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A combinatorial spacetime (CG | t) is a smoothly combinatorial manifold C underlying a
graph G evolving on a time vector t. As we known, Einstein’s general relativity is suit-
able for use only in one spacetime. What is its disguise in a combinatorial spacetime?
Applying combinatorial Riemannian geometry enables us to present a combinatorial
spacetime model for the Universe and suggest a generalized Einstein gravitational equa-
tion in such model. For finding its solutions, a generalized relativity principle, called
projective principle is proposed, i.e., a physics law in a combinatorial spacetime is
invariant under a projection on its a subspace and then a spherically symmetric multi-
solutions of generalized Einstein gravitational equations in vacuum or charged body are
found. We also consider the geometrical structure in such solutions with physical for-
mations, and conclude that an ultimate theory for the Universe maybe established if all
such spacetimes in R3. Otherwise, our theory is only an approximate theory and endless
forever.

1 Combinatorial spacetimes

The multi-laterality of our Universe implies the best space-
time model should be a combinatorial one. However, classi-
cal spacetimes are all in solitude. For example, the Newton
spacetime (R3|t) is a geometrical space (x1, x2, x3) ∈ R3 with
an absolute time t ∈ R+. With his deep insight in physical
laws, Einstein was aware of that all reference frames were es-
tablished by human beings, which made him realized that a
physics law is invariant in any reference frame. Whence, the
Einstein spacetime is (R3|t) � R4 with t ∈ R+, i.e., a warped
spacetime generating gravitation. In this kind of spacetime,
its line element is

ds2 =
∑

06µ,ν63

gµν(x)dxµdxν ,

where gµν, 0 6 µ, ν 6 3 are Riemannian metrics with local
flat, i.e., the Minkowskian spacetime

ds2 = −c2dt2 + dx2
1 + dx2

2 + dx2
3 ,

where c is the light speed. Wether the spacetime of Universe
is isolated? In fact, there are no justifications for Newton’s or
Einstein’s choice but only dependent on mankind’s percep-
tion with the geometry of visible, i.e., the spherical geome-
try(see [1–4] for details).

Certainly, different standpoints had unilaterally brought
about particular behaviors of the Universe such as those of
electricity, magnetism, thermal, optics. . . in physics and their
combinations, for example, the thermodynamics, electromag-
netism, . . . , etc. But the true colours of the Universe should
be hybrid, not homogeneous or unilateral. They should be
a union or a combination of all these features underlying a
combinatorial structure. That is the origin of combinatorial

spacetime established on smoothly combinatorial manifolds
following ([5–9]), a particular case of Smarandache multi-
space ([10–11]) underlying a connected graph.

Definition 1.1 Let ni, 1 6 i 6 m be positive integers. A
combinatorial Euclidean space is a combinatorial system CG

of Euclidean spaces Rn1 , Rn2 , · · ·, Rnm underlying a connected
graph G defined by

V(G) = {Rn1 ,Rn2 , · · · ,Rnm } ,
E(G) = { (Rni ,Rn j ) | Rni

⋂
Rn j , ∅, 1 6 i, j 6 m} ,

denoted by EG(n1, · · · , nm) and abbreviated to EG(r) if n1 =

· · · = nm = r.

A combinatorial fan-space R̃(n1, · · · , nm) is a combinato-
rial Euclidean space EKm (n1, · · · , nm) of Rn1 , Rn2 , · · ·, Rnm such

that for any integers i, j, 1 6 i , j 6 m, Rni
⋂

Rn j =
m⋂

k=1
Rnk ,

which is in fact a p-brane with p = dim
m⋂

k=1
Rnk in string the-

ory ([12]), seeing Fig. 1.1 for details.
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Fig. 1.1
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For ∀p ∈ R̃(n1, · · · , nm) we can present it by an m × nm

coordinate matrix [x] following with xil =
xl

m
for 1 6 i 6

m, 1 6 l 6 m̂,

[x] =



x11 · · · x1m̂ · · · x1n1 · · · 0
x21 · · · x2m̂ · · · x2n2 · · · 0
· · · · · · · · · · · · · · · · · · · · ·
xm1 · · · xmm̂ · · · · · · · · · xmnm


.

A topological combinatorial manifold M̃ is defined in the
next.

Definition 1.2 For a given integer sequence 0 < n1 < n2 <
· · · < nm, m > 1, a topological combinatorial manifold M̃ is a
Hausdorff space such that for any point p ∈ M̃, there is a lo-
cal chart (Up, ϕp) of p, i.e., an open neighborhood Up of p in
M̃ and a homeomorphism ϕp : Up → R̃(n1(p), · · · , ns(p)(p))
with

{n1(p), · · · , ns(p)(p)} ⊆ {n1, · · · , nm} ,⋃

p∈M̃

{n1(p), · · · , ns(p)(p)} = {n1, · · · , nm} ,

denoted by M̃(n1, n2, · · · , nm) or M̃ on the context and

Ã = {(Up, ϕp)|p ∈ M̃(n1, n2, · · · , nm))}

an atlas on M̃(n1, n2, · · · , nm).
A topological combinatorial manifold M̃ is finite if it is

just combined by finite manifolds without one manifold con-
tained in the union of others.

For a finite combinatorial manifold M̃ consisting of man-
ifolds Mi, 1 6 i 6 m, we can construct a vertex-edge labeled
graph GL[M̃] defined by

V(GL[M̃]) = {M1, M2, · · · , Mm} ,
E(GL[M̃) = { (Mi, M j) | Mi

⋂
M j , ∅, 1 6 i, j 6 n}

with a labeling mapping

Θ : V(GL[M̃])
⋃

E(GL[M̃])→ Z+

determined by

Θ(Mi) = dim Mi, Θ(Mi, M j) = dim Mi

⋂
M j

for integers 1 6 i, j 6 m, which is inherent structure of com-
binatorial manifolds. A differentiable combinatorial manifold
is defined by endowing differential structure on a topological
combinatorial manifold following.

Definition 1.3 For a given integer sequence 1 6 n1 < n2 <
· · · < nm, a combinatorial Ch-differential manifold (M̃(n1, n2
· · · , nm); Ã) is a finite combinatorial manifold M̃(n1, · · · , nm),

M̃(n1, · · · , nm) =
⋃
i∈I

Ui, endowed with an atlas Ã = {(Uα;ϕα)|
α ∈ I} on M̃(n1, · · · , nm) for an integer h, h > 1 with condi-
tions following hold.

(1) {Uα;α ∈ I} is an open covering of M̃(n1, n2, · · · , nm).

(2) For ∀α, β ∈ I, local charts (Uα;ϕα) and (Uβ;ϕβ) are
equivalent, i.e., Uα

⋂
Uβ = ∅ or Uα

⋂
Uβ , ∅ but the overlap

maps

ϕαϕ
−1
β : ϕβ(Uα

⋂
Uβ)→ ϕβ(Uβ) ,

ϕβϕ
−1
α : ϕα(Uα

⋂
Uβ)→ ϕα(Uα)

both are Ch-mappings, such as those shown in Fig. 1.2 fol-
lowing.
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Fig. 1.2

(3) Ã is maximal, i.e., if (U;ϕ) is a local chart of M̃(n1,
· · · , nm) equivalent with one of local charts in Ã, then (U;ϕ)
∈ Ã.

A finite combinatorial manifold M̃(n1, · · · , nm) is smooth
if it is endowed with a C∞-differential structure. Now we are
in the place introducing combinatorial spacetime.

Definition 1.4 A combinatorial spacetime (CG | t) is a smooth
combinatorial manifold C underlying a graph G evolving on
a time vector t, i.e., a geometrical space C with a time system
t such that (x| t) is a particle’s position at a time t for x ∈ C .

The existence of combinatorial spacetime in the Universe
is a wide-ranging, even if in the society science. By the ex-
plaining in the reference [13], there are four-level hierarchy
of parallel universes analyzed by knowledge of mankind al-
ready known, such as those of Hubble volumes, chaotic in-
flation, wavefunction and mathematical equations, etc. Each
level is allowed progressively greater diversity.

Question 1.5 How to deal behaviors of these different com-
binatorial spacetimes definitely with mathematics, not only
qualitatively?

Recently, many researchers work for brane-world cosmol-
ogy, particular for the case of dimensional 6 6, such as those
researches in references [14–18] and [3] etc. This brane-
world model was also applied in [19] for explaining a black
hole model for the Universe by combination. Notice that the
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underlying combinatorial structure of brane-world cosmolog-
ical model is essentially a tree for simplicity.

Now we have established a differential geometry on com-
binatorial manifolds in references [5–9], which provides us
with a mathematical tool for determining the behavior of
combinatorial spacetimes. The main purpose of this paper
is to apply it to combinatorial gravitational fields combining
with spacetime’s characters, present a generalized relativity in
combinatorial fields and use this principle to solve the grav-
itational field equations. We also discuss the consistency of
this combinatorial model for the Universe with some observ-
ing data such as the cosmic microwave background (CMB)
radiation by WMAP in 2003.

2 Curvature tensor on combinatorial manifolds

Applying combinatorial spacetimes to that of gravitational
field needs us to introduce curvature tensor for measuring the
warping of combinatorial manifolds. In this section, we ex-
plain conceptions with results appeared in references [5–8],
which are applied in this paper.

First, the structure of tangent and cotangent spaces TpM̃,
T ∗pM̃ at any point p ∈ M̃ in a smoothly combinatorial mani-
fold M̃ is similar to that of differentiable manifold. It has been

shown in [5] that dim TpM̃(n1, · · · , nm) = ŝ (p)+
s(p)∑
i=1

(ni− ŝ (p))

and dim T ∗pM̃(n1, n2, · · · , nm) = ŝ (p) +
s(p)∑
i=1

(ni − ŝ (p)) with a

basis

{
∂

∂xi0 j |p|16 j6 ŝ (p)
}⋃

s(p)⋃

i=1

{
∂

∂xi j |p | ŝ (p) + 16 j6 ni

} ,

{
dxi0 j|p|1 6 j 6 ŝ (p)

}⋃(s(p)⋃

i=1

{
dxi j|p | ŝ (p) + 1 6 j 6 ni

})

for any integer i0, 1 6 i0 6 s(p), respectively. These mathe-
matical structures enable us to construct tensors, connections
on tensors and curvature tensors on smoothly combinatorial
manifolds.

Definition 2.1 Let M̃ be a smoothly combinatorial manifold,
p ∈ M̃. A tensor of type (r, s) at the point p on M̃ is an
(r + s)-multilinear function τ,

τ : T ∗pM̃ × · · · × T ∗pM̃︸                 ︷︷                 ︸
r

× TpM̃ × · · · × TpM̃︸                 ︷︷                 ︸
s

→ R .

Let M̃(n1, · · · , nm) be a smoothly combinatorial manifold.
Denoted by T r

s (p, M̃) all tensors of type (r, s) at a point p of
M̃(n1, · · · , nm). Then for ∀p ∈ M̃(n1, · · · , nm), we have known
that

T r
s (p, M̃) = TpM̃ ⊗ · · · ⊗ TpM̃︸                 ︷︷                 ︸

r

⊗T ∗pM̃ ⊗ · · · ⊗ T ∗pM̃︸                 ︷︷                 ︸
s

,

where
TpM̃ = TpM̃(n1, · · · , nm) ,

T ∗pM̃ = T ∗pM̃(n1, · · · , nm) ,

particularly,

dim T r
s (p, M̃) =

̂s (p) +

s(p)∑

i=1

(
ni − ŝ (p)

)


r+s

by argumentation in [5–7].
A connection on tensors of a smooth combinatorial man-

ifold is defined by

Definition 2.2 Let M̃ be a smooth combinatorial manifold. A
connection on tensors of M̃ is a mapping D̃ : X (M̃)×T r

s M̃ →
T r

s M̃ with D̃Xτ = D̃(X, τ) such that for ∀X,Y ∈ X M̃, τ, π ∈
T r

s (M̃),λ ∈ R and f ∈ C∞(M̃),

(1) D̃X+ f Yτ = D̃Xτ+ f D̃Yτ and D̃X(τ+λπ) = D̃Xτ+λD̃Xπ;

(2) D̃X(τ ⊗ π) = D̃Xτ ⊗ π + σ ⊗ D̃Xπ;
(3) for any contraction C on T r

s (M̃),

D̃X(C(τ)) = C(D̃Xτ) .

For a smooth combinatorial manifold M̃, we have shown
in [5] that there always exists a connection D̃ on M̃ with co-
efficients Γκλ(σς)(µν) determined by

D̃ ∂
∂xµν

∂

∂xσς
= Γκλ(σς)(µν)

∂

∂xσς
.

A combinatorially connection space (M̃, D̃) is a smooth
combinatorial manifold M̃ with a connection D̃.

Definition 2.3 Let M̃ be a smoothly combinatorial manifold
and g ∈ A2(M̃) =

⋃
p∈M̃

T 0
2 (p, M̃). If g is symmetrical and pos-

itive, then M̃ is called a combinatorially Riemannian mani-
fold, denoted by (M̃, g). In this case, if there is also a connec-
tion D̃ on (M̃, g) with equality following hold

Z(g(X,Y)) = g(D̃Z ,Y) + g(X, D̃ZY) ,

then M̃ is called a combinatorially Riemannian geometry, de-
noted by (M̃, g, D̃).

It has been proved in [5] and [7] that there exists a unique
connection D̃ on (M̃, g) such that (M̃, g, D̃) is a combinatori-
ally Riemannian geometry.

Definition 2.4 Let (M̃, D̃) be a combinatorially connection
space. For ∀X,Y ∈ X (M̃), a combinatorially curvature op-
erator R̃(X,Y) : X (M̃)→X (M̃) is defined by

R̃(X,Y)Z = D̃X D̃YZ − D̃Y D̃XZ − D̃[X,Y]Z

for ∀Z ∈X (M̃).
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Definition 2.5 Let (M̃, D̃) be a combinatorially connection
space. For ∀X,Y,Z ∈ X (M̃), a linear multi-mapping R̃ :
X (M̃) ×X (M̃) ×X (M̃)→X (M̃) determined by

R̃(Z, X,Y) = R̃(X,Y)Z

is said a curvature tensor of type (1, 3) on (M̃, D̃).

Calculation in [7] shows that for ∀p ∈ M̃ with a local
chart (Up; [ϕp]),

R̃ = R̃ηθ(σς)(µν)(κλ)dxσς ⊗ ∂

∂xηθ
⊗ dxµν ⊗ dxκλ

with

R̃ηθ(σς)(µν)(κλ) =

(
∂Γ

ηθ
(σς)(κλ)

∂xµν
−
∂Γ

ηθ
(σς)(µν)

∂xκλ
+

+ Γϑι(σς)(κλ)Γ
ηθ
(ϑι)(µν) − Γϑι(σς)(µν)Γ

ηθ
(ϑι)(κλ)

)
∂

∂xϑι
,

where Γ
σς
(µν)(κλ) ∈ C∞(Up) is determined by

D̃ ∂
∂xµν

∂

∂xκλ
= Γ

σς
(κλ)(µν)

∂

∂xσς
.

Particularly, if (M̃, g, D̃) is a combinatorially Riemannian
geometry, we know the combinatorially Riemannian curva-
ture tensor in the following.

Definition 2.6 Let (M̃, g, D̃) be a combinatorially Rieman-
nian manifold. A combinatorially Riemannian curvature ten-
sor R̃ : X (M̃)×X (M̃)×X (M̃)×X (M̃)→ C∞(M̃) of type
(0, 4) is defined by

R̃(X,Y,Z,W) = g(R̃(Z,W)X,Y)

for ∀X,Y,Z,W ∈X (M̃).

Now let (M̃, g, D̃) be a combinatorially Riemannian man-
ifold. For ∀p ∈ M̃ with a local chart (Up; [ϕp]), we have
known that ([8])

R̃ = R̃(σς)(ηθ)(µν)(κλ)dxσς ⊗ dxηθ ⊗ dxµν ⊗ dxκλ

with

R̃(σς)(ηθ)(µν)(κλ) =
1
2

(
∂2g(µν)(σς)

∂xκλ∂xηθ
+
∂2g(κλ)(ηθ)

∂xµνν∂xσς
−

− ∂2g(µν)(ηθ)

∂xκλ∂xσς
− ∂

2g(κλ)(σς)

∂xµν∂xηθ

)
+ Γϑι(µν)(σς)Γ

ξo
(κλ)(ηθ) g(ξo)(ϑι) −

− Γ
ξo
(µν)(ηθ)Γ(κλ)(σς)ϑι g(ξo)(ϑι) ,

where g(µν)(κλ) = g

(
∂

∂xµν
,
∂

∂xκλ

)
.

Application of these mechanisms in Definitions 2.1–2.6
with results obtained in references [5–9], [20–23] enables us
to find physical laws in combinatorial spacetimes by mathe-
matical equations, and then find their multi-solutions in fol-
lowing sections.

3 Combinatorial gravitational fields

3.1 Gravitational equations

The essence in Einstein’s notion on the gravitational field is
known in two principles following.

Principle 3.1 These gravitational forces and inertial forces
acting on a particle in a gravitational field are equivalent and
indistinguishable from each other.

Principle 3.2 An equation describing a law of physics should
have the same form in all reference frame.

By Principle 3.1, one can introduce inertial coordinate
system in Einstein’s spacetime which enables it flat locally,
i.e., transfer these Riemannian metrics to Minkowskian ones
and eliminate the gravitational forces locally. Principle 3.2
means that a physical equation should be a tensor equation.
But how about the combinatorial gravitational field? We as-
sume Principles 3.1 and 3.2 hold in this case, i.e., a physical
law is characterized by a tensor equation. This assumption
enables us to deduce the gravitational field equation follow-
ing.

Let LGL[M̃] be the Lagrange density of a combinatorial
spacetime (CG | t). Then we know equations of the combina-
torial gravitational field (CG | t) to be

∂µ
∂LGL[M̃]

∂∂µφM̃
−
∂LGL[M̃]

∂φM̃
= 0 , (3.1)

by the Euler-Lagrange equation, where φM̃ is the wave func-
tion of (CG | t). Choose its Lagrange density LGL[M̃] to be

LGL[M̃] = R̃ − 2κLF ,

where κ = −8πG and LF the Lagrange density for all other
fields with

R̃ = g(µν)(κλ)R̃(µν)(κλ), R̃(µν)(κλ) = R̃σς
(µν)(σς)(κλ) .

Applying the Euler-Lagrange equation we get the equa-
tion of combinatorial gravitational field following

R̃(µν)(κλ) − 1
2

R̃ g(µν)(κλ) = κE(µν)(κλ) , (3.2)

where E(µν)(κλ) is the energy-momentum tensor.
The situation for combinatorial gravitational field is a lit-

tle different from classical field by its combinatorial character
with that one can only determines unilateral or part behaviors
of the field. We generalize the Einstein notion to combina-
torial gravitational field by the following projective principle,
which is coordinated with one’s observation.

Principle 3.3 A physics law in a combinatorial field is in-
variant under a projection on its a field.

By Principles 3.1 and 3.2 with combinatorial differential
geometry shown in Section 2, Principle 3.3 can be rephrased
as follows.
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Projective principle Let (M̃, g, D̃) be a combinatorial Rie-
mannian manifold and F ∈ T r

s (M̃) with a local form

F (κ1λ1)···(κrλr)
(µ1ν1)···(µsνs)

eκ1λ1 ⊗ · · · ⊗ eκrλrω
µ1ν1 ⊗ · · · ⊗ ωµsνs

in (Up, [ϕp]). If
F (κ1λ1)···(κrλr)

(µ1ν1)···(µsνs)
= 0

for integers 1 6 µi 6 s(p), 1 6 νi 6 nµi with 1 6 i 6 s and
1 6 κ j 6 s(p), 1 6 λ j 6 nκ j with 1 6 j 6 r, then for any
integer µ, 1 6 µ 6 s(p), there must be

F (µλ1)···(µλr)
(µν1)···(µνs)

= 0

for integers νi, 1 6 νi 6 nµ with 1 6 i 6 s.

Certainly, we can only determine the behavior of space
which we live. Then what is about these other spaces in
(CG | t)? Applying the projective principle, we can simulate
each of them by that of our living space. In other words, com-
bining geometrical structures already known to a combinato-
rial one (CG | t) and then find its solution for equation (3.2).

3.2 Combinatorial metric

Let Ã be an atlas on (M̃, g, D̃). Choose a local chart (U;$)

in Ã. By definition, if ϕp : Up →
s(p)⋃
i=1

Bni(p) and ŝ (p) =

dim (
s(p)⋂
i=1

Bni(p)), then [ϕp] is an s(p) × ns(p) matrix. A combi-

natorial metric is defined by

ds2 = g(µν)(κλ)dxµνdxκλ , (3.3)

where g(µν)(κλ) is the Riemannian metric in the combinatori-
ally Riemannian manifold (M̃, g, D̃). Generally, we choose a
orthogonal basis

{e11, · · · , e1n1 , · · · , es(p)ns(p) }

for ϕp[U], p ∈ M̃(t), i.e.,
〈
eµν, eκλ

〉
= δ(κλ)

(µν). Then the formula
(3.3) turns to

ds2 = g(µν)(µν)(dxµν)2

=

s(p)∑

µ=1

ŝ (p)∑

ν=1

g(µν)(µν) (dxµν)2
+

+

s(p)∑

µ=1

ŝ (p)+1∑

ν=1

g(µν)(µν) (dxµν)2

=
1

s2(p)

ŝ (p)∑

ν=1


s(p)∑

µ=1

g(µν)(µν)

 dxν +

+

s(p)∑

µ=1

ŝ (p)+1∑

ν=1

g(µν)(µν) (dxµν)2 .

We therefore find an important relation of combinatorial
metric with that of its projections following.

Theorem 3.1 Let µds2 be the metric in a manifold φ−1
p (Bnµ(p))

for integers 1 6 µ 6 s(p). Then

ds2 = 1ds2 + 2ds2 + · · · + s(p)ds2 .

Proof Applying the projective principle, we immediately
know that

µds2 = ds2|φ−1
p (Bnµ(p)), 1 6 µ 6 s(p) .

Whence, we find that

ds2 = g(µν)(µν) (dxµν)2

=

s(p)∑

µ=1

ni(p)∑

ν=1

g(µν)(µν) (dxµν)2

=

s(p)∑

µ=1

ds2|φ−1
p (Bnµ(p)) =

s(p)∑

µ=1
µds2 .

�
This relation enables us to find the line element of combi-

natorial gravitational field (CG | t) by applying that of gravita-
tional fields.

3.3 Combinatorial Schwarzschild metric

Let (CG | t) be a gravitational field. We know its Schwarzschild
metric, i.e., a spherically symmetric solution of Einstein’s
gravitational equations in vacuum is

ds2 =

(
1 − rs

r

)
dt2 − dr2

1 − rs
r

−

−r2dθ2 − r2 sin2 θdφ2 , (3.4)

where rs = 2Gm/c2. Now we generalize it to combinatorial
gravitational fields to find the solutions of equations

R(µν)(στ) − 1
2
g(µν)(στ)R = −8πGE(µν)(στ)

in vacuum, i.e., E(µν)(στ) = 0. Notice that the underlying graph
of combinatorial field consisting of m gravitational fields is
a complete graph Km. For such a objective, we only con-
sider the homogeneous combinatorial Euclidean spaces M̃ =⋃m

i=1 Rni , i.e., for any point p ∈ M̃,

[ϕp] =



x11 · · · x1n1 · · · 0
x21 · · · x2n2 · · · 0
· · · · · · · · · · · · · · ·
xm1 · · · · · · · · · xmnm



with m̂ = dim (
m⋂

i=1
Rni ) a constant for ∀p ∈

m⋂
i=1

Rni and xil = xl

m

for 1 6 i 6 m, 1 ≤ l 6 m̂.
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Let (CG | t) be a combinatorial field of gravitational fields
M1, · · · , Mm with masses m1, · · · ,mm respectively. For usu-
ally undergoing, we consider the case of nµ = 4 for 1 6 µ 6 m
since line elements have been found concretely in classical
gravitational field in these cases. Now establish m spherical
coordinate subframe (tµ; rµ, θµ, φµ) with its originality at the
center of such a mass space. Then we have known its a spher-
ically symmetric solution by (3.4) to be

ds2
µ =

(
1 − rµs

rµ

)
dt2
µ −

(
1 − rµs

rµ

)−1

dr2
µ −

− r2
µ(dθ2

µ + sin2 θµdφ2
µ)

for 1 6 µ 6 m with rµs = 2Gmµ/c2. By Theorem 3.1, we
know that

ds2 = 1ds2 + 2ds2 + · · · + mds2 ,

where µds2 = ds2
µ by the projective principle on combina-

torial fields. Notice that 1 6 m̂ 6 4. We therefore get the
geometrical of (CG | t) dependent on m̂ following.

Case 1. m̂ = 1, i.e., tµ = t for 1 6 µ 6 m.

In this case, the combinatorial metric ds is

ds2 =

m∑

µ=1

(
1 − 2Gmµ

c2rµ

)
dt2 −

−
m∑

µ=1

(
1 − 2Gmµ

c2rµ

)−1

dr2
µ −

−
m∑

µ=1

r2
µ

(
dθ2

µ + sin2 θµdφ2
µ

)
.

Case 2. m̂ = 2, i.e., tµ = t and rµ = r, or tµ = t and θµ = θ,
or tµ = t and φµ = φ for 1 6 µ 6 m.

We consider the following subcases.

Subcase 2.1. tµ = t, rµ = r.

In this subcase, the combinatorial metric is

ds2 =

m∑

µ=1

(
1 − 2Gmµ

c2r

)
dt2 −

−


m∑

µ=1

(
1 − 2Gmµ

c2r

)−1
 dr2 −

−
m∑

µ=1

r2
(
dθ2

µ + sin2 θµdφ2
µ

)
,

which can only happens if these m fields are at a same point
O in a space. Particularly, if mµ = M for 1 6 µ 6 m, the

masses of M1, M2, · · · ,Mm are the same, then rµg = 2GM is a
constant, which enables us knowing that

ds2 =

(
1 − 2GM

c2r

)
mdt2 −

−
(
1 − 2GM

c2r

)−1

mdr2 −

−
m∑

µ=1

r2
(
dθ2

µ + sin2 θµdφ2
µ

)
.

Subcase 2.2. tµ = t, θµ = θ.

In this subcase, the combinatorial metric is

ds2 =

m∑

µ=1

(
1 − 2Gmµ

c2rµ

)
dt2 −

−
m∑

µ=1

(
1 − 2Gmµ

c2rµ

)−1

dr2
µ −

−
m∑

µ=1

r2
µ

(
dθ2 + sin2 θdφ2

µ

)
.

Subcase 2.3. tµ = t, φµ = φ.

In this subcase, the combinatorial metric is

ds2 =

m∑

µ=1

(
1 − 2Gmµ

c2rµ

)
dt2 −

−


m∑

µ=1

(
1 − 2Gmµ

c2rµ

)−1
 dr2

µ −

−
m∑

µ=1

r2
µ

(
dθ2

µ + sin2 θµdφ2
)
.

Case 3. m̂ = 3, i.e., tµ = t, rµ = r and θµ = θ, or tµ = t, rµ = r
and φµ = φ, or tµ = t, θµ = θ and φµ = φ for 1 6 µ 6 m.

We consider three subcases following.

Subcase 3.1. tµ = t, rµ = r and θµ = θ.

In this subcase, the combinatorial metric is

ds2 =

m∑

µ=1

(
1 − 2Gmµ

c2r

)
dt2 −

−
m∑

µ=1

(
1 − 2Gmµ

c2r

)−1

dr2 −

− mr2dθ2 − r2 sin2 θ

m∑

µ=1

dφ2
µ .

Subcase 3.2. tµ = t, rµ = r and φµ = φ.
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In this subcase, the combinatorial metric is

ds2 =

m∑

µ=1

(
1 − 2Gmµ

c2r

)
dt2 −

−
m∑

µ=1

(
1 − 2Gmµ

c2r

)−1

dr2 −

−r2
m∑

µ=1

(
dθ2

µ + sin2 θµdφ2
)
.

There subcases 3.1 and 3.2 can be only happen if the cen-
ters of these m fields are at a same point O in a space.

Subcase 3.3. tµ = t, θµ = θ and φµ = φ.

In this subcase, the combinatorial metric is

ds2 =

m∑

µ=1

(
1 − 2Gmµ

c2rµ

)
dt2 −

−
m∑

µ=1

(
1 − 2Gmµ

c2rµ

)−1

dr2
µ −

−
m∑

µ=1

rµ
(
dθ2 + sin2 θdφ2

)
.

Case 4. m̂ = 4, i.e., tµ = t, rµ = r, θµ = θ and φµ = φ for
1 6 µ 6 m.

In this subcase, the combinatorial metric is

ds2 =

m∑

µ=1

(
1 − 2Gmµ

c2r

)
dt2 −

−
m∑

µ=1

(
1 − 2Gmµ

c2r

)−1

dr2 −

−mr2
(
dθ2 + sin2 θdφ2

)
.

Particularly, if mµ = M for 1 6 µ 6 m, we get that

ds2 =

(
1 − 2GM

c2r

)
mdt2 −

−
(
1 − 2GM

c2r

)−1

mdr2 −

−mr2
(
dθ2 + sin2 θdφ2

)
.

Define a coordinate transformation

(t, r, θ, φ)→ ( st, sr, sθ, sφ) = (t
√

m, r
√

m, θ, φ) .

Then the previous formula turns to

ds2 =

(
1 − 2GM

c2r

)
dst2 − dsr2

1 − 2GM
c2r

−

− sr2
(
dsθ

2 + sin2
sθdsφ

2
)

in this new coordinate system ( st, sr, sθ, sφ), whose geomet-
rical behavior likes that of the gravitational field.

3.4 Combinatorial Reissner-Nordström metric

The Schwarzschild metric is a spherically symmetric solu-
tion of the Einstein gravitational equations in conditions
E(µν)(στ) = 0. In some special cases, we can also find their
solutions for the case E(µν)(στ) , 0. The Reissner-Nordström
metric is such a case with

E(µν)(στ) =
1

4π

(
1
4
gµνFαβFαβ − FµαFα

ν

)

in the Maxwell field with total mass m and total charge e,
where Fαβ and Fαβ are given in Subsection 7.3.4. Its metrics
takes the following form:

gµν =



x11 0 0 0
0 x22 0 0
0 0 −r2 0
0 0 0 −r2 sin2 θ


,

where rs = 2Gm/c2, r2
e = 4Gπe2/c4, x11 = 1 − rs

r
+

r2
e

r2 and

x22 = −
(
1 − rs

r
+

r2
e

r2

)−1

. In this case, its line element ds is

given by

ds2 =

(
1 − rs

r
+

r2
e

r2

)
dt2 −

−
(
1 − rs

r
+

r2
e

r2

)−1

dr2 −

− r2
(
dθ2 + sin2 θdφ2

)
. (3.5)

Obviously, if e = 0, i.e., there are no charges in the grav-
itational field, then the equations (3.5) turns to that of the
Schwarzschild metric (3.4).

Now let (CG | t) be a combinatorial field of charged grav-
itational fields M1,M2, · · · , Mm with masses m1,m2, · · · ,mm

and charges e1, e2, · · · , em, respectively. Similar to the case
of Schwarzschild metric, we consider the case of nµ = 4 for
1 6 µ 6 m. We establish m spherical coordinate subframe
(tµ; rµ, θµ, φµ) with its originality at the center of such a mass
space. Then we know its a spherically symmetric solution by
(3.5) to be

ds2
µ =

1 −
rµs

rµ
+

r2
µe

r2
µ

 dt2
µ −

−
1 −

rµs

rµ
+

r2
µe

r2
µ


−1

dr2
µ −

− r2
µ

(
dθ2

µ + sin2 θµdφ2
µ

)
.

Likewise the case of Schwarzschild metric, we consider
combinatorial fields of charged gravitational fields dependent
on the intersection dimension m̂ following.
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Case 1. m̂ = 1, i.e., tµ = t for 1 6 µ 6 m.

In this case, by applying Theorem 3.1 we get the combi-
natorial metric

ds2 =

m∑

µ=1

1 −
rµs

rµ
+

r2
µe

r2
µ

 dt2 −

−
m∑

µ=1

1 −
rµs

rµ
+

r2
µe

r2
µ


−1

dr2
µ −

−
m∑

µ=1

r2
µ

(
dθ2

µ + sin2 θµdφ2
µ

)
.

Case 2. m̂ = 2, i.e., tµ = t and rµ = r, or tµ = t and θµ = θ,
or tµ = t and φµ = φ for 1 6 µ 6 m.

Consider the following three subcases.

Subcase 2.1. tµ = t, rµ = r.

In this subcase, the combinatorial metric is

ds2 =

m∑

µ=1

1 −
rµs

r
+

r2
µe

r2

 dt2 −

−
m∑

µ=1

1 −
rµs

r
+

r2
µe

r2


−1

dr2 −

−
m∑

µ=1

r2
(
dθ2

µ + sin2 θµdφ2
µ

)
,

which can only happens if these m fields are at a same point O
in a space. Particularly, if mµ = M and eµ = e for 1 6 µ 6 m,
we find that

ds2 =

(
1 − 2GM

c2r
+

4πGe4

c4r2

)
mdt2 −

− mdr2

1 − 2GM
c2r + 4πGe4

c4r2

−

−
m∑

µ=1

r2
(
dθ2

µ + sin2 θµdφ2
µ

)
.

Subcase 2.2. tµ = t, θµ = θ.

In this subcase, by applying Theorem 3.1 we know that
the combinatorial metric is

ds2 =

m∑

µ=1

1 −
rµs

rµ
+

r2
µe

r2
µ

 dt2 −

−
m∑

µ=1

1 −
rµs

rµ
+

r2
µe

r2
µ


−1

dr2
µ −

−
m∑

µ=1

r2
µ

(
dθ2 + sin2 θdφ2

µ

)
.

Subcase 2.3. tµ = t, φµ = φ.

In this subcase, we know that the combinatorial metric is

ds2 =

m∑

µ=1

1 −
rµs

rµ
+

r2
µe

r2
µ

 dt2 −

−
m∑

µ=1

1 −
rµs

rµ
+

r2
µe

r2
µ


−1

dr2
µ −

−
m∑

µ=1

r2
µ

(
dθ2

µ + sin2 θµdφ2
)
.

Case 3. m̂ = 3, i.e., tµ = t, rµ = r and θµ = θ, or tµ = t, rµ = r
and φµ = φ, or or tµ = t, θµ = θ and φµ = φ for 1 6 µ 6 m.

We consider three subcases following.

Subcase 3.1. tµ = t, rµ = r and θµ = θ.

In this subcase, by applying Theorem 3.1 we obtain that
the combinatorial metric is

ds2 =

m∑

µ=1

1 −
rµs

r
+

r2
µe

r2

 dt2 −

−
m∑

µ=1

1 −
rµs

r
+

r2
µe

r2


−1

dr2 −

−
m∑

µ=1

r2
(
dθ2 + sin2 θdφ2

µ

)
.

Particularly, if mµ = M and eµ = e for 1 6 µ 6 m, then
we get that

ds2 =

(
1 − 2GM

c2r
+

4πGe4

c4r2

)
mdt2 −

− mdr2

1 − 2GM
c2r + 4πGe4

c4r2

−

−
m∑

µ=1

r2
(
dθ2 + sin2 θdφ2

µ

)
.

Subcase 3.2. tµ = t, rµ = r and φµ = φ.

In this subcase, the combinatorial metric is

ds2 =

m∑

µ=1

1 −
rµs

r
+

r2
µe

r2

 dt2 −

−
m∑

µ=1

1 −
rµs

r
+

r2
µe

r2


−1

dr2 −

−
m∑

µ=1

r2
(
dθ2

µ + sin2 θµdφ2
)
.
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Particularly, if mµ = M and eµ = e for 1 6 µ 6 m, then
we get that

ds2 =

(
1 − 2GM

c2r
+

4πGe4

c4r2

)
mdt2 −

− mdr2

1 − 2GM
c2r + 4πGe4

c4r2

−

−
m∑

µ=1

r2
(
dθ2

µ + sin2 θµdφ2
)
.

Subcase 3.3. tµ = t, θµ = θ and φµ = φ.

In this subcase, the combinatorial metric is

ds2 =

m∑

µ=1

1 −
rµs

rµ
+

r2
µe

r2
µ

 dt2 −

−
m∑

µ=1

1 −
rµs

rµ
+

r2
µe

r2
µ


−1

dr2
µ −

−
m∑

µ=1

r2
µ

(
dθ2 + sin2 θdφ2

)
.

Case 4. m̂ = 4, i.e., tµ = t, rµ = r, θµ = θ and φµ = φ for
1 6 µ 6 m.

In this subcase, the combinatorial metric is

ds2 =

m∑

µ=1

1 −
rµs

r
+

r2
µe

r2

 dt2 −

−
m∑

µ=1

1 −
rµs

r
+

r2
µe

r2


−1

dr2 −

− mr2
(
dθ2 + sin2 θdφ2

)
.

Furthermore, if mµ = M and eµ = e for 1 6 µ 6 m, we
obtain that

ds2 =

(
1 − 2GM

c2r
+

4πGe4

c4r2

)
mdt2 −

− mdr2

1 − 2GM
c2r + 4πGe4

c4r2

−

− mr2
(
dθ2 + sin2 θdφ2

)
.

Similarly, we define the coordinate transformation

(t, r, θ, φ)→ ( st, sr, sθ, sφ) = (t
√

m, r
√

m, θ, φ).

Then the previous formula turns to

ds2 =

(
1 − 2GM

c2r
+

4πGe4

c4r2

)
dst2 −

− dsr2

1 − 2GM
c2r + 4πGe4

c4r2

−

− sr2
(
dsθ

2 + sin2
sθdsφ

2
)

in this new coordinate system ( st, sr, sθ, sφ), whose geomet-
rical behavior likes a charged gravitational field.

4 Multi-time system

A multi-time system is such a combinatorial field (CG | t) con-
sisting of fields M1, M2, · · · , Mm on reference frames

(t1, r1, θ1, φ1), · · · , (tm, rm, θm, φm)

and there are always exist two integers κ, λ, 1 6 κ , λ 6 m
such that tκ , tλ. Notice that these combinatorial fields dis-
cussed in Section 3 are all with tµ = t for 1 6 µ 6 m, i.e.,
we can establish a time variable t for all fields in this com-
binatorial field. But if we can not determine all the behavior
of living things in the Universe implied in the weak anthropic
principle, we can not find such a time variable t for all fields.
If so, we need a multi-time system for describing the Uni-
verse.

Among these multi-time systems, an interesting case ap-
pears in m̂ = 3, rµ = r, θµ = θ, φµ = φ, i.e., beings live in the
same dimensional 3 space, but with different notions on the
time. Applying Theorem 3.1, we discuss the Schwarzschild
and Reissner-Nordström metrics following.

4.1 Schwarzschild multi-time system

In this case, the combinatorial metric is

ds2 =

m∑

µ=1

(
1 − 2Gmµ

c2r

)
dt2
µ −

−
m∑

µ=1

(
1 − 2Gmµ

c2r

)−1

dr2 −

− mr2
(
dθ2 + sin2 θdφ2

)
.

Applying the projective principle to this equation, we get
metrics on gravitational fields M1, M2, · · · ,Mm following:

ds2
1 =

(
1 − 2Gm1

c2r

)
dt2

1 −

−
(
1 − 2Gm1

c2r

)−1

dr2 −

− r2
(
dθ2 + sin2 θdφ2

)
,

ds2
2 =

(
1 − 2Gm2

c2r

)
dt2

2 −

−
(
1 − 2Gm2

c2r

)−1

dr2 −

− r2
(
dθ2 + sin2 θdφ2

)
,

· · · · · · · · · · · · · · · · · · · · · · · · · · · ,
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ds2
m =

(
1 − 2Gmm

c2r

)
dt2

m −

−
(
1 − 2Gmm

c2r

)−1

dr2 −

−r2
(
dθ2 + sin2 θdφ2

)
.

Particularly, if mµ = M for 1 6 µ 6 m, we then get that

ds2 =

(
1 − 2GM

c2r

) m∑

µ=1

dt2
µ −

−
(
1 − 2GM

c2r

)−1

mdr2 −

− mr2
(
dθ2 + sin2 θdφ2

)
.

Its projection on the gravitational field Mµ is

ds2
µ =

(
1 − 2GM

c2r

)
dt2
µ −

−
(
1 − 2GM

c2r

)−1

dr2 −

− r2
(
dθ2 + sin2 θdφ2

)
,

i.e., the Schwarzschild metric on Mµ, 1 6 µ 6 m.

4.2 Reissner-Nordström multi-time system

In this case, the combinatorial metric is

ds2 =

m∑

µ=1

1 −
2Gmµ

c2r
+

4πGe4
µ

c4r2

 dt2
µ −

−
m∑

µ=1

1 −
2Gmµ

c2r
+

4πGe4
µ

c4r2


−1

dr2 −

− mr2
(
dθ2 + sin2 θdφ2

)
.

Similarly, by the projective principle we obtain the met-
rics on charged gravitational fields M1, M2, · · · , Mm following

ds2
1 =

1 − 2Gm1

c2r
+

4πGe4
1

c4r2

 dt2
1 −

−
1 − 2Gm1

c2r
+

4πGe4
1

c4r2


−1

dr2 −

− r2
(
dθ2 + sin2 θdφ2

)
,

ds2
2 =

1 − 2Gm2

c2r
+

4πGe4
2

c4r2

 dt2
2 −

−
1 − 2Gm2

c2r
+

4πGe4
2

c4r2


−1

dr2 −

− r2
(
dθ2 + sin2 θdφ2

)
,

· · · · · · · · · · · · · · · · · · · · · · · · · · · ,

ds2
m =

(
1 − 2Gmm

c2r
+

4πGe4
m

c4r2

)
dt2

m −

−
(
1 − 2Gmm

c2r
+

4πGe4
m

c4r2

)−1

dr2 −

− r2
(
dθ2 + sin2 θdφ2

)
.

Furthermore, if mµ = M and eµ = e for 1 6 µ 6 m, we
obtain that

ds2 =

(
1 − 2GM

c2r
+

4πGe4

c4r2

) m∑

µ=1

dt2 −

−
(
1 − 2GM

c2r
+

4πGe4

c4r2

)−1

mdr2 −

− mr2
(
dθ2 + sin2 θdφ2

)
.

Its projection on the charged gravitational field Mµ is

ds2
µ =

(
1 − 2GM

c2r
+

4πGe4

c4r2

)
dt2
µ −

−
(
1 − 2GM

c2r
+

4πGe4

c4r2

)−1

dr2 −

− r2
(
dθ2 + sin2 θdφ2

)
,

i.e., the Reissner-Nordström metric on Mµ, 1 6 µ 6 m.
As a by-product, these calculations and formulas mean

that these beings with time notion different from that of hu-
man beings will recognize differently the structure of our uni-
verse if these beings are intellectual enough to do so.

5 Discussions

5.1 Geometrical structure

A simple calculation shows that the dimension of the combi-
natorial gravitational field (C | t) in Section 3 is

dim (C | t) = 4m + (1 − m) m̂ . (5.1)

For example, dim (C | t) = 7, 10, 13, 16 if m̂ = 1 and
6, 8, 10 if m̂ = 1 for m = 2, 3, 4. In this subsection, we
analyze these geometrical structures with metrics appeared in
Section 3.

As we have said in Section 1, the visible geometry is the
spherical geometry of dimensional 3. That is why the sky
looks like a spherical surface. In this geometry, we can only
see the images of bodies with dim > 3 on our spherical sur-
face (see [1–2] and [4] in details). But the situation is a little
difference from that of the transferring information, which is
transferred in all possible routes. In other words, a geometry
of dimensional > 1. Therefore, not all information transfer-
ring can be seen by our eyes. But some of them can be felt by
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our six organs with the help of apparatus if needed. For exam-
ple, the magnetism or electromagnetism can be only detected
by apparatus. These notions enable us to explain the geo-
metrical structures in combinatorial gravitational fields, for
example, the Schwarzschild or Reissner-Nordström metrics.

Case 1. m̂ = 4.

In this case, by the formula (5.1) we get dim (C | t) = 4, i.e., all
fields M1, M2, · · · , Mm are in R4, which is the most enjoyed
case by human beings. We have gotten the Schwarzschild
metric

ds2 =

m∑

µ=1

(
1 − 2Gmµ

c2r

)
dt2 −

−
m∑

µ=1

(
1 − 2Gmµ

c2r

)−1

dr2 −

− mr2(dθ2 + sin2 θdφ2)

or the Reissner-Nordström metric

ds2 =

m∑

µ=1

1 −
rµs

r
+

r2
µe

r2

 dt2 −

− dr2

m∑
µ=1

(
1 − rµs

r +
r2
µe

r2

) −

− mr2
(
dθ2 + sin2 θdφ2

)

for non-charged or charged combinatorial gravitational fields
in vacuum in Sections 3. If it is so, the behavior of Universe
can be realized finally by human beings. This also means that
the discover of science will be ended, i.e., we can established
the Theory of Everything finally for the Universe.

Case 2. m̂ 6 3.

If the Universe is so, then dim (C | t) > 5. In this case, we
know the combinatorial Schwarzschild metrics and combina-
torial Reissner-Nordström metrics in Section 3, for example,
if tµ = t, rµ = r and φµ = φ, the combinatorial Schwarzschild
metric is

ds2 =

m∑

µ=1

(
1 − rµs

r

)
dt2 −

m∑

µ=1

dr2
(
1 − rµs

r

) −

−
m∑

µ=1

r2
(
dθ2

µ + sin2 θµdφ2
)

and the combinatorial Reissner-Nordström metric is

ds2 =

m∑

µ=1

1 −
rµs

r
+

r2
µe

r2

 dt2 −

−
m∑

µ=1

dr2
(
1 − rµs

r +
r2
µe

r2

) −

−
m∑

µ=1

r2
(
dθ2

µ + sin2 θµdφ2
)
.

Particularly, if mµ = M and eµ = e for 1 6 µ 6 m, then
we get that

ds2 =

(
1 − 2GM

c2r

)
mdt2 − mdr2

(
1 − 2GM

c2r

) −

−
m∑

µ=1

r2
(
dθ2

µ + sin2 θµdφ2
)

for combinatorial gravitational field and

ds2 =

(
1 − 2GM

c2r
+

4πGe4

c4r2

)
mdt2 −

− mdr2
(
1 − 2GM

c2r + 4πGe4

c4r2

) −

−
m∑

µ=1

r2
(
dθ2

µ + sin2 θµdφ2
)

for charged combinatorial gravitational field in vacuum. In
this case, the observed interval in the field MO where human
beings live is

dsO = a(t, r, θ, φ)dt2 − b(t, r, θ, φ)dr2 −
− c (t, r, θ, φ)dθ2 − d (t, r, θ, φ)dφ2 .

How to we explain the differences ds − dsO in physics?
Notice that we can only observe the line element dsO, a pro-
jection of ds on MO. Whence, all contributions in ds − dsO

come from the spatial direction not observable by human be-
ings. In this case, we are difficult to determine the exact be-
havior. Furthermore, if m̂ 6 3 holds, because there are infinite
combinations (CG | t) of existent fields underlying a connected
graph G, we can not find an ultimate theory for the Universe,
i.e., there are no a Theory of Everything for the Universe and
the science established by ours is approximate, holds on con-
ditions and the discover of science will be endless forever.

5.2 Physical formation

A generally accepted notion on the formation of Universe is
the Big Bang theory ([24]), i.e., the origin of Universe is from
an exploded at a singular point on its beginning. Notice that
the geometry in the Big Bang theory is just a Euclidean R3 ge-
ometry, i.e., a visible geometry by human beings. Then how
is it came into being for a combinatorial spacetime? Weather
it is contradicts to the experimental data? We will explain
these questions following.

Realization 5.1 Any combinatorial spacetime was formed by
|G| times Big Bang in an early space.

Certainly, if there is just one time Big Bang, then there
exists one spacetime observed by us, not a multiple or combi-
natorial spacetime. But there are no arguments for this claim.
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It is only an assumption on the origin of Universe. If it is not
exploded in one time, but in m > 2 times in different spatial
directions, what will happens for the structure of spacetime?

The process of Big Bang model can be applied for ex-
plaining the formation of combinatorial spacetimes. Assume
the dimension of original space is bigger enough and there
are m explosions for the origin of Universe. Then likewise the
standard process of Big Bang, each time of Big Bang brought
a spacetime. After the m Big Bangs, we finally get a multi-
spacetime underlying a combinatorial structure, i.e., a combi-
natorial spacetime (CG | t) with |G| = m, such as those shown
in Fig. 5.1 for G = C4 or K3.

E1

E4 E2

E3

(a) (b)

E1

E2 E3

Fig. 5.1

where Ei denotes ith time explosion for 1 ≤ i 6 4. In the pro-
cess of m Big Bangs, we do not assume that each explosion
Ei, 1 6 i 6 m was happened in a Euclidean space R3, but in
Rn for n > 3. Whence, the intersection Ei∩E j means the same
spatial directions in explosions Ei and E j for 1 6 i, j 6 m.
Whence, information in Ei or E j appeared along directions in
Ei ∩ E j will both be reflected in E j or Ei. As we have said in
Subsection 5.1, if dim Ei ∩ E j 6 2, then such information can
not be seen by us but only can be detected by apparatus, such
as those of the magnetism or electromagnetism.

Realization 5.2 The spacetime lived by us is an intersection
of other spacetimes.

This fact is an immediately conclusion of Realization 5.1.

Realization 5.3 Each experimental data on Universe ob-
tained by human beings is synthesized, not be in one of its
spacetimes.

Today, we have known a few datum on the Universe by
COBE or WMAP. In these data, the one well-known is the
2.7oK cosmic microwave background radiation. Generally,
this data is thought to be an evidence of Big Bang theory. If
the Universe is a combinatorial one, how to we explain it?
First, the 2.7oK is not contributed by one Big Bang in R3,
but by many times before 137 light years, i.e., it is a syn-
thesized data. Second, the 2.7oK is surveyed by WMAP, an
explorer satellite in R3. By the projective principle in Sec-
tion 3, it is only a projection of the cosmic microwave back-
ground radiation in the Universe on the space R3 lived by us.
In fact, all datum on the Universe surveyed by human beings
can be explained in such a way. So there are no contradiction

between combinatorial model and datum on the Universe al-
ready known by us, but it reflects a combinatorial behavior of
the Universe.
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