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In this paper, we briefly review the theory elaborated by Louis de Broglie who showed
that in some circumstances, a particle tunneling through a dispersive refracting material
may reverse its velocity with respect to that of its associated wave (phase velocity):
this is a consequence of Rayleigh’s formula defining the group velocity. Within his
“Double Solution Theory”, de Broglie re-interprets Dirac’s aether concept which was
an early attempt to describe the matter-antimatter symmetry. In this new approach,
de Broglie suggests that the (hidden) sub-quantum medium required by his theory be
likened to the dispersive and refracting material with identical properties. A Riemannian
generalization of this scheme restricted to a space-time section, and formulated within
an holonomic frame is here considered. This procedure is shown to be founded and
consistent if one refers to the extended formulation of General Relativity (EGR theory),
wherein pre-exists a persistent field.

1 Introduction

The original wave function first predicted by Louis de Broglie
[1] in his famous Wave Mechanics Theory, then was detected
in 1927 by the American physicists Davisson and Germer in
their famous experiment on electrons diffraction by a nickel
crystal lattice.

In the late 1960’s, Louis de Broglie improved on his first
theory which he called Double Solution Interpretation of
Quantum Mechanics [2, 3].

His successive papers actually described the massive par-
ticle as being much closely related to its physical wave and
constantly in phase with it.

The theory which grants the wave function a true physical
reality as it should be, necessarily requires the existence of an
underlying medium that permanently exchanges energy and
momentum with the guided particle [4].

The hypothesis of such a concealed “thermostat” was
brought forward by D. Bohm and J. P. Vigier [5] who referred
to it as the sub-quantum medium.

They introduced a hydrodynamical model in which the
(real) wave amplitude is represented by a fluid endowed with
some specific irregular fluctuations so that the quantum the-
ory receives a causal interpretation.

Francis Fer [6] successfully extended the double solu-
tion theory by building a non-linear and covariant equation
wherein the “fluid” is taken as a physical entity. In the recent
paper [7], the author proposed to generalize this model to an
extended formulation of General Relativity [8], which allows
to provide a physical solution to the fluid random perturbation
requirement.

Based on his late conceptions, Louis de Broglie then com-
pleted a subsequent theory [9] on the guided particle: under
specific circumstances the particle tunneling through a dis-
persive refracting material is shown to reverse velocity with

respect to the associated wave phase velocity.
As a further assumption, Louis de Broglie identified the

dispersive refracting material with the hidden medium [10]
considered above.

In this case, the theoretical results obtained are describ-
ing the behavior of a pair particle-antiparticle which is close
to the Stuckelberg-Feynmann picture [11], in which antipar-
ticles are viewed as particles with negative energy that move
backward in time.

Within this interpretation, the sub-quantum medium as
derived from de Broglie’s theories, appears to provide
a deeper understanding of Dirac’s aether theory [12], once
popular before.

In this paper, we try to generalize this new concept by
identifying the hidden medium with the persistent energy-
momentum field tensory inherent to the EGR theory.

Such a generalization is here only restricted to a Rieman-
nian space-time section (t = const), where the integration is
further performed over a spatial volume. By doing so, we are
able to find back the essential formulas set forth by Louis de
Broglie in the Special Relativity formulation.

We assumed here a limited extension without loss of gen-
erality: a fully generalized therory is desirable, as for example
the attempt suggested by E. B. Gliner [13], who has defined a
“µ-medium” entirely derived from General Relativity consid-
erations.

2 Short overview of the Double Solution Theory within
wave mechanics (Louis de Broglie)

2.1 The reasons for implementing the theory

As an essential contribution to quantum physics, Louis de
Broglie’s wave mechanics theory has successfully extended
the wave-particle duality concepts to the whole physics.

Double solution theory which aimed at confirming the
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true physical nature of the wave function is based on two
striking observations: within the Special Theory of Relativ-
ity, the frequency ν0 of a plane monochromatic wave is trans-
formed as

ν =
ν0√

1 − β2
,

whereas a clock’s frequency ν0 is transformed according to
νc = ν0

√
1 − β2 with the phase velocity

ṽ =
c
β

=
c2

v
.

The 4-vector defined by the gradient of the plane mono-
chromatic wave is linked to the energy-momentum 4-vector
of a particle by introducing Planck’s constant h as

W = hν , λ =
h
p
, (1)

where p is the particle’s momentum and λ is the wave length.
If the particle is considered as that containing a rest en-

ergy M0c2 = hν0, it is likened to a small clock of frequency
ν0 so that when moving with velocity v = βc, its frequency
different from that of the wave is then

ν = ν0

√
1 − β2 .

In the spirit of the theory, the wave is a physical entity
having a very small amplitude not arbitrarily normed and
which is distinct from the ψ-wave reduced to a statistical
quantity in the usual quantum mechanical formalism.

Let us call ϑ the physical wave which is connected to the
ψ-wave by the relation ψ = Cϑ, where C is a normalizing
factor.

The ψ-wave has then nature of a subjective probability
representation formulated by means of the objective ϑ-wave.

Therefore wave mechanics is complemented by the dou-
ble solution theory, for ψ and ϑ are two solutions of the same
equation.

If the complete solution of the equation representing the
ϑ-wave (or, if preferred, the ψ-wave, since both waves are
equivalent according to ψ = Cϑ), is written as

ϑ = a(x, y, z, t) exp
[ i
~
φ(x, y, z, t)

]
, ~ =

h
2π

, (2)

where a and φ are real functions, while the energy W and the
momentum p of the particle localized at point (x, y, z), at time
t are given by

W = ∂tφ , p = − grad φ , (3)

which in the case of a plane monochromatic wave, where one
has

φ = h
[
ν − (αx + βy + γz)

λ

]

yields equation (1) for W and p.

2.2 The guidance formula and the quantum potential

Taking Schrodinger’s equation for the scalar wave ϑ, and U
being the external potential, we get

∂tϑ =
~

2im
∆ϑ +

i
~

Uϑ . (4)

This complex equation implies that ϑ be represented by
two real functions linked by these two real equations which
leads to

ϑ = a exp
( iφ
~

)
, (5)

where a the wave’s amplitude, and φ its phase, both are real.
Substituting this value into equation (4), it gives two impor-
tant equations

∂tφ − U − 1
2m

(grad φ)2 = − ~
2

2m
∆a
a

∂t (a2) − 1
m

div (a2 grad φ) = 0


. (6)

If terms involving Planck ’s constant ~ in equation (6) are
neglected (which amounts to disregard quanta), and if we set
φ = S , this equation becomes

∂t S − U =
1

2m
(
grad S

)2 .

As S is the Jacobi function, this equation is the Jacobi
equation of Classical Mechanics.

Only the term containing ~2 is responsible for the parti-
cle’s motion being different from the classical motion.

The extra term in (6) can be interpreted as another poten-
tial Q distinct from the classical U potential

Q = − ~
2

2m
∆a
a
. (7)

One has thus a variable proper mass

M0 = m0 +
Q0

c2 , (8)

where, in the particle’s rest frame, Q0 is a positive or negative
variation of this rest mass and it represents the “quantum po-
tential” which causes the wave function ’s amplitude to vary.

By analogy with the classical formula ∂t S = E, and p =

−grad S , E and p being the classical energy and momentum,
one may write

∂tφ = E , − grad φ = p . (9)

As in non-relativistic mechanics, where p is expressed as
a function of velocity by the relation p = mv, one eventually
finds the following results

v =
p
m

= − 1
m

grad φ , (10)

which is the guidance formula.
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It gives the particle’ s velocity, at position (x, y, z) and
time t as a function of the local phase variation at this point.

Inspection shows that relativistic dynamics applied to the
variable proper mass M0 eventually leads to the following re-
sult

W =
M0c2

√
1 − β2

= M0c2
√

1 − β2 +
M0v2

√
1 − β2

(11)

known as the Planck-Laue formula.
Here, the quantum force results from the variation of

M0c2 as the particle moves.

2.3 Particles with internal vibration and the hidden
thermodynamics

The idea of considering the particle as a small clock is of
central importance here.

Let us look at the self energy M0c2 as the hidden heat
content of a particle. One easily conceives that such a small
clock has (in its proper system) an internal periodic energy of
agitation which does not contribute to the whole momentum.
This energy is similar to that of a heat containing body in the
state of thermal equilibrium.

Let Q0 be the heat content of the particle in its rest frame,
and viewed in a frame where the body has a velocity βc, the
contained heat will be

Q = Q0

√
1 − β2 = M0c2

√
1 − β2 = hν0

√
1 − β2 . (12)

The particle thus appears as being at the same time a small
clock of frequency

ν = ν0

√
1 − β2

and a small reservoir of heat

Q = Q0

√
1 − β2

moving with velocity βc. If φ is the wave phase a exp( iφ
~

),
where a and φ are real, the guidance theory states that

∂tφ =
M0c2

√
1 − β2

, − grad φ =
M0v√
1 − β2

. (13)

The Planck-Laue equation may be written

Q = M0c2
√

1 − β2 =
M0c2

√
1 − β2

− v p . (14)

Combining (13) and (14) results in

M0c2
√

1 − β2 = ∂tφ + v grad φ =
dφ
dt

.

Since the particle is regarded as a clock of proper fre-
quency M0

c2

h , the phase of its internal vibration expressed
with ai exp( iφi

~
) and ai and φi real will be

φi = hν0

√
1 − β2 t = M0c2

√
1 − β2 t ,

thus we obtain
d (φi − φ) = 0 . (15)

This fundamental result agrees with the assumption ac-
cording to which the particle as it moves in its wave, remains
constantly in phase with it.

3 Propagation in a dispersive refracting material

3.1 Group velocity

The classical wave is written as

a exp
[
2πi(νt − kr)

]
; (16)

it propagates along the direction given by the unit vector n.
We next introduce the phase velocity ṽ of the wave, which

determines the velocity between two “phases” of the wave.
Consider now the superposition of two stationary waves

having each a very close frequency: along the x-axis, they
have distinct energies

E1 = A sin 2π(ν + dν)
[
t − x

v + dv

]
,

E2 = A sin 2π(ν − dν)
[
t − x

v − dv

]
,

thus next we have

ν + dν
v + dv

=
ν

v
+ d

(
ν

v

)
,

(ν − dν)
v − dv

=
ν

v
− d

(
ν

v

)
,

and by adding both waves

E = 2A cos 2πdν
[
t − x

(
d
dν

) (
ν

v

)]
sin 2πν

(
t − x

v

)
. (17)

The term

2A cos 2πdν
[
t − x

(
d
dν

) (
ν

v

)]
(18)

may be regarded as the resulting amplitude that varies along
with the so-called “group velocity” [v]g and such that

1
[v]g

=

(
d
dν

) (
ν

v

)
. (19)

Recalling the relation between the wave length λ and the
material refracting index n

λ =
ṽ
ν

=
v0

nν
(20)

where v0 is the wave velocity in a given reference material (c
in vacuum), we see that

n =
v0

ṽ
, i.e. in vacuum n =

c
ṽ
. (21)

Now, we have the Rayleigh formulae

1
[v]g

=
d
dν

(
ν

v

)
=

1
ν0

(
∂

∂ν

)
nν =

(
∂

∂ν

) (
1
λ

)
. (22)
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It is then easy to show that [v]g coincides with the velocity
v of the particle, which is also expressed in term of the wave
energy W as

[v]g =
∂W
∂k

.

The velocity of the particle v may be directed either in the
propagating orientation of the wave in which case

p = k =

(
h
λ

)
n ,

or in the opposite direction p = −k = −
(

h
λ

)
n.

When the particle’s velocity v > 0, and p = k, we have
the Hamiltonian form

v =
∂W
∂p

.

3.2 Influence of the refracting material

Let us recall the relativistic form of the Doppler’s formulae:

ν0 =
ν
(
1 − v

ṽ

)
√

1 − β2
, (23)

where as usual ν0 is the wave’s frequency in the frame at-
tached to the particle.

Considering the classical relation W = hν connecting the
particle energy and its wave frequency, and taking into ac-
count (23), we have

W = W0

√
1 − β2

(
1 − v

ṽ

)
.

However, inspection shows that the usual formula

W =
W0√
1 − β2

holds only if
1 − v

ṽ
= 1 − β2,

which implies
ṽ = c2

and this latter relation is satisfied provided we set

W =
M0c2

√
1 − β2

, p =
M0v√
1 − β2

,

where M0 is the particle’s proper mass which includes an ex-
tra term δM0 resulting from the quantum potential Q contri-
bution.

When the particule whose internal frequency is ν0 =
M0c2

h
has travelled a distance dn during dt, its internal phase φi has
changed by

dφi = M0c2
√

1 − β2 dt = dφ ,

where n is the unit vector normal to the phase surface.
The identity of the corresponding wave phase variation

dφ = ∂tφ dt + ∂nφ dn =
(
∂tφ + v grad φ

)
dt

is also expressed by

∂tφ + ∂nφ dt n = dtφi , (24)

and it leads to

M0c2

√
1 − β2

− M0v2

√
1 − β2

= M0c2
√

1 − β2 .

The situation is different in a refracting material which is
likened to a “potential” P acting on the particle so that we
write

W =
M0c2

√
1 − β2

+ P , (25)

p =
M0v√
1 − β2

= v
W − P

c2 . (26)

Now taking into account equation (23), the equation (24)
reads (re-instating ~)

1
~

dtφi = ν0

√
1 − β2 = ν

(
1 − v

ṽ

)

yielding

W − v2 W − P
c2 = W

(
1 − v

ṽ

)
(27)

from which we infer the expression of the potential P

P = W
(
1 − c2

ṽ
v
)

= hν
(
1 − c2

ṽ
v
)

(28)

and with the Rayleigh formulae (22)

P = W
[
1 − n

∂(nν)
∂ν

]
(29)

(we assume v0 = c), for the phase φ of the wave along the
x-axis we find dφ = Wdt − kdx with

k = v
W − P

c2 =
h
λ
. (30)

The phase concordance hdφi = hdφ readily implies

(W − kv) dt =

(
W − v2 W − P

c2

)
dt (31)

and taking into account (28),

dφi =
W
h

(
1 − v

ṽ

)
dt = 2πv

(
1 − v

ṽ

)
dt . (32)

Now applying the Doppler formulae (23), and bearing in
mind the transformation dt0 = dt

√
1 − β2, we can write

dφ = 2πν0dt0 = 2πν
(
1 − v

ṽ

)
dt . (33)

One easily sees that the equivalence of (32) and (33) fully
justifies the form of the “potential” P.
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4 The particle-antiparticle state

4.1 Reduction of the EGR tensor to the Riemannian
scheme

4.1.1 Massive tensor in the EGR formulation

Setting the 4-unit velocity ua = dxa

ds which obeys here

gab uaub = gabuaub = 1 .

Expressed in mixed indices, the usual Riemannian mas-
sive tensor is well known(

T b
a

)
Riem

= ρ0c2ubua , (34)

where ρ0 is the proper density of the mass.
In the EGR formulation, the massive tensor is given by
(
T b

a

)
EGR

= (ρ0)EGRc2(ub)EGR (ua)EGR +
(
T b

a

)
field

. (35)

The EGR world velocity is not explicitly written but it
carries a small correction w.r.t. to the regular Riemannian ve-
locity ua.

The EGR density ρ0 is also modified, as was shown in our
paper [8] which explains the random perturbation of the fluid.

Let us now express
(
T b

a

)
EGR

in terms of the Riemannian
representation (

T b
a

)
EGR

=
(
T b

a

)?
Riem

. (36)

With respect to
(
T b

a

)
Riem

, the tensor
(
T b

a

)?
Riem

is obviously
only modified through the Riemannian proper density ρ we
denote ρ? since now.

Having said that, we come across a difficulty since the
quantity

(
T b

a

)
EGR

is antisymmetric whereas
(
T b

a

)?
Riem

is sym-
metric.

In order to avoid this ambiguity, we restrict ourselves to a
space-time section x4 = const. In this case, we consider the
tensor

(
T b

4

)
EGR

which we split up into
(
Tα

4

)
EGR

=
(
Tα

4

)?
Riem

, (37)
(
T 4

4

)
EGR

=
(
T 4

4

)?
Riem

. (38)

Inspection shows that each of the EGR tensors compo-
nents when considered separately in (37) and (38) is now
symmetric.

4.1.2 The modified proper mass

We write down the above components(
Tα

4

)?
Riem

= ρ?0 c2uαu4 , (39)
(
T 4

4

)?
Riem

= ρ?0 c2u4u4 . (40)

This amounts to state that the proper density ρ0 is modi-
fied by absorbing the EGR free field component

(
T b

a

)
field

tensor.
By the modification, we do not necessarily mean an “in-

crease”, as will be seen in the next sections.

4.2 Refracting material

4.2.1 Energy-momentum tensor

We now consider a dispersive refracting material which is
characterized by a given (variable) index denoted by n.

Unlike a propagation in vacuum, a particle progressing
through this material will be subject to a specific “influence”
which is acting upon the tensor

(
T b

4

)?
Riem

. Thus, the energy-
momentum tensor of the system will thus be chosen to be

(
T b

4

)?
Riem

= ρ?0 c2ubu4 − δb
4 b(n) , (41)

where b(n) is a scalar term representing the magnitude of the
influence and which is depending on the refracting index n.

The tensor δb
4 b(n) is reminiscent of a “pressure term”

which appears in the perfect fluid solution except that no
equation of state exists.

Equation (41) yields
(
Tα

4

)?
Riem

= ρ?0 c2uαu4 , (42)

(
T 4

4

)?
Riem

= ρ?0 c2 + b(n) , (43)

Applying the relation uαc = vαu4, equation (42) becomes
(
Tα

4

)?
Riem

= ρ?0 cvα. (44)

4.2.2 Integration over the hypersurface x4 = const

Integration of (43) over the spatial volume V yields
(
P4

)?
Riem

=
1
c

∫
ρ?0 c2 √−g dV +

1
c

∫
b(n)
√−g dV, (45)

c
(
P4

)?
Riem

= m?
0 c2 + B(n) , (46)

while integrating (44), we get a 3-momentum vector
(
Pα

)?
Riem

=
1
c

∫
ρ?0 cvα

√−g dV, (47)

(
Pα

)?
Riem

= m?
0 vα. (48)

4.2.3 Matching the formulas of de Broglie

Let us multiply, respectively, (46) and (48) by u4

u4c
(
P4

)?
Riem

= u4m?
0 c2 + u4B(n) ; (49)

if we set P = u4B(n), we retrieve de Broglie’s first formula
(25)

u4c
(
P4

)?
Riem

= W =
m?

0 c2

√
1 − β2

+ P(n) (50)

as well as the second formula (26)

u4
(
Pα

)?
Riem

= p =
m?

0 vα√
1 − β2

. (51)
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5 A new aspect of the antiparticle concept

5.1 Proper mass

In §4.1.2 we have considered the modified proper density ρ?0 ,
resulted from the EGR persistent free field “absorbed” by the
tensor in the Riemannian scheme.

Having established the required generalization, we now
revert to the classical formulation as suggested by de Broglie.

The corresponding modified proper mass m?
0 should al-

ways be positive, therefore we are bound to set

p = k if v > 0 , p = −k if v < 0 . (52)

With these, we infer

m?
0√

1 − β2
= ±W − P

c2 (53)

that is
m?

0 = ± W
ṽv

√
1 − β2 . (54)

For propagation in vacuum we have P = 0, v = v0 = c2/ṽ,
and W = m0c2/

√
1 − β2 which implies, a expected,

m?
0 = m0 .

5.2 Antiparticles state

The early theory of antiparticles is due to P. A. M. Dirac af-
ter he derived his famous relativistic equation revealing the
electron-positon symmetric state. In order to explain the pro-
duction of a pair “electron-positon”, Dirac postulated the
presence of an underlying medium filled with electrons e
bearing a negative energy −m0c2.

An external energy input 2m0c2 would cause an nega-
tive energy electron to emerge from the medium as a positive
energy one, thus become observable. The resulting “hole”
would constitute, in this picture, an “observable” particle,
positon, bearing a positive charge.

With Louis de Broglie, we follow this postulate: we con-
sider that the hidden medium should also be filled with par-
ticles bearing a negative proper energy. Therefore the proper
mass “modification” discussed above is expressed by

m?
0 = −m0 (55)

and is true in the medium.
At this point, two fundamental situations are to be consid-

ered as follows:
a) The “normal” situation where P = 0, m?

0 , and v = v0;
b) The “singular” situation where P = 2W, in which case,

according to (28) and (29), the following relations are
obtained

n
∂(nν)
∂ν

= −1.

Hence, in the “singular” situation b),

1
[v]g

=
∂
(

1
λ

)

∂ν
= − ṽ

c2 = − 1
v0
,

from which is inferred

W =
m?

0 c2

√
1−β2

+ P = − m?
0 c2

√
1−β2

, W =
m?

0 c2

√
1−β2

. (56)

On the other hand

k = v0
(W − P)

c2 =
m?

0 v0√
1−β2

, k =
m0v0√
1−β2

p = − k = − m0v0√
1−β2


. (57)

Within this interpretation, the observed antiparticle has
an opposite charge, a positive rest mass m0 and a reversed
velocity v0 with respect to the phase wave propagation.

The state of electron-positon requires negative energies
bounded to the sub-quantum medium which can be now fur-
ther explicited.

The external energy input 2m0c2 causes a positive (ob-
servable) energy of the electron to emerge from the medium
according to

−m0c2 + 2m0c2 = m0c2. (58)

However, the charge conservation law requires the simul-
taneous emergence of an electron with positive rest energy
m0c2 implying for the hidden medium to supply a total en-
ergy of 2m0c2. In other words, we should have

Q = 2m0c2. (59)

5.3 Introducing the quantum potential

Following the same pattern as above, the quantum potential
Q is now assumed to act as a dispersive refracting material.

This means thatQ = P where the definition (8) holds now,
for m?

0 ,
Q = M0c2 − m?

0 c2. (60)

Since m?
0 c2 = −m0c2, we have with (59)

M0 = m0 .

The energy and the momentum of the antiparticle are now
given by

W =
M0c2

√
1 − β2

=
m0c2

√
1 − β2

, (61)

p =
M0v√
1 − β2

= − m0v0√
1 − β2

= − k. (62)

Clearly, the value obtained here for p characterizes a par-
ticle whose velocity direction v is opposite to that of the as-
sociated wave −v0.

This result perfectly matches the equation (57), which is
physically satisfied.
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6 Concluding remarks

According to the double solution theory, there exists a close
relationship between the guidance formula, and the relativis-
tic thermodynamics.

Following this argument, it is interesting to try to connect
the entropy with the particle/antiparticle production process
as it is derived above.

We first recall the classical action integral for the free par-
ticle :

a =

∫
L dt = −

∫
M0c2

√
1 − β2 dt . (63)

If we choose a period Ti of the particle’s internal vibration
(its proper mass is M0) as the intergration interval, from (12)
we have

1
Ti

=
m0c2

h

√
1 − β2 (64)

so that a “cyclic” action integral be defined as

a

h
= −

∫ Ti

0
M0c2

√
1 − β2 dt = −M0c2

m0c2 (65)

(Ti is assumed to be always short so that M0 and β2 = v2

c2 can
be considered as constants over the integration interval).

Denoting the hidden thermostat’s entropy by s, we set

s

R
=
a

h
, (66)

where R is Boltzmann’s constant.
Since

δQ0 = δm0c2,

we obtain
δs = −R δQ0

m0c2 . (67)

An entropy has thus been determined for the single par-
ticle surrounded by its guiding wave. According to Boltz-
mann’s relation

s = R lnP ,
where P= exp

(
s
R

)
is the probability characterizing the sys-

tem.
In this view, the prevailing plane monochromatic wave

representing the quantized (stable) stationary states corres-
ponds to an entropy maxima, whereas the other states also
exist but with a much reduced probability.

Now, we revert to the hidden sub-quantum medium which
thus supplies the equivalent heat quantity

Q0 = Q . (68)

The definition (8) can be re-written as

Q0 = M0c2 − m0c2. (69)

Therefore, according to the formula (67), the medium is
needed to supply an energy of 2m0c2 that is characterized by
an entropy decrease of 2R.

Its probability being reduced, this explains why an an-
tiparticle is unstable.

So, the thermodynamics approach, which could at first
glance seem strange in quantum theory, eventually finds here
a consistent ground. It is linked to “probability” situations
which fit in the physical processes involving wave “packet”
propagations within the guidance of the single particle.

We have tried here to provide a physical interpretation of
the sub-quantum medium from which the particle-antiparticle
symmetry originates within the double solution theory elabo-
rated by Louis de Broglie. In the Riemannian approximation
which we have presented above, the introduction of a term
generalizing the quantum potential would appear as that hav-
ing a somewhat degree of arbitrariness. However, if one refers
to our extended general relativity theory (EGR theory), the
introduction of this term is no longer arbitrary as it naturally
arises from its main feature.
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1955, exposé no.3.
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