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Here, we use our new metric tensor exterior to homogeneous oblate spheroidal mass
distributions to study gravitational spectral shift of light in the vicinity of the Sun, Earth
and other oblate spheroidal planets. It turns out most profoundly that, this experimen-
tally verified phenomenon holds good in the gravitational field exterior to an oblate
spheroid using our approach. In approximate gravitational fields, our obtained theo-
retical value for the Pound-Rebka experiment on gravitational spectra shift along the
equator of the Earth (2.578×10−15) agrees satisfactorily with the experimental value of
2.45×10−15. We also predict theoretical values for the Pound-Rebka experiment on the
surface (along the equator) of the Sun and other oblate spheroidal planets.

1 Introduction

According to the General Theory of Gravitation, the rate of a
clock is slowed down when it is in the vicinity of a large grav-
itating mass. Since the characteristic frequencies of atomic
transitions are, in effect, clocks, one has the result that the
frequency of such a transition occurring, say, on the surface
of the Sun, should be lowered by comparison with a similar
transition observed in a terrestrial laboratory. This manifests
itself as a gravitational red shift in the wavelengths of spec-
tral lines [1]. It has been experimentally and astrophysically
observed that there is an increase in the frequency of light
(photon) when the source or emitter is further away from the
body than the receiver. The frequency of light will increase
(shifting visible light towards the blue end of the spectrum)
as it moves to lower gravitational potentials (into a gravity
well). Also, there is a reduction in the frequency of light
when the source or emitter is nearer the body than the re-
ceiver. The frequency of light will decrease (shifting visi-
ble light towards the red end of the spectrum) as it moves
into higher gravitational potentials (out of a gravity well).
This was experimentally confirmed in the laboratory by the
Pound-Rebka experiment in 1959 (they used the Mossbauer
effect to measure the change in frequency in gamma rays as
they travelled from the ground to the top of Jefferson Labs at
Havard University) [2]. This gravitational phenomenon was
later confirmed by astronomical observations [3]. In this ar-
ticle, we verify the validity of our metric tensor exterior to
a massive homogeneous oblate spheroid by studying gravi-
tational spectral shift in the vicinity of the Sun, Earth and
other oblate spheroidal planets. Basically, we assume that
these gravitational sources are time independent and homo-
geneous distributions of mass within spheroids, characterized
by at most two typical integrals of geodesic motion, namely,
energy and angular momentum. From an astrophysical point
of view, such an assumption, although not necessary, could,

however, prove useful, because it is equivalent to the assump-
tion that the gravitational source is changing slowly in time
so that partial time derivatives are negligible compared to the
spatial ones. We stress that the mass source considered is
not the most arbitrary one from a theoretical point of view,
but on the other hand, many astrophysically interesting sys-
tems are usually assumed to be time independent (or static
from another point of view) and axially symmetric continu-
ous sources.

2 Covariant metric tensor exterior to a massive homo-
geneous oblate spheroid

The covariant metric tensor in the gravitational field of a ho-
mogeneous oblate spheroid in oblate spheroidal coordinates
(η, ξ, φ) has been obtained [4, 5] as;

g00 =

(
1 +

2
c2 f (η, ξ)

)
, (2.1)

g11 = − a2

1+ξ2−η2

η2
(
1+

2
c2 f (η, ξ)

)−1

+
ξ2(1+ξ2)
(1−η2)

 , (2.2)

g12 ≡ g21 = − a2ηξ

1 + ξ2 − η2

1 −
(
1 +

2
c2 f (η, ξ)

)−1 , (2.3)

g22 = − a2

1+ξ2 − η2

ξ
2
(
1+

2
c2 f (η, ξ)

)−1

+
η2(1−η2)
(1+ξ2)

 , (2.4)

g33 = −a2(1 + ξ2)(1 − η2) , (2.5)

f (η, ξ) is an arbitrary function determined by the mass or
pressure distribution and hence possesses all the symmetries
of the latter, a priori. Let us now recall that for any gravita-
tional field [4–7]

g00 � 1 +
2
c2 Φ (2.6)
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where Φ is Newton’s gravitational scalar potential for the field
under consideration. Thus we can then deduce that the un-
known function in our field equation can be given approxi-
mately as

f (η, ξ) � Φ (η, ξ) , (2.7)

where Φ (η, ξ) is Newton’s gravitational scalar potential ex-
terior to a homogeneous oblate spheroidal mass. It has been
shown that [8];

Φ (η, ξ) = B0Q0 (−iξ) P0 (η) + B2Q2 (−iξ) P2 (η) , (2.8)

where Q0 and Q2 are the Legendre functions linearly inde-
pendent to the Legendre polynomials P0 and P2 respectively;
B0 and B2 are constants given by

B0 =
4πGρ0 a2ξ0

3∆1

and

B2 =
4πGρ0 a2ξ0

9∆2

[
d
dξ

P2(−iξ)
]

ξ=ξ0

,

where ∆1 and ∆2 are defined as

∆1 =

[
d
dξ
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]
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and

∆2 = Q0

[
d
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]
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[

d
dξ

Q2(−iξ)
]

ξ=ξ0

,

G is the universal gravitational constant, ρ0 is the uniform
density of the oblate spheroid and a is a constant parameter.

In a recent article [9], we obtained a satisfactory approxi-
mate expression for equation (2.8) as;

Φ(η, ξ) ≈ B0

3ξ3

(
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)
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30ξ3

(
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) (
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)
i (2.9)

with

Φ(η, ξ) ≈ B0
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(
1 + 3ξ2

)
i +
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i

and
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(
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15ξ3

(
7 + 15ξ2

)
i

as the respective approximate expressions for the gravitation-
al scalar potential along the equator and pole exterior to ho-
mogeneous oblate spheroidal bodies. These equations were
used to compute approximate values for the gravitational
scalar potential exterior to the Sun, Earth and other oblate
spheroidal planets [9].

Fig. 1: Emission and reception space points of light (photon).

3 Gravitational spectral shift exterior to oblate sphero-
idal distributions of mass

Here, we consider a beam of light moving from a source or
emitter at a fixed point in the gravitational field of the oblate
spheroidal body to an observer or receiver at a fixed point in
the same gravitational field. Einstein’s equation of motion
for a photon is used to derive an expression for the shift in
frequency of a photon moving in the gravitational field of an
oblate spheroidal mass.

Now, consider a beam of light moving from a source or
emitter (E) at a fixed point in the gravitational field of an
oblate spheroidal body to an observer or receiver (R) at a fixed
point in the field as shown in Fig. 1.

Let the space time coordinates of the emitter and receiver
be (tE , ηE , ξE , φE) and (tR, ηR, ξR, φR) respectively. It is well
known that light moves along a null geodesic given by

dτ = 0 . (3.1)

Thus, the world line element for a photon (light) takes the
form

c2g00 dt2 = g11 dη2 + 2g12 dηdξ + g22 dξ2 + g33 dφ2. (3.2)

Substituting the covariant metric tensor for this gravita-
tional field in equation (3.2) gives
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Now, let u be a suitable parameter that can be used to
study the motion of a photon in this gravitational field. Then
equation (3.3) can be written as

c2
(
1 +

2
c2 f (η, ξ)

) (
dt
du

)2

= − a2

1 + ξ2 − η2 ×

×
η2

(
1 +

2
c2 f (η, ξ)

)−1

+
ξ2

(
1 + ξ2

)
(
1 − η2)

 dη2 −

− 2a2ηξ

1 + ξ2 − η2

1 −
(
1 +

2
c2 f (η, ξ)

)−1
(

dη
du

dξ
du

)
−

− a2

1 + ξ2 − η2

ξ2
(
1 +

2
c2 f (η, ξ)

)−1

+
η2

(
1 − η2

)
(
1 + ξ2)

×

×
(

dξ
du

)2

− a2
(
1 + ξ2

) (
1 − η2

) (dφ
du

)2

. (3.4)

Equation (3.4) can be equally written as
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Integrating equation (3.5) for a signal of light moving
from emitter E to receiver R gives

tR − tE =
1
c

∫ uR

uE


(
1 +

2
c2 f (η, ξ)

)− 1
2

ds

 du . (3.7)

The time interval between emission and reception of all
light signals is well known to be the same for all light signals
in relativistic mechanics (constancy of the speed of light) and
thus the integral on the right hand side is the same for all light
signals. Consider two light signals designated 1 and 2 then

t1
R − t1

E = t2
R − t2

E (3.8)
or

t2
R − t1

R = t2
E − t1

E . (3.9)

Thus,
∆tR = ∆tE . (3.10)

Hence, coordinate time difference of two signals at the
point of emission equals that at the point of reception. From
our expression for gravitational time dilation in this gravita-
tional field [10], we can write

∆τR =

(
1 +

2
c2 fR(η, ξ)

) 1
2

∆tR . (3.11)

Equations (3.9), (3.10) and (3.11) can be combined to
give

∆τR

∆τE
=


1 + 2

c2 fR(η, ξ)

1 + 2
c2 fE(η, ξ)


1
2

. (3.12)

Now, consider the emission of a peak or crest of light
wave as one event. Let n be the number of peaks emitted in
a proper time interval ∆τE , then, by definition, the frequency
of the light relative to the emitter, νE , is given as

νE =
n

∆τE
. (3.13)

Similarly, since the number of cycles is invariant, the fre-
quency of light relative to the receiver, νR, is given as

νR =
n

∆τR
. (3.14)

Consequently,
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=

∆τE
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2
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) 1
2
(
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2
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(3.15)
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2
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1 − 2
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)

(3.16)

or
νR

νE
− 1 ≈ 1

c2

[
fE(η, ξ) − fR(η, ξ)

]
(3.17)

to the order of c−2. Alternatively, equation (3.17) can be writ-
ten as

z ≡ ∆ν

νE
≡ νR − νE

νE
≈ 1

c2

[
fE(η, ξ) − fR(η, ξ)

]
. (3.18)

It follows from equation (3.18) that if the source is nearer
the body than the receiver then fE(η, ξ) < fR(η, ξ) and hence
∆ν < 0. This indicates that there is a reduction in the fre-
quency of light when the source or emitter is nearer the body
than the receiver. The light is said to have undergone a red
shift (that is the light moves toward red in the visible spec-
trum). Otherwise (source further away from body than re-
ceiver), the light undergoes a blue shift. Now, consider a
signal of light emitted and received along the equator of the
homogeneous oblate spheroidal Earth (approximate gravita-
tional field where f (η, ξ) ≈ Φ(η, ξ). The ratio of the shift
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Emi Pt Recep pt z (×10−10) Type of shift

ξ0 ξ0 0 none
2ξ0 ξ0 3.454804 blue
3ξ0 ξ0 4.603165 blue
4ξ0 ξ0 5.176987 blue
5ξ0 ξ0 5.521197 blue
6ξ0 ξ0 5.750643 blue
7ξ0 ξ0 5.914522 blue
8ξ0 ξ0 6.037426 blue
9ξ0 ξ0 6.133016 blue

10ξ0 ξ0 6.209486 blue

Fig. 2: Ratio of the shift in frequency of light to the fre-
quency of the emitted light at points along equator and
received on the surface of the Earth on the equator.

Emi Pt Recep pt z (×10−10) Type of shift

ξ0 ξ0 0 none
ξ0 2ξ0 −3.454804 red
ξ0 3ξ0 −4.603165 red
ξ0 4ξ0 −5.176987 red
ξ0 5ξ0 −5.521197 red
ξ0 6ξ0 −5.750643 red
ξ0 7ξ0 −5.914522 red
ξ0 8ξ0 −6.037426 red
ξ0 9ξ0 −6.133016 red
ξ0 10ξ0 −6.209486 red

Fig. 3: Ratio of the shift in frequency of light to the fre-
quency of the emitted light at points along equator and
received on the surface of the Earth on the equator.

Body Radial dist. (km) ξ at pt ΦE (Nmkg−1) ΦR (Nmkg−1) Predicted shift

Sun 700, 022.5 241.527 −1.9375791×1011 −1.9373218×1011 −2.85889×10−21

Earth 6, 378.023 12.010 −6.2079113×107 −6.2078881×107 −2.57800×10−15

Mars 3, 418.5 9.231 −1.2401149×107 −1.2317966×107 −9.24256×10−20

Jupiter 71, 512.5 2.641 −1.4968068×109 −1.4958977×109 −1.010111×10−20

Saturn 60, 292.5 1.971 −4.8486581×108 −4.8484869×108 −1.902222×10−21

Uranus 25, 582.5 3.994 −2.1563913×108 −2.1522082×108 −4.647889×10−20

Neptune 24, 782.5 4.304 −2.5243240×108 −2.5196722×108 −5.168667×10−20

Fig. 4: Predicted Pound-Rebka shift in frequency along the equator for the Sun, Earth and the other oblate spheroidal
planets.

in frequency to the frequency of the emitted light at various
points along the equator and received on the equator at the
surface of the homogeneous oblate spheroidal Earth can be
computed using equation (3.18). This yields Table 1. Also,
the ratio of the shift in frequency of light to the frequency of
the emitted light on the equator at the surface and received at
various points along the equator of the homogeneous oblate
spheroidal Earth can be computed. This gives Table 2.

Tables 1, thus confirms our assertion above that there is an
increase in the frequency of light when the source or emitter is
further away from the body than the receiver. The frequency
of light will increase (shifting visible light toward the blue
end of the spectrum) as it moves to lower gravitational poten-
tials (into a gravity well). Table 2, also confirms our assertion
above that there is a reduction in the frequency of light when
the source or emitter is nearer the body than the receiver. The
frequency of light will decrease (shifting visible light toward
the red end of the spectrum) as it moves to higher gravita-
tional potentials (out of a gravity well). Also, notice that the
shift in both cases increases with increase in the distance of
separation between the emitter and receiver. The value of the
shift is equal in magnitude at the same separation distances
for both cases depicted in Tables 1 and 2.

Now, suppose the Pound-Rebka experiment is performed
at the surface of the Sun, Earth and other oblate spheroidal
planets on the equator. Then, since the gamma ray frequency
shift was observed at a height of 22.5m above the surface, we

model our theoretical computation and calculate the theoreti-
cal value for this shift. This computation yields Table 3.

With these predictions, experimental astrophysicists and
astronomers can now attempt carrying out similar experi-
ments on these bodies. Although, the prospects of carrying
out such experiments on the surface of some of the planets
and Sun are less likely (due to temperatures on their surfaces
and other factors); theoretical studies of this type helps us to
understand the behavior of photons as they leave or approach
these astrophysical bodies. This will thus aid in the devel-
opment of future instruments that can be used to study these
heavenly bodies.

4 Conclusion

The practicability of the findings in this work is an encourag-
ing factor. More so, that in this age of computational preci-
sion, the applications of these results is another factor.
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