

+10f + 1Ty

4 gl < 01 + Up (0) 81Uo,1 () )
+10] + 1T/

+ ) ( 0, + U () 8:Uo1 (0) )
+i0, + 1Tl

s ( 8s + Uy (0) 83Up,1 (0) )
+i03 +iTzyl

+ 1Moy + 1M, 814 + M

with
©f := Og cosh20 + B, sinh 20,
©} := ©; cosh20 4 Bgsinh 20,
Tg := Tocosh20 + Ty sinh 20,
TY := T1cosh20 + Tpsinh 20

and ¢’ and z/ are elements of an another coordinate system so
that:

9 3
i,l = cosh 20
Oz}
t 1
8/ = —sinh 20
oz}
15}
(;Z,l = c¢sinh 20 27
t
T = cosh 20
35132 _ 35133 o 81132 o 81133 -0
ot ot 0oz, oz

Therefore, the oscillation between blue and green colours
with the oscillation between upper and lower mass members
curves the space in the ¢, z; directions.

Similarly, matrix

cosh¢ isinh¢ 0 0
| —isinh¢ cosh¢ 0 0
Uo,2 (¢) := 0 0 cosh¢ —isinh¢
0 0 isinh¢ cosh¢

with an arbitrary real function ¢ (¢, 21, T2, z3) describes the
oscillation between blue and red colours with the oscillation
between upper and lower mass members curves the space in

38

the ¢, 5 directions. And matrix

e 0 0 0
0 et 0 0
Uos():=| 5 o o+ g
0o 0 0 e

with an arbitrary real function ¢ (¢, z1, z2, z3) describes the
oscillation between green and red colours with the oscillation
between upper and lower mass members curves the space in
the ¢, 3 directions.

From (27):
91 _ sinh2
5 csinh 20,
ot
T = cosh 20 .
Because
sinh 20 = ,
2
-5
cosh20 =
122
C2

where v is a velocity of system {t',z} as respects system
{t,z1} then
v = tanh 20 .

Let :
20 := —
0:=w(z) "
with )
w(z —,
(z1) 2l

where A is a real constant bearing positive numerical value.
In that case

v (t,21) = tanh (w (22) t)

I

and if g is an acceleration of system {t', z } as respects sys-
tem {t, z; } then
Ov w(
g(t,ml)zaz 2( 1) .
z1 cosh (w (z1) ;—1)

Figure 1 shows the dependency of a system {t',z} ve-
locity v (¢, z1) on z; in system {t, z1 }.

This velocity in point A is not equal to one in point B.
Hence, an oscillator, placed in B has a nonzero velocity in
respects an observer placed in point A. Therefore, from the
Lorentz transformations this oscillator frequency for observer
placed in point A is less than own frequency of this oscillator
(red shift).

Figure 2 shows the dependency of a system {¢',z}} ac-
celeration g (¢, z1) on z; in system {¢, z; }.
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V(EXI) M¢’7,4 = (Mpacosx — Myosiny),
c o = (Myocosx + Myasinx),
My o = (Mg,ocos x + My asinx),

O ! | Mg, = (Mpacosx — Mgosiny).

Therefore, matrix I (x) makes an oscillation between up-
per and lower mass members.

If x is an arbitrary real function of time-space variables
o % (x = x(t,z1,z2,z3)) then the following expression is re-
ceived from equation (26) under transformation U (%) [3]:

-C

Fig. 1: Dependency of v(¢,z1) from 1 [3].

1 1~ ~ . :
a(tx,) (Za+ 20700 (a0 (00) +i00 + 1101 ) =
X; i BCD S ~ ~
% iy | & gt 8 + U1 (x) (akU (x)) N
\ =| k=1 410 + 1Tyl @.

~ £ (0 T ()

Now let:
e 0 0 0
| | TWi=| o 5 o o
Fig. 2: Dependency of g(¢, z1) from z; [3]. 0 0 U
and
If an object immovable in system {t,z;} is placed in - Mé,o’YEO} + Mé,4C[4]—
point K then in system {t', 2} } this object must move to the ~ j77 .— _Mr’;,o'YT[IO] ~ M, ¥+ | = -1 (k) MU (x)
left with acceleration g and g ~ \/z3. . [0 ' o4l
I call: + Mg ovp + Mg 40
e interval from S to co: Newton Gravity Zone, then:
e interval from B to C: Asymptotic Freedom Zone, Mé,o = (Mg coshk —iMy 4sinh k),
e and interval from C to D: Confinement Force Zone. M) 4 = (Mg acoshr +iMgsinh k),
Now let My o = (My,coshk —iMy 4 sinh k),
) e(l)X e(i)x 8 8 M, 4 = (My 4 coshk +iMy o sinh k),
U= ¢ o e2ix g M; o = (M¢pocoshk + 1M 4sinh k),
0 0 0 € M; , = (M¢4coshk —iM¢ gsinhk).
and Therefore, matrix U () makes an oscillation between up-

u 0] M cldl per and lower mass members, too.
- = Mg ove + MW - If « is an arbitrary real function of time-space variables
M = —M,’hofy,gol - M,’]An[‘*] + (k = K (t,z1,22,23)) then the following expression is re-
0 ceived from equation (26) under transformation U (&) [3]:
+Mé,0’)’£ ] + Mé749[4] q (26) ( ) [3]

1 7 1, = . :
=T (x) MT (x) (C O, + U (k) (C 8 U (K)) 160 + 1T07[5]) 0=
then: = —~
&g [ 0T (k) (8SU (n))
M} = (Mcgcosx — Measin), =| = +i0, + Tyl 0.
My = (M¢acosx + Mosinx), + U (k) MU (x)
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Denote: UO,l = Ul, U2’3 = Uz, Ul,g = U3, Uo,g = U4,
U172 = U5, U073 = U6, [7 = U7, [7 = Ug.

In that case for every natural k (1 < k < 8) therea4 x 4
constant complex matrix Ay exists [3] so that:

Uy (B)8,Uk (B) = MeBsB

and if » # k then for every natural 7 (1 < r < 8) there real
functions a¥"" (@) exist so that:

Uyt (@) MUk (@) = > ab (a) - A,

Hence, if U is the following set:
U = {Uo,l,U2,3,U1,3,U0,2,U1,27U0,3,[7,(7}

then for every product U of U’s elements real functions
G? (t,z1, z2, T3) exist so that

8
_ g r
UTHOU) = 5 ) MG
r=1
with some real constant g3 (similar to 8 gluons).

3 Conclusion

Therefore, higgsless electroweak and quark-gluon theories
and gravity without superstrings can be deduced from prop-
erties of probability.
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