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The generalized Lagrangian in general relativistic homogeneous oblate spheroidal grav-
itational fields is constructed and used to study orbits exterior to homogenous oblate
spheroids. Expressions for the conservation of energy and angular momentum for this
gravitational field are obtained. The planetary equation of motion and the equation of
motion of a photon in the vicinity of an oblate spheroid are derived. These equations
have additional terms not found in Schwarzschild’s space time.

1 Introduction

It is well known experimentally that the Sun and planets in the
solar system are more precisely oblate spheroidal in geometry
[1-6]. The oblate spheroidal geometries of these bodies have
corresponding effects on their gravitational fields and hence
the motion of test particles and photons in these fields.

It is also well known that satellite orbits around the Earth
are governed by not only the simple inverse distance squared
gravitational fields due to perfect spherical geometry. They
are also governed by second harmonics (pole of order 3) as
well as fourth harmonics (pole of order 5) of gravitational
scalar potential not due to perfect spherical geometry. There-
fore, towards the more precise explanation and prediction of
satellite orbits around the Earth, Stern [3] and Garfinkel [4]
introduced the method of quadratures for approximating the
second harmonics of the gravitational scalar potential of the
Earth due to its spheroidal Earth. This method was improved
by O’Keefe [5]. Then in 1960, Vinti [6] suggested a gen-
eral mathematical form of the gravitational scalar potential
of the spheroidal Earth and how to estimate some of the pa-
rameters in it for use in the study of satellite orbits. Recently
[1], an expression for the scalar potential exterior to a homo-
geneous oblate spheroidal body was derived. Most recently,
Ioannis and Michael [3] proposed the Sagnac interferometric
technique as a way of detecting corrections to the Newton’s
gravitational scalar potential exterior to an oblate spheroid.

In this article, we formulate the metric tensor for the grav-
itational field exterior to massive homogeneous oblate spher-
oidal bodies as a direct extension of Schwarzschild’s metric.
This metric tensor is then used to study orbits in homoge-
neous oblate spheroidal space time.

2 Metric tensor exterior to a homogeneous oblate
spheroid

The invariant world line element in the exterior region of all
possible static spherical distributions of mass is given [1, 7] as

A2dr? = ¢? {1 + 42]((229, ¢)] dt? —

) ; . (2.1)
_ {1 + f(’l’c,z :¢)] dr? — r2d6? — r? sin®0 d¢p?

where f(r, 0, ¢) is a generalized arbitrary function determin-
ed by the distribution of mass or pressure and possess all the
symmetries of the mass distribution. It is a well known fact
of general relativity that f(r,8, ¢) is approximately equal to
Newton’s gravitational scalar potential in the space-time ex-
terior to the mass or pressure distributions within regions of
spherical geometry [1, 7]. For a static homogeneous spherical
body (“Schwarzschild’s body”) the arbitrary function takes
the form f(r).

Now, let “Schwarzschild’s body” be transformed, by de-
formation, into an oblate spheroidal body in such a way that
its density and total mass remain the same and its surface pa-
rameter is given in oblate spheroidal coordinates [1] as

& = &y ; constant. (2.2)

The general relativistic field equation exterior to a homo-
geneous static oblate spheroidal body is tensorially equivalent
to that of a static homogeneous spherical body (“Schwarz-
schild’s body”) [1, 7] hence, is related by the transformation
from spherical to oblate spheroidal coordinates. Therefore, to
get the corresponding invariant world line element in the ex-
terior region of a static homogeneous oblate spheroidal mass,
we first replace the arbitrary function in Schwarzschild’s
field, f(r) by the corresponding arbitrary function exterior to
static homogenous oblate spheroidal bodies, f(n,£). Thus,
the function f(n,&) is approximately equal to the gravita-
tional potential exterior to a homogeneous spheroid. The
gravitational scalar potential exterior to a homogeneous static
oblate spheroid [1] is given as

f(n,€) = BoQo(—18) Po(n) + B2Q2(—1£) P2(n)  (2.3)
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Joo = (1 + CZf(mf)) (2.10)
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g11 = —1_’_;27_772 [772 (1 + cgf(n,$)> + (1(_772)) (2.11)
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2 . 2 onta-n?
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933 = —a*(1+€*)(1 —n?) (2.14)
9uv = 0; otherwise (2.15)
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L e e [P ) e () (14 2 )7 o)
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g% = — 5 (2.19)

a?(1+ZFf(m8) M1 —n?)+£(1+¢)
=@ 1+ ) (L)) 20
g = 0; otherwise (2.21)

where ()o and @), are the Legendre functions linearly inde-
pendent to the Legendre polynomials Fy and P, respectively.
By and B, are constants.

Secondly, we transform coordinates from spherical to ob-
late spheroidal coordinates;

(Ct7r, 91 ) % (Ct’ 7]’ 6’ ¢)

on the right hand side of equation (2.1).

From the relation between spherical polar coordinates and
Cartesian coordinates as well as the relation between oblate
spheroidal coordinates and Cartesian coordinates [8] it can be
shown trivially that

r (€ ¢) =a(l+£2 —n?)%

né ] (2.6)

(2.4)

2.5)
and

_ —1
9(’7»5,@—003 (1+$2—7]2)%

where a is a constant parameter. Therefore,

dr = a(1+ €2 — %)~ 3 (€d¢ — ndn) 2.7)
and
SPRRR U ) LS

(1-n?)2(14+€ —n?) 2.8)

_ n(1—n?)3 i

(1+€)3(1+ €2 —n2)

Also,

nzg— L+ —n") (2.9)

(1+& -7

Substituting equations (2.5), (2.7), (2.8) and (2.9) into
equation (2.1) and simplifying yields the following compo-
nents of the covariant metric tensor in the region exterior to a
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1 2 . a?¢? 2 . :
L==|-{1+5 2 - 1+ = 2+a(1+¢%)¢° 3.2
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stat.ic homogeneous oblate spheroid in oblate spheroidal co- r2, = 1 P12 9122 — 221) + = g2 9222, (2.32)
ordinates (2.10)—(2.15). 2 2
The covariant metric tensor, equations (2.10) to (2.15) is r2. 1 5 1 5 )13
the most fundamental geometric parameter required to study 33~ 759 9331759 9332, (2.33)
general relativistic mechanics in static homogeneous oblate . . 1 o,
spheroidal gravitational fields. The covariant metric tensor Ms=T5 = 59 9331, (2.34)
obtained above for gravitational fields exterior to oblate sphe- 1
roidal masses has two additional non-zero components g;» 1"33 = 1"22 == ¢%g33,, (2.35)
and g»; not found in Schwarzschild field [7]. Thus, the exten- 2
sion from Schwarzschild field to homogeneous oblate spher- 1"‘; s = 0; otherwise, (2.36)

oidal gravitational fields has produced two additional non-
zero tensor components and hence this metric tensor field
is unique. This confirms the assertion that oblate spheroidal
gravitational fields are more complex than spherical fields and
hence general relativistic mechanics in this field is more in-
volved [6].

The contravariant metric tensor for this gravitational field
is found to be given explicitly as (2.16)—(2.21).

It can be shown that the coefficients of affine connection
for the gravitational field exterior to a homogenous oblate
spheroidal mass are given in terms of the metric tensors for
the gravitational field as

F81 = F?o =3 900900,1 ) (2.22)
1
Ig, =T = By 900900,2 ) (2.23)
I%o = -3 911900,1 ) 912900,2 ) (2.24)
1 I 1 1 1
'y = 2 g 9111+ 3 9% (29121 — 911,2) » (2.25)
1
rL,=ri, = 5 911911,2 + 3 912922,1 , (2.26)
1
T}, = B 9" (2012,2 — 922,1) + 3 99222, (2.27)
1
T =5 001 — 5 0%0:32,  (228)
1
T = —5 90000 — 5 0002,  (229)
1
rs = 3 g+ 5 9% (29121 — g11,2) , (2.30)
1
1—‘%2 = ].—'gl = 3 921911,2 + 2 922922,1 , (2.31)
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where comma as in usual notation denotes partial differentia-
tion with respect to (1) and £(2).

3 Conservation of total energy and angular momentum

Many physical theories start by specifying the Lagrangian
from which everything flows. We would adopt the same at-
titude with gravitational fields exterior to homogenous oblate
spheroidal masses. The Lagrangian in the space time exterior
to our mass or pressure distribution is defined explicitly in
oblate spheroidal coordinates using the metric tensor as (3.1)
[7, 9], where T is the proper time.

For orbits confined to the equatorial plane of a homoge-
nous oblate spheroidal mass [1, 8]; 7 = 0 (or dn = 0) and
substituting the explicit expressions for the components of
metric tensor in the equatorial plane yields (3.2), where the
dot denotes differentiation with respect to proper time.

It is well known that the gravitational field is a conserva-
tive field. The Euler-Lagrange equations for a conservative
system in which the potential energy is independent of the
generalized velocities is written as [7, 9];

oL d [ 0L
Bz~ dr (ax) 3-3)
but oL oL
— == 3.4
B0 ot 0 (34
and thus from equation (3.3), we deduce that
— = constant. 3.5)

From equation (3.3), it can be shown using equation (3.5)
that

2 . .
(1 +5 f(mf)) i=k k=0 (3.6)
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where k is a constant. This is the law of conservation of en-
ergy in the equatorial plane of the gravitational field exterior
to an oblate spheroidal mass [7, 9].

The law of conservation of total energy, equation (3.6)
can also be obtained by constructing the coefficients of affine
connection for this gravitational field and evaluating the time
equation of motion for particles of non-zero rest masses. The
general relativistic equation of motion for particles of non-
zero rest masses in a gravitational field are given by

d2 ©w dz? d A

z + Pf:)\ z i =0
dr? dr dr
where Fff)\ are the coefficients of affine connection for the
gravitational field.

Setting ¢ = 0 in equation (3.7) and substituting the ex-
plicit expressions for the affine connections I'y; and '3, gives

(3.7)

—1
i'+022<1+c22f(n,£)) X
0f (n,€) _ ;0f((n,€)) o
. 7, . Ul [
X (17 an +¢ 5 ) t=0.

Integrating equation (3.8) yields

-1
i=k (1 Y (77,6)) (3.9)
where k is a constant of integration. Thus, the two methods
yield same results.

Also, the Lagrangian for this gravitational field is invari-
ant to azimuthal angular rotation and hence angular momen-
tum is conserved, thus;

oL

— =0 3.10
59 (3.10)

and from Lagrange’s equation of motion,
(1+&)¢=1, i=0 (3.11)

where [ is a constant. This is the law of conservation of an-
gular momentum in the equatorial plane of the gravitational
field exterior to a static homogeneous oblate spheroidal body.

This expression can also be obtained by solving the az-
imuthal equation of motion for particles of non-zero rest
masses in this gravitational field. Setting 4 = 3 in equa-
tion (3.7) and substituting the relevant affine connection co-
efficients gives the azimuthal equation of motion as

% (lnqlﬁ) + % (ln (1 —172)) +

d (3.12)
— (In(1+¢€%))=0.

()
Thus, by integrating equation (3.12), it can be shown that
the azimuthal equation of motion for our gravitational field is

given as .
DTN o

where [ is a constant of motion. [ physically corresponds to
the angular momentum and hence equation (3.13) is the Law
of Conservation of angular momentum in this gravitational
field [7, 9]. It does not depend on the gravitational potential
and is of same form as that obtained in Schwarzschild’s Field
and Newton’s dynamical theory of gravitation [7, 9]. Note
that equation (3.13) reduces to equation (3.11) if the parti-
cles are confined to move in the equatorial plane of the oblate
spheroidal mass.

4 Orbits in homogeneous oblate spheroidal gravitation-
al fields

It is well known [7, 9] that the Lagrangian L, = ¢, withe = 1
for time like orbits and € = 0 for null orbits. Setting L = €
in equation (3.2), substituting equations (3.6) and (3.11) and
simplifying yields;

a2 £2

(1+¢%)

a’l?

2
—2e%f(m,€) =% +1.

L2
+
¢ 4.1)

In most applications of general relativity, we are more in-
terested in the shape of orbits (that is, as a function of the
azimuthal angle) than in their time history [7]. Hence, it is in-
structive to transform equation (4.1) into an equation in terms
of the azimuthal angle ¢. Now, let us consider the following
transformation;

¢ = ¢ (@) and u(¢) = % , 4.2)
thus, g
: U
f=ran (4.3)

Now, imposing equations (4.2) and (4.3) on equation (4.1)
and simplifying yields (4.4). Differentiating equation (4.4)
gives (4.5).

For time like orbits (e =1), equation (4.5) reduces
to (4.6).

This is the planetary equation of motion in this gravita-
tional field. It can be solved to obtain the perihelion precision
of planetary orbits. It has additional terms (resulting from
the oblateness of the body), not found in the corresponding
equation in Schwarzschild’s field [7].

Light rays travel on null geodesics (¢ =0) and hence
equation (4.5) becomes (4.7).

In the limit of special relativity, some terms in equation
(4.7) vanish and the equation becomes (4.8).

Equation (4.7) is the photon equation of motion in the
vicinity of a static massive homogenous oblate spheroidal
body. The equation contains additional terms not found in
the corresponding equation in Schwarzschild’s field. The so-
lution of the special relativistic case, equation (4.8) can be
used to solve the general relativistic equation, (4.7). This can
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d? d +u’ 2 2 d
d¢";—3u(1+u2)dg+(“2“)(u2_u+z) <1+62f(u)>:1:2(1+u2)2duf(u). @.7)

d? d u + u?

dq;;—Su(l—l—uz)d:;—l—( 5 )(uQ—u+2):o. 4.8)

be done by taking the general solution of equation (4.7) to be
a perturbation of the solution of equation (4.8). The imme-
diate consequence of this analysis is that it will produce an
expression for the total deflection of light grazing a massive
oblate spheroidal body such as the Sun and the Earth.

5 Remarks and conclusion

The immediate consequences of the results obtained in this
article are:

1. The equations derived are closer to reality than those in
Schwarzschild’s gravitational field. In Schwarzschild’s
space time, the Sun is assumed to be a static perfect
sphere. The Sun has been proven to be oblate spheroid-
al in shape and our analysis agrees perfectly with this
shape;

2. The planetary equation of motion and the photon equa-
tion of motion have additional spheroidal terms not
found in Schwarzschild’s field. This equations are
opened up for further research work and astrophysical
interpretation.

3. In approximate oblate spheroidal gravitational fields,
the arbitrary function f(7,£) can be conveniently eq-
uated to the gravitational scalar potential exterior to an
oblate spheroid [7]. Thus for these fields, the com-
plete solutions for our equations of motion can be con-
structed;

4. Einstein’s field equations constructed using our met-
ric tensor has only one unknown, f(7,£). A solution
of these field equations will give explicit expressions
for the function, f(n, &) which can then be used in our
equations of motion.
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