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A Derivation of Maxwell Equations in Quaternion Space
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Quaternion space and its respective Quaternion Relativity (it also may be called as Ro-
tational Relativity) has been defined in a number of papers, and it can be shown that
this new theory is capable to describe relativistic motion in elegant and straightforward
way. Nonetheless there are subsequent theoretical developments which remains an open
question, for instance to derive Maxwell equations in Q-space. Therefore the purpose of
the present paper is to derive a consistent description of Maxwell equations in Q-space.
First we consider a simplified method similar to the Feynman’s derivation of Maxwell
equations from Lorentz force. And then we present another derivation method using
Dirac decomposition, introduced by Gersten (1998). Further observation is of course
recommended in order to refute or verify some implication of this proposition.

1 Introduction

Quaternion space and its respective Quaternion Relativity (it
also may be called as Rotational Relativity has been defined
in a number of papers including [1], and it can be shown
that this new theory is capable to describe relativistic mo-
tion in elegant and straightforward way. For instance, it can
be shown that the Pioneer spacecraft’s Doppler shift anomaly
can be explained as a relativistic effect of Quaternion Space
[2]. The Yang-Mills field also can be shown to be consistent
with Quaternion Space [1]. Nonetheless there are subsequent
theoretical developments which remains an open issue, for
instance to derive Maxwell equations in Q-space [1].

Therefore the purpose of the present article is to derive a
consistent description of Maxwell equations in Q-space. First
we consider a simplified method similar to the Feynman’s
derivation of Maxwell equations from Lorentz force. Then
we present another method using Dirac decomposition, in-
troduced by Gersten [6]. In the first section we will shortly
review the basics of Quaternion space as introduced in [1].

Further observation is of course recommended in order to
verify or refute the propositions outlined herein.

2 Basic aspects of Q-relativity physics

In this section, we will review some basic definitions of
quaternion number and then discuss their implications to
quaternion relativity (Q-relativity) physics [1].

Quaternion number belongs to the group of “very good”
algebras: of real, complex, quaternion, and octonion, and nor-
mally defined as follows [1]

Q ≡ a + bi + c j + dk . (1)

Where a, b, c, d are real numbers, and i, j, k are imaginary
quaternion units. These Q-units can be represented either via
2×2 matrices or 4×4 matrices. There is quaternionic multi-
plication rule which acquires compact form [1]

1qk = qk1 = qk , q jqk = − δ jk + ε jkn qn . (2)

Where δkn and ε jkn represents 3-dimensional symbols of
Kronecker and Levi-Civita, respectively.

In the context of Quaternion Space [1], it is also possible
to write the dynamics equations of classical mechanics for an
inertial observer in constant Q-basis. SO(3,R)-invariance of
two vectors allow to represent these dynamics equations in
Q-vector form [1]

m
d2

dt2 (xk qk) = Fk qk . (3)

Because of antisymmetry of the connection (generalised
angular velocity) the dynamics equations can be written in
vector components, by conventional vector notation [1]

m
(
~a + 2~Ω ×~v + ~Ω × ~r + ~Ω ×

(
~Ω × ~r

))
= ~F . (4)

Therefore, from equation (4) one recognizes known types
of classical acceleration, i.e. linear, coriolis, angular, cen-
tripetal.

From this viewpoint one may consider a generalization of
Minkowski metric interval into biquaternion form [1]

dz = (dxk + idtk) qk . (5)

With some novel properties, i.e.:

• time interval is defined by imaginary vector;
• space-time of the model appears to have six dimensions

(6D model);
• vector of the displacement of the particle and vector of

corresponding time change must always be normal to
each other, or

dxkdtk = 0 . (6)

One advantage of this Quaternion Space representation is
that it enables to describe rotational motion with great clarity.

After this short review of Q-space, next we will discuss a
simplified method to derive Maxwell equations from Lorentz
force, in a similar way with Feynman’s derivation method us-
ing commutative relation [3, 4].
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3 An intuitive approach from Feynman’s derivative

A simplified derivation of Maxwell equations will be dis-
cussed here using similar approach known as Feynman’s de-
rivation [3–5].

We can introduce now the Lorentz force into equation (4),
to become

m
(

d~v
dt

+ 2~Ω ×~v + ~Ω × ~r + ~Ω ×
(
~Ω × ~r

))
=

= q⊗

(
~E +

1
c
~v × ~B

)
, (7)

or
(

d~v
dt

)
=

q⊗
m

(
~E +

1
c
~v × ~B

)
−2~Ω×~v− ~Ω×~r− ~Ω×

(
~Ω × ~r

)
. (8)

We note here that q variable here denotes electric charge,
not quaternion number.

Interestingly, equation (4) can be compared directly to
equation (8) in [3]

mẍ = F −m
(

d~v
dt

)
+ m~r × ~Ω + m2ẋ × ~Ω + m~Ω ×

(
~r × ~Ω

)
. (9)

In other words, we find an exact correspondence between
quaternion version of Newton second law (3) and equation
(9), i.e. the equation of motion for particle of mass m in a
frame of reference whose origin has linear acceleration a and
an angular velocity ~Ω with respect to the reference frame [3].

Since we want to find out an “electromagnetic analogy”
for the inertial forces, then we can set F = 0. The equation of
motion (9) then can be derived from Lagrangian L = T − V ,
where T is the kinetic energy and V is a velocity-dependent
generalized potential [3]

V (x, ẋ, t) = ma · x − mẋ · ~Ω × x − m
2

(
~Ω × x

)2
, (10)

Which is a linear function of the velocities. We now may
consider that the right hand side of equation (10) consists of
a scalar potential [3]

φ (x, t) = ma · x − m
2

(
~Ω × x

)2
, (11)

and a vector potential

A (x, t) ≡ mẋ · ~Ω × x , (12)
so that

V (x, ẋ, t) = φ (x, t) − ẋ · A (x, t) . (13)

Then the equation of motion (9) may now be written in
Lorentz form as follows [3]

mẍ = E (x, t) + x × H (x, t) (14)
with

E = −∂A
∂t
− ∇φ = −mΩ × x − ma + mΩ × (x ×Ω) (15)

and
H = ∇ × A = 2mΩ . (16)

At this point we may note [3, p. 303] that Maxwell equa-
tions are satisfied by virtue of equations (15) and (16). The
correspondence between Coriolis force and magnetic force,
is known from Larmor method. What is interesting to remark
here, is that the same result can be expected directly from the
basic equation (3) of Quaternion Space [1]. The aforemen-
tioned simplified approach indicates that it is indeed possible
to find out Maxwell equations in Quaternion space, in partic-
ular based on our intuition of the direct link between Newton
second law in Q-space and Lorentz force (We can remark that
this parallel between classical mechanics and electromagnetic
field appears to be more profound compared to simple simi-
larity between Coulomb and Newton force).

As an added note, we can mention here, that the afore-
mentioned Feynman’s derivation of Maxwell equations is
based on commutator relation which has classical analogue
in the form of Poisson bracket. Then there can be a plausible
way to extend directly this “classical” dynamics to quater-
nion extension of Poisson bracket, by assuming the dynam-
ics as element of the type: r ∈ H ∧ H of the type: r =

ai ∧ j + bi ∧ k + c j ∧ k, from which we can define Poisson
bracket on H. But in the present paper we don’t explore yet
such a possibility.

In the next section we will discuss more detailed deriva-
tion of Maxwell equations in Q-space, by virtue of Gersten’s
method of Dirac decomposition [6].

4 A new derivation of Maxwell equations in Quaternion
Space by virtue of Dirac decomposition

In this section we present a derivation of Maxwell equations
in Quaternion space based on Gersten’s method to derive
Maxwell equations from one photon equation by virtue of
Dirac decomposition [6]. It can be noted here that there are
other methods to derive such a “quantum Maxwell equations”
(i.e. to find link between photon equation and Maxwell equa-
tions), for instance by Barut quite a long time ago (see ICTP
preprint no. IC/91/255).

We know that Dirac deduces his equation from the rela-
tivistic condition linking the Energy E, the mass m and the
momentum p [7]

(
E2 − c2~p 2 − m2c4

)
I(4) Ψ = 0 , (17)

where I(4) is the 4×4 unit matrix and Ψ is a 4-component col-
umn (bispinor) wavefunction. Dirac then decomposes equa-
tion (17) by assuming them as a quadratic equation

(
A2 − B2

)
Ψ = 0 , (18)

where
A = E , (19)

B = c~p + mc2. (20)
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The decomposition of equation (18) is well known, i.e.
(A + B)(A − B) = 0, which is the basic of Dirac’s decomposi-
tion method into 2×2 unit matrix and Pauli matrix [6].

By virtue of the same method with Dirac, Gersten [6]
found in 1998 a decomposition of one photon equation from
relativistic energy condition (for massless photon [7])

(
E2

c2 − ~p 2
)

I(3) Ψ = 0 , (21)

where I(3) is the 3×3 unit matrix and Ψ is a 3-component col-
umn wavefunction. Gersten then found [6] equation (21) de-
composes into the form

[E
c

I(3) − ~p · ~S
] [E

c
I(3) + ~p.~S

]
~Ψ −


px

py
pz


(
~p · ~Ψ

)
= 0 (22)

where ~S is a spin one vector matrix with components [6]

S x =


0 0 0
0 0 −i
0 −i 0

 , (23)

S y =


0 0 i
0 0 0
−i 0 0

 , (24)

S z =


0 −i 0
−i 0 0
0 0 0

 , (25)

and with the properties
[
S x, S y

]
= iS z ,

[
S x, S z

]
= iS y

[
S y, S z

]
= iS x , ~S 2 = 2I(3)


. (26)

Gersten asserts that equation (22) will be satisfied if the
two equations [6]

[E
c

I(3) + ~p · ~S
]
~Ψ = 0 , (27)

~p · ~Ψ = 0 (28)

are simultaneously satisfied. The Maxwell equations [8] will
be obtained by substitution of E and p with the ordinary quan-
tum operators (see for instance Bethe, Field Theory)

E → i~
∂

∂t
(29)

and
p→ − ih∇ (30)

and the wavefunction substitution

~Ψ = ~E − i~B , (31)

where E and B are electric and magnetic fields, respectively.
With the identity

(
~p · ~S

)
~Ψ = ~∇ × ~Ψ , (32)

then from equation (27) and (28) one will obtain

i
~

c

∂
(
~E − i~B

)

∂t
= − ~∇ ×

(
~E − i~B

)
, (33)

∇ ·
(
~E − i~B

)
= 0 , (34)

which are the Maxwell equations if the electric and magnetic
fields are real [6, 7].

We can remark here that the combination of E and B as
introduced in (31) is quite well known in literature [9,10]. For
instance, if we use positive signature in (31), then it is known
as Bateman representation of Maxwell equations div~ε = 0,
rot~ε = ∂ε

∂t , ε = ~E + i~B. But the equation (31) with negative
signature represents the complex nature of electromagnetic
fields [9], which indicates that these fields can also be repre-
sented in quaternion form.

Now if we represent in other form ~ε = ~E − i~B as more
conventional notation, then equation (33) and (34) will get a
quite simple form

i
~

c
∂~ε

∂t
= − ~∇ × ~ε , (35)

∇ · ~ε = 0 . (36)

Now to consider quaternionic expression of the above re-
sults from Gersten [6], one can begin with the same lineariza-
tion procedure just as in equation (5)

dz = (dxk + idtk) qk , (37)

which can be viewed as the quaternionic square root of the
metric interval dz

dz2 = dx2 − dt2. (38)

Now consider the relativistic energy condition (for mass-
less photon [7]) similar to equation (21)

E2 = p2c2 ⇒
(

E2

c2 − ~p 2
)

= k2. (39)

It is obvious that equation (39) has the same form with
(38), therefore we may find its quaternionic square root too,
then we find

k =
(
Eqk + i~pqk

)
qk , (40)

where q represents the quaternion unit matrix. Therefore the
linearized quaternion root decomposition of equation (21) can
be written as follows [6]
[

Eqk qk

c
I(3) + i~pqk qk · ~S

] [
Eqk qk

c
I(3) + i~pqk qk · ~S

]
~Ψ −

−


px

py
pz


(
i~pqkqk · ~Ψ

)
= 0 . (41)
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Accordingly, equation (41) will be satisfied if the two
equations

[
Eqk qk

c
I(3) + i ~pqk qk · ~S

]
~Ψk = 0 , (42)

i ~pqk qk · ~Ψk = 0 (43)

are simultaneously satisfied. Now we introduce similar wave-
function substitution, but this time in quaternion form

~Ψqk = ~Eqk − i~Bqk = ~εqk . (44)

And with the identity
(
~pqk qk · ~S

)
~Ψk = ~∇k × ~Ψk . (45)

Then from equations (42) and (43) one will obtain the
Maxwell equations in Quaternion-space as follows

i
~

c
∂~εqk
∂t

= − ~∇k × ~εqk , (46)

∇k · ~εqk = 0 . (47)

Now the remaining question is to define quaternion dif-
ferential operator in the right hand side of (46) and (47).

In this regards one can choose some definitions of quater-
nion differential operator, for instance the Moisil-Theodore-
sco operator [11]

D
[
ϕ
]

= gradϕ =

3∑

k=1

ik∂kϕ = i1∂1ϕ + i2∂2ϕ + i3∂3ϕ . (48)

where we can define i1 = i; i2 = j; i3 = k to represent 2×2
quaternion unit matrix, for instance. Therefore the differen-
tial of equation (44) now can be expressed in similar notation
of (48)

D
[
~Ψ
]

= D
[
~ε
]

= i1∂1E1 + i2∂2E2 + i3∂3E3−

− i
(
i1∂1B1 + i2∂2B2 + i3∂3B3

)
,

(49)

This expression indicates that both electric and magnetic
fields can be represented in unified manner in a biquaternion
form.

Then we define quaternion differential operator in the
right-hand-side of equation (46) by an extension of the con-
ventional definition of curl

∇ × Aqk =

∣∣∣∣∣∣∣∣∣∣∣∣

i j k
∂

∂x
∂

∂y

∂

∂z
Ax Ay Az

∣∣∣∣∣∣∣∣∣∣∣∣
. (50)

To become its quaternion counterpart, where i, j, k repre-
sents quaternion matrix as described above. This quaternionic
extension of curl operator is based on the known relation of

multiplication of two arbitrary complex quaternions q and b
as follows

q · b = q0 b0 −
〈
~q, ~b

〉
+

[
~q × ~b

]
+ q0~b + b0~q , (51)

where
〈
~q, ~b

〉
:=

3∑

k=1

qk bk ∈ C , (52)

and
[
~q × ~b

]
:=

∣∣∣∣∣∣∣∣∣

i j k
q1 q2 q3

b1 b2 b3

∣∣∣∣∣∣∣∣∣
. (53)

We can note here that there could be more rigorous ap-
proach to define such a quaternionic curl operator [10].

In the present paper we only discuss derivation of Max-
well equations in Quaternion Space using the decomposition
method described by Gersten [6]. Further extension to Proca
equations in Quaternion Space seems possible too using the
same method [7], but it will not be discussed here.

In the next section we will discuss some physical implica-
tions of this new derivation of Maxwell equations in Quater-
nion Space.

5 A few implications: de Broglie’s wavelength and spin

In the foregoing section we derived a consistent description of
Maxwell equations in Q-Space by virtue of Dirac-Gersten’s
decomposition. Now we discuss some plausible implications
of the new proposition.

First, in accordance with Gersten, we submit the view-
point that the Maxwell equations yield wavefunctions which
can be used as guideline for interpretation of Quantum Me-
chanics [6]. The one-to-one correspondence between classi-
cal and quantum wave interpretation actually can be expected
not only in the context of Feynman’s derivation of Maxwell
equations from Lorentz force, but also from known exact cor-
respondence between commutation relation and Poisson
bracket [3, 5]. Furthermore, the proposed quaternion yields
to a novel viewpoint of both the wavelength, as discussed be-
low, and also mechanical model of spin.

The equation (39) implies that momentum and energy
could be expressed in quaternion form. Now by introduc-
ing de Broglie’s wavelength λDB = ~

p → pDB = ~
λ
, then one

obtains an expression in terms of wavelength

k =
(
Ek + i~pk

)
qk =

(
Ekqk + i~pkqk

)
=

Ekqk + i
~

λDB
k qk

 . (54)

In other words, now we can express de Broglie’s wave-
length in a consistent Q-basis

λDB−Q =
~∑3

k=1 (pk) qk
=

~

vgroup
∑3

k=1 (mk) qk
, (55)

therefore the above equation can be viewed as an extended
De Broglie wavelength in Q-space. This equation means that
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the mass also can be expressed in Q-basis. In the meantime, a
quite similar method to define quaternion mass has also been
considered elsewhere, but it has not yet been expressed in
Dirac equation form as presented here.

Further implications of this new proposition of quaternion
de Broglie requires further study, and therefore it is excluded
from the present paper.

6 Concluding remarks

In the present paper we derive a consistent description of
Maxwell equations in Q-space. First we consider a simpli-
fied method similar to the Feynman’s derivation of Maxwell
equations from Lorentz force. And then we present another
method to derive Maxwell equations by virtue of Dirac de-
composition, introduced by Gersten [6].

In accordance with Gersten, we submit the viewpoint that
the Maxwell equations yield wavefunctions which can be
used as guideline for interpretation of quantum mechanics.
The one-to-one correspondence between classical and quan-
tum wave interpretation asserted here actually can be expect-
ed not only in the context of Feynman’s derivation of Max-
well equations from Lorentz force, but also from known exact
correspondence between commutation relation and Poisson
bracket [3, 6].

A somewhat unique implication obtained from the above
results of Maxwell equations in Quaternion Space, is that it
suggests that the De Broglie wavelength will have quater-
nionic form. Its further implications, however, are beyond
the scope of the present paper.

In the present paper we only discuss derivation of Max-
well equations in Quaternion Space using the decomposition
method described by Gersten [6]. Further extension to Proca
equations in Quaternion Space seems possible too using the
same method [7], but it will not be discussed here.

This proposition, however, deserves further theoretical
considerations. Further observation is of course recommend-
ed in order to refute or verify some implications of this result.
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