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The spin dependent conductance of mesoscopic device is investigated under the ef-
fect of infrared and ultraviolet radiation and magnetic field. This device is modeled as
Aharonov-Casher semiconducting ring and a quantum dot is embedded in one arm of
the ring. An expression for the conductance is deduced. The results show oscillatory
behavior of the conductance. These oscillations might be due to Coulomb blockade
effect and the interplay of Rashba spin orbit coupling strength with the induced pho-
tons of the electromagnetic field. The present device could find applications in quantum
information processing (qubit).

1 Introduction

Advances in nanotechnology opened the way for the syn-
thesis of artificial nanostructures with sizes smaller than the
phase coherence length of the carriers [1]. The electronic
properties of these systems are dominated by quantum ef-
fects and interferences [2]. One of the goals of semiconductor
spintronics [3,4] is to realize quantum information processing
based on electron spin. In the last decades, much attention is
attracted by many scientists to study the spin-dependent trans-
port in diverse mesoscopic systems, e.g., junctions with fer-
romagnetic layers, magnetic semiconductors, and low-dimen-
sional semiconducting nanostructures [5, 6]. Coherent oscil-
lations of spin state driven by a microwave field have been
studied extensively [7–11].

Many authors investigated the spin transport through
quantum rings [12–18]. These rings are fabricated out of two
dimensional electron gas formed between heterojunction of
III–V and II–VI semiconductors. Spin-orbit interaction (SOI)
is crucial in these materials. The purpose of the present pa-
per is to investigate the quantum spin transport in ring made
of semiconductor heterostructure under the effect of infrared
and ultraviolet radiations.

2 Theoretical treatment

In order to study the quantum spin characteristics of a meso-
scopic device under the effect of both infrared (IR) and ultra-
violet (UV) radiation, we propose the following model:

A semiconductor quantum dot is embedded in one arm
of the Aharonov-Casher ring with radius comparable with
the Fermi-wavelength of semiconductor heterostructure. This
ring is connected to two conducting leads. The form of the
confining potential is modulated by an external gate electrode
allowing for direct control of the electron spin-orbit interac-
tion. By introducing an external magnetic field, we also cal-
culate the combined Aharonov-Casher, and Aharonov-Bohm
conductance modulations. The conductance G for the present

investigated device will be calculated using Landauer for-
mula [17–19] as:

G =
2e2

h
sin φ

∑

µ=1,2

dE
(
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∂E

) ∣∣∣Γµ,with photon (E)
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where fFD is the Fermi-Dirac distribution function, e is the
electron charge, h is Planck’s constant, φ is the electron phase
difference propagating through the upper and lower arms of
the ring, and

∣∣∣Γµ,with photon (E)
∣∣∣2 is the tunneling probability

induced by the external photons.
Now, we can find an expression for the tunneling proba-

bility
∣∣∣Γµ,with photon (E)

∣∣∣2 by solving the following Schrodinger
equation and finding the eigenfunctions for this system as fol-
lows:
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where Vd is the barrier height, Vg is the gate voltage, m∗ is the
effective mass of electrons, EF is the Fermi-energy, B is the
applied magnetic field, and Vac is the amplitude of the applied
infrared, and ultraviolet electromagnetic field with frequency
ω. In (2) ĤS oc is the Hamiltonian due to the spin-orbit cou-
pling which is expressed as:

ĤS oc =
~2

2m∗a2

(
− i

∂

∂φ
− ΦAB

2π
− ωS ocm∗a2

~
σr

)
, (3)

where ωS oc = α/ (~a) and it is called the frequency associated
with the spin-orbit coupling,α is the strength of the spin-orbit
coupling, a is the radius of the Aharonov-Casher ring, and σr

is the radial part of the Pauli matrices which expressed in the
components of Pauli matrices σx, σy as:

σr = σx cos φ + σy sin φ,
σφ = σy cos φ − σx sin φ . (4)
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Due to the application of magnetic field B, normal to the
plane of the device, the Aharonov-Bohm phase will be picked
up by an electron which encircling the following magnetic
flux ΦAB, see Eq. (3), as:

ΦAB =
πeBa2

~
. (5)

Now, the solution of Eq. (2) will consist of four eigen-
functions [17, 18, 20], where ψL (x) is the eigenfunction for
transmission through the left lead, ψR (x) for the right lead,
ψup (θ) for the upper arm of the ring, and ψlow (θ) for the lower
arm of the ring. Their expressions are:

ψL (x, t) =
∑

σ

∞∑

n=−∞
Jn

(eVac

~ω

) [
Aeikx+Be−ikx

]
χσ (π) e−inωt, (6)

χ ∈ [−∞, 0]
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χ ∈ [0,∞] ,
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φ ∈ [0, π] ,

ψlow (θ, t) =
∑
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φ ∈ [π, 2π]

were Jn (eVac/ (~ω)), Eqs. (6–9), is the nth order Bessel func-
tion. The solutions, Eqs. (6–9), must be generated by the pres-
ence of the different side-bands n, which come with phase
factor exp (−inωt). The parameter χσ (φ) is expressed as:

χ1
n (φ) =

(
cos (θ/2)

eiφ sin (θ/2)

)
(10)

and

χ2
n (φ) =

(
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)
(11)

where the angle θ [17, 18, 21] is given by

θ = 2 tan−1
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in which Ω is given by

Ω =
~

2m∗a2 . (13)

Also, the parameters n′σµ and nσµ expressed respectively
as:

n′σµ = µk′a − φ +
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+
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in which µ = ±1 corresponding to the spin-up, and spin-down
of the transmitted phase, expressed as [17, 18, 20]:
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 . (16)

The wave numbers k′ and k are given respectively by

k′ =

√
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~2 , (17)

and
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)
, (18)

where Vd is the barrier height, Vg is the gate voltage, N is the
number of electrons entering the quantum dot, C is the total
capacitance of the quantum dot, e is the electron charge, EF

is the Fermi energy, m∗ is the effective mass of electrons with
energy E, and ~ω is the photon energy of both infrared and
ultraviolet electromagnetic field.

Now, the tunneling probability
∣∣∣Γµ,with photon (E)

∣∣∣2 could be
obtained by applying the Griffith boundary condition [15, 17,
18, 20, 21] to Eqs. (6–9). The Griffith boundary condition
states that the eigenfunctions, Eqs. (6–9), are continuous and
their current density is conserved at each intersection. Ac-
cordingly therefore, the expression for the tunneling proba-
bility is given by:
∣∣∣Γµ with photons (E)

∣∣∣2 = (19)

=
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2

.

Now, substituting
∣∣∣Γµ with photons (E)

∣∣∣2, into Eq. (1), we get
a full expression for the conductance G, which will be solved
numerically as will be seen in the next section.

3 Result and discussion

Numerical calculations are performed for the conductance G
as function of the gate voltage Vg, magnetic field B, and func-
tion of ωS oc frequency due to spin-orbit coupling at specific
values of photon energies, e.g., energies of infrared and ul-
traviolet radiations. The values of the following parameters
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Fig. 1: The variation of the conductance G with the gate voltage Vg

at different photon energy EIR and EUV .

Fig. 2: The variation of the conductance G with the magnetic field
B at different photon energy EIR and EUV .

have been found previous by the authors [22–24]. The val-
ues of C ∼ 10−16 F and Vd ∼ 0.47 eV. The value of the number
of electrons entering the quantum dot was varied as random
number.

We use the semiconductor heterostructures as In Ga As/
In Al As. The main features of our obtained results are:

1. Fig. (1), shows the dependence of the conductance G,
on the gate voltage Vg, at both photon energy of in-
frared (IR), and ultraviolet (UV) radiations. Oscillatory
behavior is shown. For the case of infrared radiation,
the peak height strongly increases as gate voltage in-
creases from –0.5 to 1. But for the case ultraviolet, this
increase in peak height is so small.

2. Fig. (2), shows the dependence of the conductance G,
on the applied magnetic field B, at both the photon en-
ergies considered (IR and UV). A periodic oscillation
is shown for the two cases, the periodicity equals t̃he
quantum flux h/e.

Fig. 3: The variation of the conductance G with the frequency ωS oc

at different photon energy EIR and EUV .

3. The dependence of the conductance G, on the frequen-
cy associated with the spin-orbit coupling, ωS oc. at dif-
ferent values of the investigated applied photon ener-
gies is shown in Fig. 3.

The obtained results might be explained as follows: The
oscillatory behavior of the conductance is due to spin-sensi-
tive quantum interference effects caused by the difference in
the Aharonov-Casher phase accumulated by the opposite spin
states. The Aharonov-Casher phase arises from the propaga-
tion of the electron in the spin-orbit coupling. The quantum
interference effect appears due to photon spin-up, and spin-
down subbands coupling. Our results are found concordant
with these in the literature [15, 16, 25].

4 Conclusion

The Aharonov-Casher, and Aharonov-Bohm effects are stud-
ied, taking into consideration the influence of both infrared
(IR), and ultraviolet (UV) electromagnetic field. This could
be realized by proposing a semiconducting quantum dot em-
bedded in one arm of semiconducting ring. Spin filtering, and
spin pumping due to the effect of photons are studied by de-
ducing the spin transport conductance. The present results are
valuable for the application in the field of quantum informa-
tion processing (qubit) quantum bit read out, and writing.
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