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Events in nature can be described using fields and their associated partial differential
equations, or equivalently, the mechanics of interaction of point particles described by
ordinary differential equations. The field approach can be looked at as the statistical
average of the particle approach and in this sense is more economical for computing.
The particle approach, on the other hand, is more fundamental but requires enormous
computing power as the model has to follow the movements of every individual particle
in the interaction. The present work aims at reducing such computing task by solving
the problem of many particle interactions (under a central force environment) in an
analytical form for one pair of particles using a Kepler type formula- giving the position
of the particle as a function of time only. The resulting (analytical) formula is then used
to write the result of the many-particle interaction using simple vector superposition.
This approach takes less computing time and can give greater numerical stability when
the distances between the particles become small and the force grows as the inverse

square of the separation distance.

1 Introduction

The problems of physics can be equally described using in-
teracting particles or fields. The flow of fluids, for example,
is the result of basic interactions of an enormous number of
small particles moving under an inverse square force system.
Such processes can be described correctly using force fields
that lead to PDE’s like those for fluid mechanics and electro-
dynamics of material media. It is also possible to achieve a
description of the same phenomena using interacting particles
following what truly happens in the real world. In the present
approach, all particles are assumed identical point masses that
may carry charges too. The particles interact under a central
force environment in which only the separation distance is
of any significance. The coupling constants of such interac-
tions can correspond to any of the known forces of nature
— gravitation, electrostatic, or any other similarly behaving
force. The resultant coupling constant is simply the arith-
metic sum of such constants for all the component forces,
with a negative sign to distinguish attractive forces from re-
pulsive forces. The numerical values of the individual con-
stants determine the relative strength of each force. In the
most basic interaction involving say a doublet of two oppo-
sitely charged point masses, the Coulomb force is the most
dominant. When very large groups of particles are consid-
ered, magnetic, and gravitational forces start becoming more
significant.

By using the particle approach, it is possible to do away
with the need for closure models (constitutive equations) that
describe the properties of matter - such as the elasticity con-
stants in dynamics and the permittivity and permeability of
electrodynamics. In fact, one can use the particle interaction
model to derive or check the validity of such closure models.
The real difficulty with the particle approach is the comput-

ing burden which involves solving one ODE corresponding to
every single particle in the interaction. We try to address this
problem here by performing an initial integration of the ODE,
then using vector superposition find the answer of the original
many particle interaction problems. In addition to the obvi-
ous gain in computing time, the stability of the solution can be
enhanced as the singularity is shifted from Inverse Square to
simple Inverse of the separation distance. The accumulation
error also reduces as a result in long time predictions.

Predicting the behavior of a single particle is well known-
as in calculating the position of the landing of a projectile be-
fore it is fired for example. The same can be said, at least in
principle, for predicting the behavior of multi-point interac-
tions. The equation of motion tells us that once we fix the
initial states of position and velocity of every participating
point particle, the outcome is determined. The normal way
to solve such problems is to find the velocity of each particle
from the acceleration by integration (after superposition of all
forces) then do a second integration to find the new position
and this is to be performed over a large set of simultaneous
Ode’s since every particle effects every other. In the present
work we instead calculate (analytically) the velocity and po-
sition in terms of time only for every particle then use vector
superposition to find the final picture.

As we are dealing with point particles only, moments of
forces and angular momentum and spin are not considered.
The gain is an enhanced stability and reduced computing time
coming from the fact that we integrate analytically first then
use superposition (simple algebraic operation) for displace-
ment as opposed to affecting the superposition of forces first
then integrating for the displacement for every point particle.
The method can be described as a multi-particle generaliza-
tion of the Kepler method originally put (and still in use) for
the motion of planets.
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2 Theory

In an inverse square interaction (electrostatic/gravitational) of
point masses, the expression for the force (acceleration since
mass is unity) of a pair of such point masses is given by
d’r  k
====3, (1)
dt r

where a = a(t), r = r(¢) are the acceleration and separation dis-
tances between an isolated pair of particles as a function of
time 7, and k is the coupling constant (negative for attractive
and positive for repulsive forces). The magnitude of k is de-
pendent on the type of interaction and equals the sum of the
k’s of all the forces at play. For example, in the case of re-
pulsive Coulomb forces k = % mey and for gravitational forces
k=—-G, where ¢ is the permittivity of empty space and G is
the universal gravitational constant. For a small number of
interacting particles, the Coulomb forces by far dominate all
other forces. All charges and masses of all particles are as-
sumed unity as given above. The actual values can be incor-
porated in the coupling constant. As the interacting masses
are points, there is no need to consider angular velocity, spin,
angular momentum or any form of moments of forces on the
particle. Mass can simply be taken as the number of particles
in any setup.

For a group of interacting particles, the net acceleration
of particle j is given by

b=y hin
J dt - ri3j ?)
rij = rijl, i,j=12,...N

where ¢; is the resultant acceleration, v is velocity, k;; is
the total coupling constant between particles i and j, and
rij=rj—r; is the vector from i to j positions and N is the
total number of particles. Equation (2) is a set of simultane-
ous Ode’s that must be integrated once in order to find v;(f)
and twice to find the position 7;(¢). For a large number of par-
ticles, the task becomes formidable. One way to reduce this
burden is by going back to (1) and performing the integra-
tion for a pair of particles first, then use the resulting closed
form formula to perform superposition of displacements and
find the result of the interaction. Since the function r(¢) is not
known before hand, we follow the Kepler route [2].

Assume a solution in the form r = ", where ¢ is time
and n is an exponent. Substituting in (1) we find that for the
equality to hold for any r, the value of n should be %, and

hence,
9
r=— k', 3)
This result can be directly checked by differentiating
twice and substituting back to recover the original inverse
square law. We are using scalar quantities because the force,

acceleration and displacement are all along the separation

line. The form of (3) is similar to Kepler’s third law for orbital
motion. In the original Kepler form the distance r refers to the
average radius of the orbit and 7 refers to the mean time of one
revolution. Formula (3) however, is more general and refers
to motion along the line joining any two interacting particles
under an inverse square relation. It is seen that the same for-
mula is suitable for both types of motions. In fact direct sub-
stitution in the centrifugal force formula v*/r using (3), with
v = dr/dt gives the same relation between r and ¢ as that de-
rived form (3). A similar result is obtained if we substitute for
the Coriolis and the magnetic (Ampere) forces. In fact, such
a substitution in the general acceleration definition d?r/df’
reduces it to an inverse square relation. Kepler formula is
also shown to be a direct consequence of mechanical similar-
ity [1], and the form 1/7" satisfy similarity for any n, but only

= (2,-2) produces bounded motion, which corresponds
to the inverse square force and to the space oscillator type
(spring oscillators) interaction forces. The spring type force
is also shown to be a special case of the inverse square law
for small displacements around an equilibrium point. When
(3) is differentiated with respect to time we get

dr _ 2 -1/3 _ 3,172
= — = — 4
v(t) 73 kt =kr 4)
further differentiation gives
d*r 2 2
N=— =(-2|kr*P =(-Z|kr? 5
a0 ="p ( 9) 9)"" )

thus we have recovered the inverse square law. Substituting
from (4) for the centrifugal force gives

2
v k2 —4/3 _

r 9

which is, apart from a constant, has the same form of depen-
dency of ¢ on r. The velocity is given by

k2 -2

(6)

213 L. 1. . .
b = vj, t er,—r,’ pi=lin, izj ()

and the position 7; is given by the vector relation

2/3
Ij = Fj, +0j +—t E
Jo Jo
|rj_rl

where r is the net position vector of all particles and is given,
for each, as the vector sum of n — 1 vector displacements in
addition to the initial position of the particles r,, and the initial
velocity v, multiplied by the time 7.

The form in (8) is similar to the usual form of the equation
of motion for #n interacting particles which can be written as

®)

ri —r;
7= rio + (@ + @ ) i —s ©
i !
with the obvious difference that (9) involves dr rather than ¢
and therefore must be advanced in very small steps to reach
the final solution.
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Fig. 1: Four point particles interacting under attractive (top) and re-
pulsive inverse square forces (bottom). Prediction using (8) starts
from time step kk =1 (left) and kk = 150 (right), showing the capa-
bility of writing the correct solution for many particles at any time
without going through time evolution.
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Fig. 3: T: interaction using force (9) for five bodies (confined) and
three bodies (not confined). B: interaction using velocity formula
(7) for 20 & 200 particles under attractive forces with and without a
restraining circular boundary.
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Fig. 2: Predictions using (7) keeping the circular boundary neutral.
T: four point particles interacting under attractive and repulsive in-
verse square forces. B: four point particles interacting under attrac-
tion forces for longer time showing the stability of the velocity solu-
tion at close encounters. Particle paths interweave as a result of the
attraction forces and the (inertia) forces.

Fig. 4: Instability in the distance formula (8) at small interaction
distances. Each particle path branches into three but recovers back
to a single path as the particles further separate (top figures). The
path disintegrates to only two branches at the encounter of a particle
and a wall of particles. The minimum separation distance needed
for such behaviour increasing with the increase in the value of the
separation constant.
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Fig. 5: Rotation, stratification and condensation for large numbers
using (8). T: 150 particles under attractive forces only but at different
coupling constants. B: one time step and many time steps results of
the interaction of 500 particles of equal mix of charges.

3 Results

In this section we concentrate on showing that (7) and (8)
give the expected behavior in the case of interacting particles
under attraction or repulsion for the case of free particles and
for the case of particles trapped inside a constraining circular
wall. Comparison is then given with predictions using the
usual integration of the inverse square law (9). The distances
and coupling constants in these tests are arbitrary- chosen to
produce magnified effects of the forces involved. The actual
values used are marked on each figure.

Figure 1 shows four particles moving to the right with
initial velocities mainly in the horizontal direction. The rela-
tive values of initial kinetic energy and the coupling constant
determine the behavior of the interacting particles. When
the initial velocity is large, as expected, the particles do not
change direction appreciably, and when it is small, the re-
pulsion and attraction forces have bigger effect — creating
appreciable changes in the particle path. The trajectories are
calculated using the displacement expression (8). When using
this method it is possible to write the solution at any required
time instant as shown in the right hand side frames, wherein
the solution is now started at an advanced time location (at
the 150th time step kk) and still agreeing with the results of
the previous solutions starting at the first time step (t = 0) —
using the same original set of initial conditions.

Figure 2 shows the results using the velocity expression
(7) for the case of attractive and repulsive forces. The stabil-
ity of the solution is clearly demonstrated by the last frame
showing an interweaving paths forced by the equally effec-
tive inertial and attractive forces. The velocity formula gives
more stable solutions at closer encounters because of the ab-
sence of the inverse square term from (7), being replaced by
a quantity dependent on 7. We should note here also that we

still have the direction cosines to consider for the vector su-
perposition. This, however, has a more favorable behavior at
very small separation distances since the quantities x;;/r;;, g0
to unity as r goes to zero.

In Figure 3, the top two frames show the results of us-
ing the force formula (9) for the case of four free particles
and five particles respectively confined in a circular bound-
ary. The bottom two frames show the result for large number
of particles, when using the velocity formula (7), in which 20
particles are confined in a circular boundary and 200 particles
under attraction without a restraining boundary.

Problems have been experienced when using the distance
formula (8) when the separation distance is small. As shown
in Figure 4, the particle path divides into 3 branches but re-
covers afterwards as the two bodies separate and the sepa-
ration distance increases depending also on the strength of
the coupling constant. Note the effects on the path even be-
fore the target is reached. At the interaction with a wall of
charges, the path divides instead, into two parts and recovers
back again. This phenomenon requires further investigation
as it is found to occur only at larger separation distances if
the coupling constant is increased. It is numerical in origin,
which is somehow different to what one would expect of this
formula.

Figure 5 shows the results of using (9) for a large num-
ber of particle interactions. Results for 150 and 500 particles
under attractive forces are shown. The results show signs of
rotation and pulsation behavior as well as coagulation to form
separated groups.

4 Conclusion

It has been shown that it is possible to reduce the computa-
tion time and enhance the solution stability for multi-point
particle interactions. As a result it has been possible to follow
the interaction of very large number of particles using mod-
est computer memory and time. In the author opinion the
method shown here is worthy of further development and use
to numerically investigate the fascinating world of particle in-
teractions. Evidence of grouping appears when the number of
interacting particles is large and without the need of retaining
external boundaries or forces.

A consistent phenomenon of path splitting into three and
two branches has been observed. It is a direct result of eval-
uating distances using the square root, as it is treatable by
adding a very small constant value to the inverse of the rooted
quantities. Clearly this phenomenon needs to be corrected
first before the present method acquires its full potential.
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