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In this work, we shall present the foundational structure of a new unified field theory of
physical interactions in a geometric world-space endowed with a new kind of Finslerian
metric. The intrinsic non-metricity in the structure of our world-geometry may have
direct, genuine connection with quantum mechanics, which is yet to be fully explored
at present. Building upon some of the previous works of the Author, our ultimate aim
here is yet another quantum theory of gravity (in just four space-time dimensions). Our
resulting new theory appears to present us with a novel Eulerian (intrinsically motion-
dependent) world-geometry in which the physical fields originate.

1 Introduction

This work is a complementary exposition to our several pre-
vious attempts at the geometrization of matter and physical
fields, while each of them can be seen as an independent, self-
contained, coherent unified field theory.

Our primary aim is to develop a new foundational world-
geometry based on the intuitive notion of a novel, fully nat-
uralized kind of Finsler geometry, which extensively mimics
the Eulerian description of the mechanics of continuous me-
dia with special emphasis on the world-velocity field, in the
sense that the whole space-time continuum itself is taken to
be globally dynamic on both microscopic and macroscopic
scales. In other words, the world-manifold itself, as a whole,
is not merely an ambient four-dimensional geometric back-
ground, but an open (self-closed, yet unbounded), co-moving,
self-organizing, self-projective entity, together with the indi-
vidual particles (objects) encompassed by its structure.

2 Elementary construction of the new world-geometry

Without initial recourse to the common structure of Finsler
geometry, whose exposition can easily be found in the liter-
ature, we shall build the essential geometric world-space of
our new theory somewhat from scratch.

We shall simply start with an intuitive vision of intrinsi-
cally motion-dependent objects, whose fuzzy Eulerian behav-
ior, on the microscopic scale, is generated by the structure of
the world-geometry in the first place, and whose very pres-
ence, on the macroscopic scale, affects the entire structure
of the world-geometry. In this sense, the space-time contin-
uum itself has a dynamic, non-metric character at heart, such
that nothing whatsoever is intrinsically “fixed”, including the
defining metric tensor itself, which evolves, as a structural
entity of global coverage, in a self-closed (self-inclusive) yet
unbounded (open) manner.

In the present theory, the Universe is indeed an evolving,
holographic (self-projective) four-dimensional space-time
continuum U4 with local curvilinear coordinates x� and an
intrinsically fuzzy (quantum-like), possibly degenerate, non-

metric field  . As such, U4 may encompass all possible
metric-compatible (sub-)universes, especially those of the
General Theory of Relativity. In this sense, U4 may be viewed
as a Meta-Universe, possibly without admitting any apparent
boundary between its microscopic (interior) and macroscopic
(exterior) mechanisms, as we shall see.

If we represent the metric-compatible part of the geomet-
ric basis of U4 as g� (x), then, following our unification sce-
nario, the total geometric basis of our generally non-metric
manifold shall be given by

g� (x; u) = g� (x) +  � u

g� (x; u) = (g� (x; u))�1

g� (x; u) ; g� (x; u)

�
= ���

where u= dx�
ds g� (x; u) is the world-velocity field along the

world-line

s (x; u) =
Z q

g�� (x; u) dx�dx�

(with g�� (x; u) being the components of the generalized
metric tensor to be subsequently given below), and where
��� are the components of the Kronecker delta. (Needless to
say, the Einstein summation convention is applied throughout
this work as usual.) Here the inner product is indicated by
h: : : ; : : :i. We then have

@
@x�

g� (x; u) =
@
@ x�

g� (x) + u
@  �
@ x�

+  �r� u ;
wherer denotes the gradient, that is, the covariant derivative.

The components of the symmetric, bilinear metric tensor
g (x; u) for the given geometric basis are readily given by

g�� (x; u) = hg� (x; u) ; g� (x; u)i
g�� (x; u) g�� (x; u) = ��� :

As such, we obtain

g�� (x; u) = g�� (x) + 2 û(� �) + �2 (x; u)  �  � :
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As usual, round brackets enclosing indices indicate
symmetrization; subsequently, anti-symmetrization shall be
indicated by square brackets. In the above relation,
û� = hu; g� (x)i and

�2 (x; u) = g�� (x; u)u�u�

is the squared length of the world-velocity vector, which
varies from point to point in our world-geometry. As we
know, this squared length is equal to unity in metric-
compatible Riemannian geometry.

The connection form of our world-geometry is obtained
through the inner product

���� (x; u) =
�
g� (x; u) ;

@
@ x�

g� (x; u)
�
:

In an explicit manner, we see that

���� (x; u) = ���� (x) +
�
@  �
@ x�

�
u� +  �r� u�:

In accordance with our previous unified field theories
(see, for instance, [1–5]), the above expression must gener-
ally be asymmetric, with the torsion being given by the anti-
symmetric form

��[��] (x; u) = ��[��] (x) +
1
2

�
@  �
@ x�

� @  �
@ x�

�
u�+

+
1
2
�
 �r� u� �  � r� u�� :

In contrast to the case of a Riemannian manifold (without
background embedding), we have the following unique case:

r� g� (x; u) � @
@ x�

g� (x; u)� ���� (x; u) g� (x; u) =

=
1
2
 �  �

�r� u�� 
for which, additionally, ���� (x)  � = 0. Consequently, the
covariant derivative of the world-metric tensor fails to vanish
in the present theory, as we obtain the following non-metric
expression:

r� g�� (x; u) = �  �  �r� u�:
At this point, in order to correspond with Finsler geome-

try in a manifest way, we shall write

r� g�� (x; u) = ����r� u�
and

g�� (x; u) =
1
2

@2

@ u�@ u�
�2 (x; u)

in such a way that the following conditions are satisfied:

���� = �  �  � ;

1
2

���� =
1
2

�(���) =
1
2

@
@ u�

g�� (x; u) =

=
1
4

@3

@ u� @ u� @ u�
�2 (x; u) ;

���� u� = 0 ;

 � u� = 0 :

Once the velocity field is known, the Hessian form of the
metric tensor enables us to write, in the momentum represen-
tation for a geometric object with mass m (initially at rest,
locally),

g�� (x; u) =
1
2
m2 @2

@ p� @ p�
�2 (x; u) ;

p� =mu�

such that, with �2 (x; u) being expressed in parametric form,
physical geometry, that is, the existence of a geometric object
in space-time, is essentially always related to mass and its
energy content.

Taking into account the projective angular tensor given by


�� (x; u) = g�� (x; u)� 1
�2 (x; u)

u� u� ;


�� (x; u) 
�� (x; u) = ��� � 1
�2 (x; u)

u� u� ;


�� (x; u) u� = 0 ;

where n is the number of dimensions of the geometric space
(in our case, of course, n= 4), in the customary Finslerian
way, it can easily be shown that

���� =
1
n

�

�� (x; u) �� + 
�� (x; u) �� +

+ 
�� (x; u) �� � 1
�� ��

�� �� ��
�
;

�� = g�� (x; u) ���� = 2
@

@ u�
ln
p

det (g (x; u)) ;

@
@ u�

ln
p

det (g (x; u)) =
1
2
g�� (x; u)

@
@u�

g�� (x; u)

for which, in our specific theory, we have, with  2 =
= g�� (x; u)  �  � ,

���� =
 2

n

�

�� (x; u)  � + 
�� (x; u)  � +

+ 
�� (x; u)  � � 1
 2  �  �  �

�
:

We may note that, along the world-line, for the intrinsic
geodesic motion of a particle given by the parallelism

Du�

Ds
= (r� u�)u� = 0 ;
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the Finslerian condition

D
Ds

g�� (x; u) = 0

is always satisfied, along with the supplementary condition

D
Ds

�2 (x; u) = 0 :

Consequently, we shall also have

D
Ds


�� (x; u) = 0 :

It is essential to note that, unlike in Weyl geometry, we
shall not expect to arrive at the much simpler gauge condition
r� g�� (x; u) = g�� (x; u) A� ( ). Instead, we shall always
employ the following alternative general form:

r� g�� (x; u) =
1

�2 (x; u)
�
�u g�� � 2 û(�  �)

�
 �r� u�

where, as we can easily see, the diffeomorphic structure of the
metric tensor for the condition of non-metricity of our world-
geometry is manifestly given by

�u g�� � g�� (x; u)� g�� (x) =

= 2 û(� �) + �2 (x; u)  �  �

3 Explicit physical (Eulerian) structure of the connec-
tion form

Having recognized the structural non-metric character of our
new world-geometry in the preceding section, we shall now
seek to outline the explicit physical structure of the connec-
tion form for the purpose of building a unified field theory.

We first note that the non-metric connection form of our
theory can always be given by the general expression

���� (x; u) =
1
2
g�� (x; u)

�
@
@ x�

g�� (x; u)�

� @
@x�

g�� (x; u) +
@
@ x�

g�� (x; u)
�

+

+ ��[��] (x; u)� g�� (x; u)
�
g�� (x; u) ��[��] (x; u) +

+ g�� (x; u) ��[��] (x; u)
�

+

+
1
2
g�� (x; u)

�
r� g�� (x; u)�

� r� g�� (x; u) +r� g�� (x; u)
�
:

Then, using the results given in the previous section, in
direct relation to our previous metric-compatible unification
theory of gravity, electromagnetism, material spin, and the
nuclear interaction [4], where the electromagnetic field and

material spin are generated by the torsion field, we readily
obtain

���� (x; u) =
1
2
g�� (x; u)

�
@
@ x�

g�� (x; u)�

� @
@ x�

g�� (x; u) +
@
@ x�

g�� (x; u)
�

+

+
e

2mc2
�2 (x; u)

�
F�� u� � F�� u� � F�� u��+

+ S��� � g�� (x; u)
�
g�� (x; u) S��� + g�� (x; u) S���

�
+

+
1
2
g��(x; u) �( �  �r� u� �  �  � r� u� +

+  �  �r� u�) :
Here it is interesting to note that even when  = 0, which

gives a metric-compatible (“classical”) case, our connection
form already explicitly depends on the world-velocity (in ad-
dition to position), hence the unified field theory of physical
interactions outlined in [4] can somehow already be consid-
ered as being a Finslerian one despite the fact that it is metric-
compatible.

We recall, still from [4], that the electromagnetic field F
and the material spin field S have a common geometric origin,
which is the structural torsion of the space-time manifold, and
are essentially given by the following expressions:

F�� = 2
mc2

e
��[��] u� ;

S��� =S�� u� � S�� u� ;

S�� u� = 0; S�� =S[��] ;

��[��] =
e

2mc2
F�� u� + S��� ;

wherem is the (rest) mass, e is the electric charge, and c is the
speed of light in vacuum, such that the physical fields are in-
trinsic to the space-time geometry itself, as manifest in gener-
alized geodesic equation of motion Du�

Ds = 0, which naturally
yields the general relativistic equation of motion of a charged,
massive particle in the gravitational field

mc2
�
du�

ds
+ ��

�� u
� u�

�
= eF�� u

� ;

��
�� =

1
2
g��

�
@ g��
@ x�

� @ g��
@ x�

+
@ g��
@ x�

�
:

In other words, the physical fields other than gravity
(chiefly, the electromagnetic field) can also be represented
as part of the internal structure of the free-fall of a particle.
Just like gravity, being fully geometrized in our theory, these
non-holonomic (vortical) fields are no longer external entities
merely added into the world-picture in order to interact with
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gravity and the structure of space-time itself, thereby essen-
tially fulfilling the geometrization program of physics as
stated, for example, in [6].

Correspondingly, the nuclear (Yang-Mills) interaction is
essentially given in our theory as an internal electromagnetic
interaction by

F i�� = 2!i� ��[��] ;

F�� =
mc2

e
F i�� ui (i= 1; 2; 3) ;

where !i� are the components of the tetrad (projective) field
relating the global space-time to the internal three-
dimensional space of the nuclear interaction.

In this direction, we may also define the extended electro-
magnetic field, which explicitly depends on the world-
velocity, through

~F�� (x; u) =�2 (x; u)F�� = 2�2 (x; u)
mc2

e
��[��] u� :

4 Substantial structure of covariant differentiation
in U4

Given an arbitrary world-tensor T (x; u) at any point in our
Finslerian world-geometry, we have the following elementary
substantial derivatives:

d
d�

T��:::
��:::� (x; u) =

= @
@x�

�
T��:::
��:::� (x; u)

� dx�
d�

+ @
@u�

�
T��:::
��:::� (x; u)

� @u�
@�

;

d
dx�

T��:::
��:::� (x; u) =

= @
@x�

T��:::
��:::� (x; u) + @
@u�

�
T��:::
��:::� (x; u)

� @u�
@x�

;

where � is a global parameter.
In this way, the substantial structure of covariant differen-

tiation in U4 shall be given by

~r� T��:::
��:::� (x; u) =

= @
@ x�

T��:::
��:::� (x; u) + @
@ u&

�
T��:::
��:::� (x; u)

� @ u&
@ x�

+

+ ���� (x; u)T ��:::
��:::� (x; u) + ���� (x; u)T��:::
��:::� (x; u) + : : :+

+ �
�� (x; u)T��:::���:::� (x; u)� ���� (x; u)T��:::
��:::� (x; u) �
����� (x; u)T��:::
��:::� (x; u)� : : :� ���� (x; u)T��:::
��:::� (x; u)

along with the more regular (point-oriented) form

r� T��:::
��:::� (x; u) = @
@ x�

T��:::
��:::� (x; u) +

+ ���� (x; u)T ��:::
��:::� (x; u) + ���� (x; u)T��:::
��:::� (x; u) + � � �+
+ �
�� (x; u)T��:::���:::� (x; u)� ���� (x; u)T��:::
��:::� (x; u) �
����� (x; u)T��:::
��:::� (x; u)� � � � � ���� (x; u)T��:::
��:::� (x; u) :

Turning our attention to the world-metric tensor, we see
that the expression

~r� g�� (x; u) = @
@ x�

g�� (x; u) + @
@ u�

(g�� (x; u)) @ u
�

@ x�
�

����� (x; u) g�� (x; u)� ���� (x; u) g�� (x; u)

may enable us to establish a rather indirect metricity-like
condition. This can be done by invoking the condition

�������� (x; u)u� = 0

and by setting
~r� g�� (x; u) = 0 :

Now, with the help of the already familiar relations

@
@ u�

g�� (x; u) = ���� ;

g�� (x; u)
@
@ u�

g�� (x; u) = 2
@
@ u�

ln
p

det (g (x; u))

we shall again have

r� g�� (x; u) = ����r� u� :

5 Generalized curvature forms

We are now equipped enough with the basic structural rela-
tions to investigate curvature forms in our theory. In doing so,
we shall derive a set of generalized Bianchi identities corre-
sponding to a peculiar class of field equations, including some
possible conservation laws (in rather special circumstances).

In a direct customary manner, we have the extended ex-
pression� ~r� ~r� � ~r� ~r��T��:::
��:::� (x; u) =

= (r� r� �r�r�)T��:::
��:::� (x; u) +

+ @
@ u�

�r�T��:::
��:::� (x; u)
� @ u�
@ x�

�

� @
@ u�

�r�T��:::
��:::� (x; u)
� @ u�
@ u�

+

+r�
�

@
@ u�

�
T��:::
��:::� (x; u)

� @ u�
@ x�

�
�

�r�
�

@
@ u�

�
T��:::
��:::� (x; u)

� @ u�
@ x�

�
+

+ @
@ u�

�
@
@ u�

�
T��:::
��:::� (x; u)

� @ u�
@ x�

�
@ u�

@ x�
�

� @
@ u�

�
@
@ u�

�
T��:::
��:::� (x; u)

� @ u�
@ x�

�
@ u�

@ x�
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for which the essential part is

(r� r� �r�r�)T��:::
��:::� (x; u) =

=R���� (x; u)T��:::
��:::� (x; u) +

+R���� (x; u)T��:::
��:::� (x; u) + : : :+

+R���� (x; u)T��:::
��:::� (x; u) �
�R���� (x; u)T ��:::
��:::� (x; u) �
�R���� (x; u)T��:::
��:::� (x; u) �
� : : :�R
��� (x; u)T��:::���:::� (x; u) �
� 2 ��[��] (x; u)r� T��:::
��:::� (x; u) :

Here the world-curvature tensor, that is, the generalized,
Eulerian Riemann tensor, is given by

R���� (x; u) =
@
@ x�

���� (x; u)� @
@ x�

���� (x; u) +

+ ���� (x; u) ���� (x; u)� ���� (x; u) ���� (x; u)

for which the corresponding curvature form of mobility may
simply be given by

~R���� (x; u) = @
@ x�

���� (x; u) + @
@ u�

�
���� (x; u)

� @ u�
@ x�

�

� @
@ x�

���� (x; u)� @
@ u�

�
���� (x; u)

� @ u�
@ x�

+

+ ���� (x; u) ���� (x; u)� ���� (x; u) ���� (x; u) :

We can now write the following fundamental decomposi-
tion:

R���� (x; u) =B���� (x; u) +M�
��� (x; u) +

+N�
��� (x; u) + U���� (x; u) ;

B���� (x; u) = @
@ x�

��
�� (x; u)� @

@ x�
��
�� (x; u) +

+ ��
�� (x; u) ��

�� (x; u)� ��
�� (x; u) ��

�� (x; u) ;

M�
��� (x; u) =

^r�K�
�� (x; u)� ^r�K�

�� (x; u) +

+K�
�� (x; u)K�

�� (x; u)� K�
�� (x; u)K�

�� (x; u) ;

N�
��� (x; u) =

^r�Q��� (x; u)� ^r� Q��� (x; u) +

+Q��� (x; u)Q��� (x; u)� Q��� (x; u)Q��� (x; u) ;

U����(x; u) =K�
��(x; u)Q��� (x; u)�K�

��(x; u)Q��� (x; u) +

+Q��� (x; u)K�
�� (x; u)�Q��� (x; u)K�

�� (x; u) ;

where the Eulerian Levi-Civita connection, the Eulerian con-
torsion tensor, and the connection of non-metricity are re-

spectively given by

��
�� (x; u) = 1

2
g�� (x; u)

�
@
@ x�

g�� (x; u)� @
@ x�

g�� (x; u) +

+ @
@ x�

g�� (x; u)
�
;

K�
�� (x; u) = ��[��] (x; u)�
� g�� (x; u)

�
g�� (x; u) ��[��] (x; u) + g�� (x; u) ��[��] (x; u)

�
;

Q��� (x; u) = 1
2
g�� (x; u)

�
r� g�� (x; u)�r� g�� (x; u) +

+ r� g�� (x; u)
�
;

such that
^r represents covariant differentiation with respect

to the symmetric connection � (x; u) alone. The curvature
tensor given by B (x; u) is, of course, the Eulerian Riemann-
Christoffel tensor, generalizing the one of the General Theory
of Relativity which depends on position alone.

Of special interest, for the world-metric tensor, we note
that
(r�r��r�r�) g�� (x; u) =R���� (x; u) +R���� (x; u)�
� 2 ��[��] (x; u)r� g�� (x; u)

where, with the usual notation, R���� (x; u) =
g�� (x; u)R���� (x; u). That is, more specifically, while
keeping in mind that

���� =
@
@ u�

g�� (x; u) = �  �  � ;

we have

(r�r� �r�r�) g�� (x; u) =R���� (x; u) +

+R���� (x; u)� 2 ��[��] (x; u) ���
 r� u
 :
As such, we have a genuine homothetic curvature

given by

H�� (x; u) =R���� (x; u) =

=
^r�Q� (x; u)� ^r� Q� (x; u) =

=
@
@ x�

Q� (x; u)� @
@ x�

Q� (x; u) ;

Q� (x; u) =Q��� (x; u) =
1
2
g�� (x; u)r� g�� (x; u) =

= 2  � r� u� :
Upon setting

�� (x; u) =
1
2
 � r� u� ;

we have

H�� (x; u) = 2
�

@
@ x�

�� (x; u)� @
@ x�

�� (x; u) �

� 2
�
�� (x; u)

@ ln 
@ x�

� �� (x; u)
@ ln 
@ x�

��
:
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At this point, the generalized, Eulerian Ricci tensor is
given in the form

R�� (x; u) =R���� (x; u) =Z�� (� (x; u) ;K (x; u)) +

+N�� (Q (x; u)) +X�� (K (x; u) ; Q (x; u)) ;

Z�� (� (x; u) ;K (x; u)) =B���� (x; u) +M�
��� (x; u) ;

N�� (Q (x; u)) =N�
��� (x; u) ;

X�� (K (x; u) ; Q (x; u)) =U���� (x; u) ;

which admits the peculiar anti-symmetric part

R[��] (x; u) = 1
2

� @
@ x�

K�
�� (x; u)� @

@ x�
K�
�� (x; u)

�
+

+ 1
2

� @
@ x�

Q� (x; u)� @
@ x�

Q� (x; u)
�

+

+
^r� ��[��] (x; u) +

+ ��[��] (x; u)K�
�� (x; u) + ��[��] (x; u)Q� (x; u) +

+ ��[��] (x; u)Q��� (x; u)� ��[��] (x; u)Q��� (x; u) +

+ 1
2
�
K�
�� (x; u)K�

�� (x; u)�K�
�� (x; u)K�

�� (x; u)
�
;

where we have made use of the fact that K�
[��] (x; u) =

= ��[��] (x; u). Let us also keep in mind that the explicit phys-
ical structure of the connection form forming our various cur-
vature expressions, as it relates to gravity, electromagnetism,
material spin, and the nuclear interaction, is given in Section 3
of this work, naturally following [4].

We can now obtain the complete Eulerian generalization
of the first Bianchi identity as follows:

R���� (x; u) +R����(x; u) +R���� (x; u) =

= � 2 g�� (x; u)
�

@
@ x�

��[��] (x; u) + @
@ x�

��[��] (x; u) +

+ @
@ x�

��[��] (x; u)
�
�

� 2 g�� (x; u)
�

��
� (x; u) �
[��] (x; u) +

+ ��
� (x; u) �
[��] (x; u) + ��
� (x; u) �
[��] (x; u)
�

+

+ 2 ���


�
��[��] (x; u)r�u
 + ��[��] (x; u)r�u
 +

+ ��[��] (x; u)r�u

�
:

Similarly, after a somewhat lengthy calculation, we ob-
tain, for the generalization of the second Bianchi identity,

r�R���� (x; u) +r�R���� (x; u) +r� R���� (x; u) =

= 2
�

�
[��] (x; u)R��
� (x; u) + �
[��] (x; u)R��
� (x; u) +

+ �
[��] (x; u)R��
� (x; u)
�

+

+ �
�� (x; u) ((r� ��
�)r�u� � (r� ��
�)r� u�) +

+ �
�� (x; u) ((r� ��
�)r�u� � (r� ��
�)r� u�) +

+ �
�� (x; u) ((r� ��
�)r�u� � (r� ��
�)r� u�) �
� �
�� (x; u) ��
�

�
R���� (x; u)u� + 2 ��[��] (x; u)r�u�� �

� �
�� (x; u) ��
�
�
R���� (x; u)u� + 2 ��[��] (x; u)r� u�� �

� �
�� (x; u) ��
�
�
R���� (x; u)u� + 2 ��[��] (x; u)r� u�� +

+ ��
� (r� u�)
�r� �
�� (x; u)�r� �
�� (x; u)

�
+

+ ��
� (r� u�)
�r� �
�� (x; u)�r� �
�� (x; u)

�
+

+ ��
� (r� u�)
�r� �
�� (x; u)�r� �
�� (x; u)

�
;

where

r� ���� (x; u)�r� ���� (x; u) = �R���� (x; u) +

+ ���� (x; u) ���� (x; u)� ���� (x; u) ���� (x; u) �
� 2 ��[��] (x; u) ���� (x; u) :

By contraction, we may extract a physical density field as
follows:

J� (x; u) =

= �r�
�1

2
�
R�� (x; u) + �R�� (x; u)

�� 1
2
��� R (x; u)

�
;

where �R�� (x; u) =R���� (x; u) are the components of the
generalized Ricci tensor of the second kind and
R (x; u) =R�� (x; u) = �R�� (x; u) is the generalized Ricci
scalar. As we know, the Ricci tensor of the first kind and
the Ricci tensor of the second kind coincide only when the
connection form is metric-compatible. The asymmetric, gen-
erally non-conservative world-entity given by

G�� (x; u) =
1
2
�
R�� (x; u) + �R�� (x; u)

�� 1
2
��� R (x; u)

will therefore represent the generalized Einstein tensor, such
that we may have a corresponding geometric object given by

C� (x; u) � �g�� (x; u) J� (x; u) =

=r� G�� (x; u)�G�� (x; u)r� g�� (x; u) :

6 Quantum gravity from the physical vacuum of U4

We are now in a position to derive a quantum mechanical
wave equation from the underlying structure of our present
theory. So far, our field equations appear too complicated
to handle for this particular purpose. It is quite enough that
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we know the structural content of the connection form, which
encompasses the geometrization of the known classical fields.
However, if we deal with a particular case, namely, that of
physical vacuum, we shall immediately be able to speak of
one type of emergent quantum gravity.

Assuming now that the world-geometry U4 is devoid of
“ultimate physical substance” (that is, intrinsic material con-
finement on the most fundamental scale) other than, perhaps,
primordial radiation, the field equation shall be given by

R�� (x; u) = 0

for which, in general, R���� (x; u) =W�
��� (x; u) , 0,

where W (x; u) is the generalized Weyl conformal tensor. In
this way, all physical fields, including matter, are mere ap-
pearances in our geometric world-structure. Consequently,
from R(��) (x; u) = 0, the emergent picture of gravity is
readily given by the symmetric Eulerian Ricci tensor for the
composite structure of gravity, that is, explicitly,

B�� (� (x; u)) = � �M��
�
K (x; u)

�
+N��

�
Q ( )

�
+

+U��
�
K (x; u) ; Q ( )

��
;

where we have written Q (x; u) =Q ( ), such that, in this
special consideration, gravity can essentially be thought of as
exterior electromagnetism as well as arising from the quan-
tum fuzziness of the background non-metricity of the world-
geometry. In addition, from R[��] (x; u) = 0, we also have
the following anti-symmetric counterpart:

R[��] (� (x; u) ;K (x; u)) = @
@ x�

Q� ( )� @
@ x�

Q� ( ) �
���[��] (x; u)Q� ( ) +

+ ��[��] (x; u)Q��� ( )� ��[��] (x; u)Q��� ( ) ;

Q� ( ) = 1
2
 2  � r� u� :

Correspondingly, we shall set, for the “quantum poten-
tial”,

Q� ( ) =
@
@ x�

ln � 

such that the free, geodesic motion of a particle along the
fuzzy world-path s (x; u) = �

�
 
� � 
��

in the empty U4 can
simultaneously be described by the pair of dynamical equa-
tions

Du�

Ds
= 0 ;

D � 
Ds

= 0 ;

since, as we have previously seen, Q�
�
 
� � 
��
u� = 0.

Immediately, we obtain the geometrically non-linear
wave equation

1p
det (g (x; u))

@
@ x�

�
g�� (x; u)

p
det (g (x; u)) @

� 
@ x�

�
=

= (R (� (x; u) ;K (x; u)) + � (Q ( ))) � 

that is, �
�2
B � _

R (x; u)
�

� = 0 ;

where

�2
B = 1p

det (g (x; u))
@
@ x�

�
g�� (x; u)

p
det (g (x; u)) @

@ x�
�

is the covariant four-dimensional Beltrami wave operator and,
with the explicit dependence of  on � ,

_
R (x; u) =R (� (x; u) ;K (x; u)) + �

�
Q
�
 
� � 
���

is the emergent curvature scalar of our quantum field, for
which

� (Q ( )) =
_
N
�
Q
�
 
� � 
���� 1

� 2 g
��(x; u)

@ � 
@ x�

@ � 
@ x�

;

_
N
�
Q
�
 
� � 
���

=N
�
Q
�
 
� � 
���

+

+U
�
K (x; u) ; Q

�
 
� � 
���� g��(x; u)

^r�Q�� � � 
��
:

In terms of the Eulerian Ricci scalar, which is now quan-
tized by the wave equation, we have a quantum gravitational
wave equation with two quantized intrinsic sources, namely,
the torsional source M (x; u), which combines the electro-
magnetic and material sources, and the quantum mechanical
source �

�
Q
�
 
� � 
���

= � (Q (x; u)),�
�2
B �B (x; u)

� � =M (x; u) � + �
�
Q
�
 
� � 
��� � 

thereby completing the quantum gravitational picture at an
elementary stage.

7 Special analytic form of geodesic paths

Here we are interested in the derivation of the generalized
geodesic equation of motion such that our geodesic paths cor-
respond to the formal solution of the quantum gravitational
wave equation in the preceding section. Indeed, owing to
the wave function � = � (x; u), these geodesic paths shall be
conformal ones.

For our purpose, let 	 (x) = const: represent a family of
hypersurfaces in U4 such that with respect to a mobile hy-
persurface �, for @

@ x� (	 (x)) �x� = 0, there exists a gen-
uine unit normal velocity vector, given by n� = dx�

d� , at some
point whose extended path can be parametrized by � = � (s),
that is

n� = �
�
x;

@
@ x

	 (x)
�

@
@ x�

	 (x)

g�� (x; u) n� � n� = 0 :

The essential partial differential equation representing
any quantum gravitational hypersurface � can then
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simply be represented by the arbitrary parametric form
�
�
x; @

@ x 	 (x)
�

= �
� � 
�

= const such thatZ b

a

�
� (x; u)� � � � 

� d
d�

	 (x)
�
d� > 0

where a and b are two points in � .
Keeping in mind once again that  � u� = 0 and that

u� =
1
2

@
@ u�

�2 (x; u)

@
@ x�

g�� (x; u) =

= ���� (x; u) + ���� (x; u) +  �  �  �r�u�
the generalized Euler-Lagrange equation corresponding to
our situation shall then be given by

d
ds

�
@

@ u�
�2 (x; u)

�
� @
@ x�

�2 (x; u) +

+
@
@ u�

�
�2 (x; u)

� @ u�
@ x�

+ b� (x; u) = 0 ;

where the “external” term is given by

b� (x; u) = 4 ��[��] (x; u)u� u� :

As a matter of straightforward verification, we have

du�
ds
� ���� (x; u)u� u� = 0

A unique general solution to the above equation correspond-
ing to the quantum displacement field  = 

� � 
�
, which,

in our theory, generates the non-metric nature of the world-
manifold U4, can now be obtained as

s (x; u) = s
�
 
� � 
��

=C1 + C2

Z
exp
�Z

H
�
 
� � 
�
ds
��

ds

where C1 and C2 are integration constants. This is such that,
at arbitrary world-points a and b, we have the conformal re-
lation (for C =C2)

dsb = exp
�
C
Z
H
�
 
� � 
��
ds
�
dsa ;

which sublimely corresponds to the case of our previous
quantum theory of gravity [3].

8 Geometric structure of the electromagnetic potential

As another special consideration, let us now attempt to exten-
sively describe the geometric structure of the electromagnetic
potential in our theory.

Due to the degree of complicatedness of the detailed gen-
eral coordinate transformations in U4, let us, for the sake of

tangibility, refer a smoothly extensive coordinate patch P (x)
to the four-dimensional tangent hyperplane M4 (y), whose
metric tensor � is Minkowskian, such that an ensemble of
Minkowskian tangent hyperplanes, that is,X

a= 1;2;:::;N
M (a)

4 (y)

cannot globally cover the curved manifold U4 without
breaking analytic continuity (smoothness), at least up to the
third order. Denoting the “invariant derivative” by
rA =E�A (x; u) @

@ x� , this situation can then basically be
described by

g�� (x; u) =EA� (x; u)EB� (x; u) �AB ;

EA� (x; u) =
@ yA

@ x�
; E�A (x; u) =

�
EA� (x; u)

��1 ;

yA = yA (x; u) ; x� =x� (y) ;

EA� (x; u)E�A (x; u) = ���; E
�
A (x; u)EB� (x; u) = �BA ;

���� (x; u) =E�A (x; u)
@
@ x�

EA� (x; u) =

=E�A (x; u)EB� (x; u)rBEA� (x; u) :

Of fundamental importance in our unified field theory are,
of course, the torsion tensor given by

��[��] (x; u) = 1
2
E�A (x; u)

� @
@ x�

EA� (x; u)� @
@ x�

EA� (x; u)
�

and the curvature tensor given by

R���� (x; u) =

= � E�A (x; u)
�� @

@ x�
@
@ x�

� @
@ x�

@
@ x�

�
EA� (x; u)

�
=

=EA� (x; u)
�� @

@ x�
@
@ x�

� @
@ x�

@
@ x�

�
E�A (x; u)

�
:

Additionally, we can also see that

R���� (x; u) =

=EA� (x; u)
�� @

@ x�
@
@ x�

� @
@ x�

@
@ x�

�
EA� (x; u)

�
+

+
� @
@ x�

@
@ x�

� @
@ x�

@
@ x�

�
g�� (x; u) :

Immediately, we obtain

R���� (x; u) =E�A (x; u)EB� (x; u)EC� (x; u) �
� �(rBrC�rCrB)EA� (x; u)

��2���� (x; u) ��[��] (x; u) :

Introducing a corresponding internal (“isotopic”) curva-
ture form through

�R��AB (x; u) =E�C (x; u)
�
(rArB�rB rA)EC� (x; u)

�
;
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we can write

R���� (x; u) =EA� (x; u)EB� (x; u) �R��AB (x; u) �
� 2 ���� (x; u) ��[��] (x; u) :

In physical terms, we therefore see that

R���� (x; u) =EA� (x; u)EB� (x; u) �R��AB (x; u) �
� 2 ���� (x; u)S��� � e

mc2
�2 (x; u) ���� (x; u)F�� u� ;

where the electromagnetic field tensor can now be expressed
by the extended form (given in Section 3)

~F�� (x; u) = 2
mc2

e
�2 (x; u) ��[��] (x; u)u� ;

that is,

~F�� (x; u) =
mc2

e
�2 (x; u)

�
@ u�
@ x�

� @ u�
@ x�

�

� EA� (x; u)EB� (x; u) (rB uA �rB uA)
�
:

An essential feature of the electromagnetic field in our
unified field theory therefore manifests as a field of vorticity,
somewhat reminiscent of the case of fluid dynamics, that is,

~F�� (x; u) =

= 2 mc
2

e
�2 (x; u)

�
!�� � EA� (x; u)EB� (x; u) �AB

�
;

where the vorticity field is given in two referential forms by

!�� =
1
2

�
@ u�
@ x�

� @ u�
@ x�

�
;

�AB =
1
2

(rB uA � rA uB) :

For our regular Eulerian electromagnetic field, we
simply have

F�� =F�� (x; u) = 2 mc
2

e
�
!�� � EA� (x; u)EB� (x; u) �AB

�
:

After some algebraic (structural) factorization, a profound
physical solution to our most general Eulerian expression for
the electromagnetic field can be obtained in integral form as

'� (x; u) = mc2

e

I
C
�2 (x; u)

� @
@ x�

EA� (x; u)
�
uA dx�

such that ~F�� (x; u) = @
@ x� '� (x; u) � @

@ x� '� (x; u), that
is, in order to preserve the customary gauge invariance, our
electromagnetic field shall manifestly be a “pure curl”.
This structural form is, of course, given in the domain of a
vortical path C covered by a quasi-regular surface spanned
in two directions and essentially given by the form

d �AB = d1 yA (x; u) d2 yB (x; u) � d1 yB (x; u) d2 yA (x; u).
Upon using Gauss theorem, we therefore see that.

'� (x; u) = 1
2
mc2

e
�

�
ZZ

�
�2 (x; u)

�
(rB rA � rArB)EC� (x; u)

�
uC d �AB :

In other words, we have

'� (x; u) = � 1
2
mc2

e

Z Z
�
�2 (x; u) �R��AB (x; u)u� d �AB

or, with d ��� =E�A (x; u)E�B (x; u) d �AB ,

'� (x; u) = � 1
2
mc2

e

Z Z
�
�2 (x; u)�

� �R���� (x; u) + 2 ���� (x; u) ��[��] (x; u)
�
u� d ���;

which means that

'� (x; u) = � 1
2
mc2

e

Z Z
�
�2(x; u)�

� �R���� (x; u) + 2 ���� (x; u)S��� (x; u)
�
u� d ��� �

� 1
2

Z Z
�

���� (x; u)F�� (x; u)u� u� d ���:

Combining the above expression with the geodesic equa-
tion of motion given by du�

ds = ���� (x; u)u� u� , we finally
obtain the integral equation of motion

'� (x; u) = � 1
2
mc2

e

Z Z
�
�2 (x; u)�

� �R���� (x; u) + 2 ���� (x; u)S��� (x; u)
�
u� d ��� �

� 1
2

Z Z
�

�
du�
ds

�
F�� (x; u) d ���;

which shows, for the first time, the explicit dependence of the
electromagnetic potential on world-velocity (as well as local
acceleration), global curvature, and the material spin field.

9 Closing remarks

In the foregoing presentation, we have created a new kind
of Finsler space, from which we have built the foundation
of a unified field theory endowed with propagating torsion
and curvature. Previously [1, 5], we have done it without the
“luxury” of killing the metricity condition of Riemannian ge-
ometry; at present, the asymmetric connection form of our
world-geometry, in addition to the metric and curvature, is
a function of both position and world-velocity. Therefore,
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looking back on our previous works, we may conclude that,
in particular, the theories outlined in [3,4], as a whole, appear
to be a natural bridge between generalized Riemannian and
Finslerian structures.

A very general presentation of my own version of the
theory of non-linear connection has also been given in [3],
where, in immediate relation to [4], the enveloping evolu-
tive world-structure can be seen as some kind of conformal
Finsler space with torsion. The union between [3] and [4] has
indeed already given us the essence of a fully geometric quan-
tum theory of gravity, with electromagnetism and the Yang-
Mills gauge field included. The present work mainly serves
to complement and enrich this purely geometric union.
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