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Fascination with primes dates back to the Greeks and before. Primes are named by some
“the elementary particles of arithmetic” as every nonprime integer is made of a unique
set of primes. In this article we point to new connections between primes, geometry and
physics which show that primes could be called “the elementary particles of physics”
too. This study considers the problem of closely packing similar circles/spheres in
2D/3D space. This is in effect a discretization process of space and the allowable num-
ber in a pack is found to lead to some unexpected cases of prime configurations which
is independent of the size of the constituents. We next suggest that a non-prime can be
considered geometrically as a symmetric collection that is separable (factorable) into
similar parts- six is two threes or three twos for example. A collection that has no
such symmetry is a prime. As a result, a physical prime aggregate is more difficult to
split symmetrically resulting in an inherent stability. This “number/physical” stability
idea applies to bigger collections made from smaller (prime) units leading to larger sta-
ble prime structures in a limitless scaling up process. The distribution of primes among
numbers can be understood better using the packing ideas described here and we further
suggest that differing numbers (and values) of distinct prime factors making a nonprime
collection is an important factor in determining the probability and method of possible
and subsequent disintegration. Disintegration is bound by energy conservation and is
closely related to symmetry by Noether theorems. Thinking of condensed matter as the
packing of identical elements, we examine plots of the masses of chemical elements of
the periodic table, and also those of the elementary particles of physics, and show that
prime packing rules seem to play a role in the make up of matter. The plots show con-
vincingly that the growth of prime numbers and that of the masses of chemical elements
and of elementary particles do follow the same trend indeed.

1 Introduction

Primes have been a source of fascination for a long time- as
far back as the Greeks and much before. One reason for this
fascination is the fact that every non-prime is the product of a
unique set of prime numbers, hence the name elementary par-
ticles of arithmetic, and that although primes are distributed
seemingly randomly among other integers, they do have reg-
ular not fully understood patterns (see [1] for example). The
literature is rich in theories on primes but one could say that
none-to-date have managed to make the strong connection be-
tween primes and physics that is intuitively felt by many. One
recent attempt in this direction is [2], wherein possible con-
nections between the atomic structure and the zeros of the
Zeta function — closely connected to primes — are inves-
tigated. We quote from this reference, “Why the periodic-
ity of zeros from the Riemann-Zeta function would match
the spacing of energy levels in high-Z nuclei still remains
a mystery”.

In the present work we attempt to relate primes to both
geometry and physics. We start with the packing of circles in
a plane (or balls on a plane)- all of the same size, and pose a
question; In a plane, what is the condition for packing an in-
tegral number of identical circles to form a larger circle- such
that both the diameter and circumference of the larger circle
contain an integral numbers of the small circle? The problem

is essentially the same when the 2D circles are replaced with
balls on a tray. A surprising result here is the appearance of
only two prime numbers 2 and 3 in the answer and only one
of them is nontrivial- the number 3. This gives such numbers
a fundamental and natural importance in geometry. We may
view this number as a “discretization number of the continu-
ous 3D spaces”. We further study this matter and shed light
(using balls to represent integers) on bounds on the growth of
primes- namely the well known logarithmic law in the theory
of primes. Still further, we coin the notion that distinct prime
factors in the packing of composite collections/grouping can
have a profound influence on the behaviour of such collec-
tions and the manner they react with other collections built
of some different or similar prime factors. As many physics
models of condensed matter assume identical elements for
simple matter (photons, boson and fermion statistics and the
MIT bag model [3, 6] are examples) we examine the appli-
cability of our packing rules in such case and conclude that
condensed matter do seem to follow the packing rules dis-
cussed here.

2 Theory

Consider the case of close packing of circles on a plane so as
to make a bigger circle (Figure 1). The ratio of the radius of
the large circle to that of the small circle is;R=r= 1+1= sin t,
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1 7 13 19 25 31 37 43 49 55 61 67 73 79 85 91 97. . .

2 8 14 20 26 32 38 44 50 56 62 68 74 80 86 92 98. . .
3 9 15 21 27 33 39 45 51 57 63 69 75 81 87 93 99. . .
4 10 16 22 28 34 40 46 52 58 64 70 76 82 88 94 100. . .

5 11 17 23 29 35 41 47 53 59 65 71 77 83 89 95 101. . .

6 12 18 24 30 36 42 48 54 60 66 72 78 84 90 96 102. . .

Table 1: Integers arranged in columns of six.

Fig. 1: Close packing of an integral number of circles/balls on a
plane have one nontrivial solution- 6 balls, plus one at the centre (see
also Figure 2). Here in Fig. 1: L sin t = r; t = �=n; R = L + r;
R=r = 1 + 1= sin t. For integral ratio R=r, t must be �=2 or �=6
and L=r = 2; 3.

where t is half the angle between radial lines through the cen-
ters of any two adjacent circles. For this number to be an
integer, the quantity (1= sin t) must be an integer and hence
the angle t must be either 30 or 90 degrees. Thus R=r should
be either three or two (see Figure 2b). That is; the diameter
can be either two or three circles wide. The number 3 is non-
trivial, and gives six circles touching each other, and all in
turn tangent to a seventh circle at the centre.

Clearly the arrangement of balls on a plane does follow
exactly the same pattern leading to six balls touching in pairs
and surrounding a seventh ball (touching all other six) at the
center. This result is unique and is independent of the size
of the balls involved. It is rather remarkable as it gives the
number 6 a special stature in the physics of our 3D space,
parallel to that of the number � in geometry. Such stature
must have been realized in the past by thinkers as far back as
the Babylonian times and the divine stature given to such a
number in the cultures of many early civilizations- six work-
ing days in a week and one for rest is one example, the six
prongs of the star of David and the seven days of creation as
well as counting in dozens might have also been inspired by
the same. Before this, the Bees have discovered the same fact
and started building their six sided honey combs accordingly.

Consider now the set of prime numbers. It is known that
every prime can be written as 6n � 1, where n is an integer.
That is the number six is a generator of all primes. Further, we

Fig. 2: Packing of 2, 3, 4, 7 & 19 (=7+(3+3)+(3+3)) balls in 3D
(a, b). The 19 ball case possesses six side and eight side symme-
tries (c, d).

note that whereas the number six is divisible into 2 (threes) or
3 (twos), an addition of one unit raises the number to seven-
a prime and not divisible into any smaller symmetric entities.
Put differently, an object composed of six elements can easily
break into smaller symmetrical parts, whereas an object made
of 7 is more stable and not easily breakable into symmetric
parts. We know from physics that symmetry in interactions
is demanded by many conservation laws. In fact symme-
try and conservation are tightly linked by Noether theorems-
such that symmetry can always be translated to a conserva-
tion law and vice versa. When we have a group of highly
symmetric identical items, the addition of one at the centre of
the collection can make it a prime.

Now if we arrange natural numbers in columns of six as
shown in Table 1, we see clearly that all primes fall along
two lines- top line for the 6n + 1 type and the bottom line
for the case of 6n � 1 type primes (text in bold). If these
are balls arranged physically on discs six each and on top of
each other, the two lines will appear diametrically opposite
on a long cylinder. Thus there are two favourite lines along
which all primes fall in a clear display of a sign of the close
connection between primes geometry and physics.

We see then that the connection between primes and ge-
ometry is an outcome of how the plane and the space lend
themselves to discretization, when we pair such blocks with
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Fig. 3: (a) Scaling up using small blocks of seven to make larger
blocks of seven; (b) Tight packing of circles naturally resulting in
hex objects made of hex layers. The number of circles in each layer
strip increases in steps of 6. Note that each hex sector has cannon
balls (or conical) packing structure; (c) Easy to construct (square)
brick structure to formally replace circles.

the set of positive integers. We may note also that the density
of 6n � 1 and 6n + 1 type primes is the same with respect
to the integers. Moreover, if we take the difference between
prime pairs, the distribution of the difference peaks at 6 and
all multiples of it, but diminishes as the difference increases
(Figure 4c).

In a violent interaction between two prime groups, one
or more of the groups could momentarily loose a member
or more leaving a non-prime group which then become less
stable and divisible into symmetric parts according to the fac-
tors making the collection. Clearly in this case, the few none
primes neighbouring a prime also become important, and
would contribute to the rules of break-up, to the type of prod-
ucts and to the energy required in each case.

Our packing endeavour can continue beyond 7 to make
larger 3D objects (Figure 2). A stable new arrangement can
result from the addition of 6 balls- 3 on each side (top and
bottom) making an object of 13 balls- a new prime figure.
Further 6 balls can be put symmetrically secured on top and
bottom to give an object of 19 balls. This last case in addition
to being a prime collection has an interesting shape feature.
It has six and eight face symmetries and fairly smooth faces
as shown in Figures 2(c, d), which could give rise to two dif-
ferent groups of 19 ball formations. Further addition of 6’s is
possible, but the resulting object appears less strong. To go a
different direction, we can instead consider every 7, 13 or 19
ball objects as the new building unit and use it to form further
new collections of objects of prime grouping. Clearly this can
be continued in an endless scaling up process (Figure 3b).
Scaling is a prominent phenomenon in physical structures.
Fig. 3b shows that, in a plane, our packing problem and also
that of the packing of cannon-balls [5] are only subsets of the
general densest packing problem and thus it truly is a dis-

Fig. 4: (a) Two overlapping plots of the first 104 primes: (1, 2, 3,
5, � � �, 104729) compared to fitting plot (–), y = (ln�) � n � lnn
(n = serial positions of prime numbers) (.); (b) Ratio of a prime (p)
to n

P
1=n; (c) Relative number of primes with differences of 2, 4,

6, � � � 30. Peaks occur at differences of 6, 12, 18, 24, 30.

cretization process of space. We note also that circles can be
replaced with squares placed in a brick like structure provided
we only think of the centres of these squares.

In the process of adding new rings of circles to form larger
objects, both prime and nonprime numbers are met. A prime
is formed every time we have highly symmetric combination
with one to be added or subtracted to it to break the symme-
try and produce a prime. If we consider the number of circles
added in each ring in the case of circular geometry (the same
applies to hex geometry with small modification), the radius
of a ring is given bymr+m, wherem is the number of layers
and r is the radius of one small circle set to unity. The number
of circles in each ring is estimated by the integer part of 2�m.
For the next ring we substitute (m+1) for m in the above
expressions and obtain 2�(m+1) for a ring. The relative in-
crease in the number of circles is the difference between these
two divided by the circumference which gives 1=m. The rel-
ative (or probable) number of primes for m-th ring should be
taken to come from the contribution of all the items in the ring
and this is proportional to

P
1=m for large m. The actual

number of primes is an integral of this given by m
P

1=m
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Fig. 5: Relative number of primes in (50000 integer sample): Hex
strips m : m + 1 (*); Circular rings m : m + 1, m is the number
of rings of circles around the centre (+); Interval n : 2n, n is the
serial number of a prime (�).
since both the radius of a circular strip and the number of
circles in that strip are proportional to m. Fig. 5 gives the
relative number of primes in one strip and the trend is of the
form a= logm, thus confirming the reasoning used above.

Figure 4b gives a plot of the ratio p=(n
P

1=n) where p
is the value of the n-th prime for some 50000 primes sample
which, for large n, equals the number of integers/circles in the
whole area. Since

P
1=n � ln(n) for large n, we see that

this ratio tends to a constant in agreement with the results of
the prime number theory (see [1] for example).

Further, there are few results from the theory of primes
that can also be interpreted in support of the above argu-
ments. For example the well known conjectures suggesting
that there is always a prime between m and 2m and also be-
tween m2 and (m+ 1)2 [7] can respectively be taken to cor-
respond to the symmetrical duplication of an area and to the
ring regions between two concentric circles must contain at
least one prime. That is if the original area or sector can pro-
duce a prime, then duplicating it symmetrically or adding one
more sector to it will produce at least one prime. The number
of primes in each of the above cases and that of a hex region
are of course more than one and the results from a sample of
(1–50000) integers are plotted in Figure 5. The data is gener-
ated using a simple Excel-Basic program shown below;

%Open excel > Tools > micro > Basic Editor > paste and run

subroutine prime( )

kk=0:

% search divisibility up to square root

for ii=1 to 1e6: z=1: iis=int(sqr(ii+1)+1):

% test divisibility

for jj=2 to iis: if ii-int(ii/jj)*jj=0 then z=0: next jj:

% write result in excel sheet

if z=1 then kk=kk+1: if z=1 then cells(kk,1)=ii: next ii:

end sub:

Fig. 6: Relative number of primes in hex strips (see Figure 3b);
primes of the form 6n + 1 (*); primes of the form 6n � 1, n is
the number of prims around the centre (+).

Concentric circles can be drawn on top of the hexagons
shown in Figure 3, and the number of smaller circles tangent
to the large circles then occur in a regular and symmetrical
way when the number of circular layers is a prime. Some at-
tempt was made by one researcher to explain this by forming
and solving the associated Diophantine equations. It is noted
here that potential energy and forces are determined by ra-
dial distances- that is the radii of the large circles. Also it is
known that the solution of sets of Diophantine equations is a
generator of primes.

None prime numbers can be written in a unique set of
primes. Thus for any number P we have;

P = pa1 pb2 pc3 � � � and
logP = a log p1 + b log p2 + c log p3 � � �

where a; b; c are integral powers of the prime factors p1 p2� � � pn. Ref. [8] have observed that this relation is equivalent
to energy conservation connecting the energy of one large ob-
ject to the energy of its constituents- where energy is to be
associated with (logP ). Further, if the values of a; b; c are
unity, the group would only have one energy state (structure),
and could be the equivalent of fermions in behaviour. When
the exponents are not unity (integer> 1), the group would be-
have as bosons and would be able to exist in multiple equiva-
lent energy states corresponding to the different combination
values of the exponents. Note that log p would correspond
to the derivative of the prime formula (n logn) for large n
accept for a negative sign.

Still in physics, we note that the size of the nucleus of
chemical elements is proportional to the number of nucle-
ons [3, 6] inside it. Since many of the physical and statisti-
cal models of the nucleus assume identical constituents, we
may think of testing the possibility of condensed matter fol-
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I – Elementary particles; II – Particle mass/electron mass; III – Nearest primes

I- e � �0 �� K� K0 � � ! K�
II- 1 206.7 264.7 274.5 966.7 974.5 1074.5 1506.8 1532.3 1745.5
III- 1 211 263 277 967 977 1069 1511 1531 1747

I- p n �0 ' � �+ �0 �� � �0

II- 1836.2 1838.7 1873.9 1996.1 2183.2 2327.5 2333.6 2343.1 2410.9 2573.2
III- 1831 1831 1877 2003 2179 2333 2339 2347 2417 2579

I- �� �� �� 
� � D0 D� F� D� ��c
II- 2585.7 2710.4 3000 3272 3491.2 3649.7 3657.5 3857.1 3933.4 4463.8
III- 2591 2713 3001 3271 3491 3643 3671 3863 3931 4463

Table 2: Relative masses of well known elementary particles and their nearest primes.

Fig. 7: Three normalized plots in ascending order of the relative
atomic weight of 102 elements (+); 30 elementary particles (�); the
first 102 prime numbers (*), starting with number 7. Each group is
divided by entry number 25 of the group.

lowing the prime packing patterns as a result. We may also
repeat the same for the masses of the elementary particles of
physics which have hitherto defied many efforts to put a sense
in the interpretation of their mass spectrum. To do this we
shall arrange the various chemical elements of the periodic
table (102 in total) and most of the elementary particles (30
in totals) in an ascending order of their masses (disregarding
any other chemical property). We shall divide the masses of
the chemical elements by the mass of the element say, number
25, in the list of ascending mass- which is Manganese (mass
55 protons) in order to get a relative value picture. The same
is done with the group of elementary particles and these are
divided by the mass of particle number 25 in the list namely
the (Tau) particle (mass 1784 in MeV/c2 units). Actual units
do not matter here as we are only considering ratios. We then
compare these with the list of primes arranged in ascending
order too. Table 2 contains the data for the case of elementary
particles. Masses of the chemical elements can be taken from
any periodic table. The nearest prime figures in the table are

Fig. 8: Absolute-value comparison of the masses of chemical ele-
ments and primes. Primes starting from 7 (+) and relative masses of
the chemical elements of the periodic table in units of Electron mass
divided by (137�6) (*).

for information and not used in the plots. In Figure 8 an abso-
lute value comparison for the elements is shown. The primes
starts at 7 and the masses of the elements (in electron mass)
are divided by 137�6 in order to get the two curves matching
at the two ends.

For better fitting, the prime number series had to be start-
ed at number 7, not 1 as one might normally do. Comparison
results are given in Figures 7 and 8. The trends are strikingly
similar. The type of agreement must be a strong indication
that the same packing rules are prevailing in all the cases.

3 Concluding remarks

We noticed that primes are closely connected to geometry and
physics and this is dictated by the very properties of discrete
space geometry like you can closely pack on a plane only
seven balls to form a circle. This result and that of the can-
non ball packing problem are found to be subsets of the dense
packing problem. One clear link between primes and geom-
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etry comes from the fact that all primes are generated by the
formula 6n� 1. When integers are associated with balls, this
formula can be represented in the form of a long cylinder with
primes lying along two opposite generator of the cylindrical
surface.

Highly energetic particles bound together dynamically are
more likely to have circular/spherical structures, and thus can
follow the packing arrangements discussed in this article. It
may be said now that the source of discreteness frequently ob-
served in the energy levels of atoms and the correspondence
between energy levels and prime numbers are only manifes-
tations of this fact. The number of elements (balls) in each
circular area or spherical leaf in the building up of a collec-
tion is proportional to n2. The energy of each would naturally
be proportional n2 too. Each constituent will thus carry 1=n2

of the energy and the jump of one constituent from one level
to the other gives an energy change of (1=n2

1�1=n2
2) as in the

Ballmer series. The Bohr model for the atom relies on an inte-
gral number of wavelengths around a circumference, which in
this case can be interpreted as integral number of balls, which
makes the present model more realistic and easier to digest.
The Bohr model was originally intended for the electrons, but
later studies took this to concern the whole nucleus [8].

If the packing picture is carried down to the level of very
elementary particles, we could speculate that the 2 and 3 cir-
cle solutions of the packing problem correspond to the 2 and
3 quarks constituent evidence found in experimental work
and stated in the quark theory of elementary particles. Fast
particles crossing the nucleus are normally used to probe the
nucleus. The 6 pack with 3 balls along any diameter could
very well be responsible for the conclusions of such measure-
ments.

The plots of the mass growth (packing) of chemical ele-
ments and elementary particles (and hence all massive bod-
ies), as shown here, follow very closely the rules of packing
of spheres and also those of the prime numbers. Prime num-
bers or prime collections appear when it is not possible to
divide a collection into symmetric (equal) parts and are hence
more stable in structure. This makes the growth of primes
to be naturally tied to the growth in the masses of condensed
matter in its different phases. We also note that the prime
character of a number is an independent property- more of an
abstract physical property, and it is not a function of the base
of the number system in use or the physical case that number
might represent.

The eight fold rules frequently found in the behaviour pat-
tern of chemical elements and elementary particles [4,8] may
now be suspected to be a consequence of the packing rules
of similar spheres in space. We might even suggest that the
successes of the Bohr Theory for the atom, the Ballmer series
formula for energy levels and indeed the Schrödinger equa-
tion itself in predicting discrete behaviour in atoms and other
entities, might be mainly due to the discretization of space
implied in their formulations. In fact while Schrödinger equa-

tion has many solutions, those deemed correct have to obey
the integrability condition which is essentially a discretization
(normalization) of space condition. We mention also that in
the solutions of Schrödinger equation, the main interest when
finding a solution (the wave function) is the resulting number
of discrete states along any radial or circumferential direction
and not the actual form (function) of the solution. Not forget-
ting also that the most fruitful solutions of Schrödinger equa-
tion are those in circular no-Cartesian coordinates anyway.

4 Recommendations

More work is needed to reach more concrete, verifiable and
useful results. Such work might investigate the origin of the
various properties that distinguish groups of elementary par-
ticles like strangeness, charm etc in relation to the possible
geometric shape/packing of their constituents. The circles
and spheres in the present investigation are not referring to
a static picture, but one formed by very fast moving parti-
cles that generated such shapes as a result of their own dy-
namic rules. Detailed position-energy calculations of various
arrangements, as done on crystals for example, could be done
here to pin point the reasons behind an elementary particle to
become stable or unstable in the presence of external distur-
bances, and also the explanation of the various probabilities
associated with different break-up scenarios of unstable par-
ticles.
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