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This article presents a set theory which is an extension of ZFC. In contrast to ZFC, a
new theory admits absolutely non-denumerable sets. It is feasible that a symbiosis of
the proposed theory and Vdovin set theory will permit to formulate a (presumably) non-
contradictory axiomatic set theory which will represent the core of Cantor set theory in
a maximally full manner as to the essence and the contents of the latter. This is possible
due to the fact that the generalized principle of choice and the generalized continuum
hypothesis are proved in Vdovin theory. The theory, being more complete than ZF and
more natural according to Cantor, will allow to construct and study (in its framework)
only natural models of the real physical phenomena.
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I. It is generally accepted that the (presumably) non-contra-
dictory Zermelo-Fraenkel set theory ZF with the axiom of
choice is the most accurate and complete axiomatic represen-
tation of the core of Cantor set theory. However, it is acknowl-
edged [3, p. 109], that “Cantor’s set theory is so copious as
to admit absolutely non-denumerable sets while axiomatic set
theory [in particular, ZFC] is so limited [Skolem’s paradox]
that every non-denumerable set becomes denumerable in a
higher system or in an absolute sense”. An axiomatic set the-
ory defined here and abbreviated as ZFK admits absolutely
non-denumerable sets, as it does Cantor theory.

It is feasible that a symbiosis of the proposed theory and
Vdovin set theory [1, 2] will permit to formulate a (presum-
ably) non-contradictory axiomatic set theory which will rep-
resent the core of Cantor set theory in a maximally full man-
ner as to the essence and the contents. This is possible due to
the fact that the generalized principle of choice and the gen-
eralized continuum hypothesis are proved in Vdovin theory.

II. Our definition of ZFK will be based on the traditional
(classical) concept of formalized theory explained in [4]. But
ZFK is a theory which is axiomatic not completely in the
traditional sense, so the syntactic aspects of this theory will
be described with references to the principal interpretation
of ZFK.

Formulae of ZFK are formulae of the signature 〈∈, S 〉,
where ∈— is a two-place predicate symbol for denoting the
(standard) membership relation on the collection S k of all
Cantor’s (intuitive) sets, and S — is a null-place functional
symbol (a constant) denoting the family of all axiomatized
sets, and in the ZFK formulae containing the symbol “S ”, the
latter symbol is always placed to the right of the symbol “∈”.

In what follows, we use the conventional notation and ab-
breviations of ZF. In particular, the relativization of a for-

mula ϕ to the family S is denoted by [ϕ]S . Besides, depend-
ing on the context, records “∈” and “S ” denote either the sig-
nature symbols or denoted by them the relation and the fam-
ily, respectively. Cantor’s (intuitive) sets of S k will be called
k-sets, and the axiomatized sets of S will be simply called
as sets.

The axioms of ZFK are divided into two groups: G and
Gk. The axioms of group G describe the axiomatized sets, and
the axioms of group Gk characterize the relationship between
Cantor’s (intuitive) sets and the axiomatized sets.

The axioms of group G are the axioms of ZFC (formulae
of the signature 〈∈〉), with exception of the axiom of empty
set, which are relativized to the family S .

The axioms of group Gk:

1) Axiom of embedding S into S k

∀x ∈ S ∃ y (y = x).

2) Axiom of (absolutely) empty set

∃x ∈ S ∀ y (y < x).

3) Axiom of transitivity of S in S k

∀x ∈ S∀ y (y ∈ x→ y ∈ S ).

4) Axiom (schema) of generalization

[ϕ]S → ϕ,

where ϕ — is a formula of ZFK.
5) Axiom (schema) of mappings to S k

∀t (∀v, w1, w2(ϕ(v, w1, t) & ϕ(v, w2, t)→ w1 = w2)→
→ ∀x∃ y∀z(z ∈ y↔∃ v ∈ x∃w(z=〈v, w〉 & ϕ(v, w, t)))),

where ϕ— is a formula of ZFK and the variable y does
not occur free in ϕ.
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6) Axiom of general replacement

∀x (map(x) & dom(x) ∈ S & rang(x) ⊆ S →
→ rang(x) ∈ S & x ∈ S ),

where map(x) is the formula

∀z (z ∈ x→ ∃v, w (z = 〈v, w〉)) &∀v, w1, w2 (〈v, w1〉 ∈
x & 〈v, w2〉 ∈ x→ w1 = w2),

and k-sets dom(x) and rang(x) satisfy

∀v (v ∈ dom(x)↔ ∃w (〈v, w〉 ∈ x))
and

∀w (w ∈ rang(x)↔ ∃ v (〈v, w〉 ∈ x)).

The logic underlying ZFK is the calculus of predicates in
the language of ZFK.

III. It is well known [3, p. 27] that “An axiomatic system is in
general constructed in order to axiomatize a certain scientific
discipline previously given in a pre-systematic, “naive”, or
‘genetic’ form”. ZFK formulated here has been constructed,
like ZFC, to axiomatize the “naive” set theory of G. Cantor,
or more precisely, to axiomatize its non-contradictory core.
But ZFK has a more explicit and tight connection to Cantor
set theory than it does ZFC, since ZFK in its principal inter-
pretation defines the collection of all k-sets of S k (more pre-
cisely, 〈S k; ∈〉) as Cantor pre-axiomatic “world” of sets, and
the family S (more precisely, 〈S ; ∈ ∩(S × S )〉, where S ⊆ S k)
as the axiomatic fragment of Cantor “world” of sets.

It seems natural that ZFK is non-contradictory if ZFC is
non-contradictory. Let us show that it is true.

Suppose that ZFC is a non-contradictory theory. Then,
ZFC has a model and, in particular, a standard transitive
model M = 〈M; ∈ ∩(M × M)〉 such that for any set m ∈ M
absolutely all its subsets belong to the family M. It is clear
that the model M (the family M) includes absolutely denu-
merable sets. We consider the family M as the interpretation
of the signature symbol “S ” and will show that any axiom
of ZFK is either true in the model M or it does not deny the
existence of such a model.

It is natural that all axioms of group G are true in the
model M.

Axioms Gk–1 and Gk–2 affirm an obvious fact: any ZFC-
set (a set of the family M) is also a set of Cantor “world” of
sets S k.

Axiom Gk–3 affirms natural transitivity of the family M.
Axiom Gk–4 affirms an obvious fact: any statement con-

cerning sets of the family M is also true for sets of Cantor
“world” of sets S k due to the fact that ZFC is a formaliza-
tion of the (presumably) non-contradictory core of Cantor set
theory.

Axiom Gk–5) is a natural generalization of ZFC axiom of
replacement which is true in the model M.

Axiom Gk–6), in fact, affirms that the model M is natu-
rally ⊆-complete in the sense that any subset of the family
M belongs to that M if its power is equal to the power of a
certain set of M.

IV. Let x ∈ S . Then, a k-set {y | y ⊆ x & y ∈ S } is denoted
by P(x). It is clear that P(x) ∈ S (P(x) is a set) by axioms of
group G and Gk–1).

THEOREM (ZFK).

∀x ∈ S∀ y
(
y ⊆ x→ y ∈ P(x)

)
.

Proof. Let us suppose that the contrary is fulfilled and let k-
sets x0 and y0 be such that x0 ∈ S , y0 ⊆ x0 and y0 < P(x). If
y0 ∈ S , than y0 ∈ P(x) by an axiom of group G. Therefore,
y0 < S . Since ∅ ∈ S , then y0 , ∅. Since y0 ⊆ x0 ∈ S and S
is transitive in S k (the axiom Gk–3)) then y0 ⊆ S .

Denote by z0 some element of a k-set y0. The axiom
Gk–5) says that there is a k-set (k-function) f such that

f =
{
〈v, w〉 | v ∈ x0, (v ∈ y0 → w = v), (v < y0 → w = z0)

}
.

Since map( f ), dom( f ) = x0 ∈ S and rang( f ) = y0 ⊆ S , then
y0 ∈ S by the axiom Gk–6). A contradiction.

V. Let x be a k-set (x ∈ S or x < S ). Then Pk(x) denotes k-set
{y | y ⊆ x}. Since x ∈ S k, then Pk(x) ∈ S k (by the axiom
of generalization), i. e. Pk(x) is an element of Cantor pre-
axiomatic “world” of sets, whose power by the theorem of
G. Cantor is absolutely greater than the power of the k-set x.

Letω be a denumerably infinite set in S . Sinceω ∈ S then
ω ∈ S k (the axiom Gk–1)). It is clear that the k-set Pk(ω) is
absolutely non-denumerable. THEOREM says that any k-set
y of S k is such that y ⊆ ω (i. e. y ∈ Pk(ω)) is an element of the
set P(ω) of S . Therefore, the equality P(ω) = Pk(ω) is always
fulfilled. Thus the set P(ω) is absolutely non-denumerable
in any axiomatized model of ZFK, i. e. in any model of the
type 〈S ; ∈ ∩(S × S )〉.

Thus the concept “The set of all subsets of a set X” which
is formalized by the axioms of ZFK is absolute (in view of
the THEOREM) in the sense that it coincides with Cantor
concept “The set of all (absolutely all existing in the Cantor
‘world’ of sets) subsets of a set X”.

VI. Finally it should be noted that a symbiosis of the set the-
ory of Vdovin A. M. and the proposed theory may permit to
formulate an axiomatic non-contradictory (presumably) set
theory, the only standard model of which will be the most
important fragment of Cantor “world”of sets. This is en-
sured by the fact that Vdovin set theory proves the axioms of
ZF, the generalized principle of choice, and the generalized
continuum-hypothesis which are natural for Cantor “world”
of sets, and the theory presented above proves the absolute
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character of the concept “The set of all subsets of a set X”
which is natural for Cantor “world” of sets, as well.

Since ZF is a generally acknowledged theory and it is
applied as a framework for mathematical disciplines used to
describe (study) the real physical world, the natural (Cantor-
like) character of the future set theory will permit to develop
and investigate only natural models of real physical phenom-
ena.
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