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The pair of co-existing symmetrical universes, referred to as our (or positive) universe
and negative universe, isolated and shown to constitute a two-world background for
the special theory of relativity (SR) in previous papers, encompasses another pair of
symmetrical universes, referred to as positive time-universe and negative time-universe.
The Euclidean 3-spaces (in the context of SR) of the positive time-universe and the
negative time-universe constitute the time dimensions of our (or positive) universe and
the negative universe respectively, relative to observers in the Euclidean 3-spaces of
our universe and the negative universe and the Euclidean 3-spaces of our universe and
the negative universe constitute the time dimensions of the positive time-universe and
the negative time-universe respectively, relative to observers in the Euclidean 3-spaces
of the positive time-universe and the negative time-universe. Thus time is a secondary
concept derived from the concept of space according to this paper. The one-dimensional
particle or object in time dimension to every three-dimensional particle or object in 3-
space in our universe is a three-dimensional particle or object in 3-space in the positive
time-universe. Perfect symmetry of natural laws is established among the resulting
four universes and two outstanding issues about the new spacetime/intrinsic spacetime
geometrical representation of Lorentz transformation/intrinsic Lorentz transformation
in the two-world picture, developed in the previous papers, are resolved within the larger
four-world picture in this first part of this paper.

1 Origin of time and intrinsic time dimensions

1.1 Orthogonal Euclidean 3-spaces

Let us start with an operational definition of orthogonal Eucl-
idean 3-spaces. Given a three-dimensional Euclidean space
(or a Euclidean 3-space) IE3 with mutually orthogonal straight
line dimensions x1, x2 and x3 and another Euclidean 3-space
IE03 with mutually orthogonal straight line dimensions x01, x02

and x03, the Euclidean 3-space IE03 shall be said to be orthog-
onal to the Euclidean 3-space IE3 if, and only if, each dimen-
sion x0 j of IE03; j = 1, 2, 3, is orthogonal to every dimension
xi; i = 1, 2, 3 of IE3. In other words, IE03 shall be said to be or-
thogonal to IE3 if, and only if, x0 j ⊥ xi; i, j = 1, 2, 3, at every
point of the Euclidean 6-space generated by the orthogonal
Euclidean 3-spaces.

We shall take the Euclidean 3-spaces IE3 and IE03 to be the
proper (or classical) Euclidean 3-spaces of classical mechan-
ics (including classical gravity), to be re-denoted by Σ′ and
Σ0′ respectively for convenience in this paper. The reason for
restricting to the proper (or classical) Euclidean 3-spaces is
that we shall assume the absence of relativistic gravity while
considering the special theory of relativity (SR) on flat space-
time, as shall be discussed further at the end of this paper.

Graphically, let us consider the Euclidean 3-space Σ′ with
mutually orthogonal straight line dimensions x1′, x2′ and x3′

as a hyper-surface to be represented by a horizontal plane

surface and the Euclidean 3-space Σ0′ with mutually orthog-
onal straight line dimensions x01′, x02′ and x03′ as a hyper-
surface to be represented by a vertical plane surface. The
union of the two orthogonal proper (or classical) Euclidean
3-spaces yields a compound six-dimensional proper (or clas-
sical) Euclidean space with mutually orthogonal dimensions
x1′, x2′, x3′, x01′, x02′ and x03′ illustrated in Fig. 1.

As introduced (as ansatz) in [1] and as shall be derived
formally in the two parts of this paper, the hyper-surface (or
proper Euclidean 3-space) Σ′ along the horizontal is underlied
by an isotropic one-dimensional proper intrinsic space de-
noted by φρ′ (that has no unique orientation in the Euclidean
3-space Σ′). The vertical proper Euclidean 3-space Σ0′ is like-
wise underlied by an isotropic one-dimensional proper intrin-
sic space φρ0′ (that has no unique orientation in the Euclidean
3-space Σ0′). The underlying intrinsic spaces φρ′ and φρ0′ are
also shown in Fig. 1.

Inclusion of the proper time dimension ct′ along the verti-
cal, normal to the horizontal hyper-surface (or horizontal Eu-
clidean 3-space) Σ′ in Fig. 1, yields the flat four-dimensional
proper spacetime (Σ′, ct′) of classical mechanics (CM), (in-
cluding classical gravitation), of the positive (or our) universe
and inclusion of the proper intrinsic time dimension φcφt′

along the vertical, normal to the proper intrinsic space φρ′

along the horizontal, yields the flat 2-dimensional proper in-
trinsic spacetime (φρ′, φcφt′) of intrinsic classical mechanics
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Fig. 1: Co-existing two orthogonal proper Euclidean 3-spaces
(considered as hyper-surfaces) and their underlying isotropic one-
dimensional proper intrinsic spaces.

(φCM), (including intrinsic classical gravitation), of our uni-
verse. The proper Euclidean 3-space Σ′ and its underlying
one-dimensional proper intrinsic space φρ′ shall sometimes
be referred to as our proper (or classical) Euclidean 3-space
and our proper (or classical) intrinsic space for brevity.

The vertical proper Euclidean 3-space Σ0′ and its underly-
ing one-dimensional proper intrinsic space φρ0′ in Fig. 1 are
new. They are different from the proper Euclidean 3-space
−Σ′∗ and its underlying proper intrinsic space −φρ′∗ of the
negative universe isolated in [1] and [2]. The Euclidean 3-
space −Σ′∗ and its underlying proper intrinsic space −φρ′∗ of
the negative universe are “anti-parallel” to the Euclidean 3-
space Σ′ and its underlying intrinsic space φρ′ of the positive
universe, which means that the dimensions −x1′∗, −x2′∗ and
−x3′∗ of −Σ′∗ are inversions in the origin of the dimensions
x1′, x2′ and x3′ of Σ′.

There are likewise the proper Euclidean 3-space −Σ0′∗

and its underlying proper intrinsic space −φρ0′∗, which are
“anti-parallel” to the new proper Euclidean 3-space Σ0′ and
its underlying proper intrinsic space φρ0′ in Fig. 1. Fig. 1
shall be made more complete by adding the negative proper
Euclidean 3-spaces −Σ′∗ and −Σ0′∗ and their underlying one-
dimensional intrinsic spaces −φρ′∗ and −φρ0′∗ to it, yielding
Fig. 2.

The proper Euclidean 3-space Σ′ with dimensions x1′, x2′

and x3′ and the proper Euclidean 3-space Σ0′ with dimen-
sions x01′, x02′ and x03′ in Fig. 2 are orthogonal Euclidean
3-spaces, which means that x0 j′ ⊥ xi′; i, j = 1, 2, 3, as de-
fined earlier. The proper Euclidean 3-space −Σ′∗ with dimen-
sions −x1′∗, −x2′∗ and−x3′∗ and the proper Euclidean 3-space
−Σ0′∗ with dimensions −x01′∗, −x02′∗ and −x03′∗ are likewise
orthogonal Euclidean 3-spaces.

Should the vertical Euclidean 3-spaces Σ0′ and −Σ0′∗ and

Fig. 2: Co-existing four mutually orthogonal proper Euclidean 3-
spaces and their underlying isotropic one-dimensional proper intrin-
sic spaces, where the rest masses in the proper Euclidean 3-spaces
and the one-dimensional intrinsic rest masses in the intrinsic spaces
of a quartet of symmetry-partner particles or object are shown.

their underlying isotropic intrinsic spaces φρ0′ and −φρ0′∗ ex-
ist naturally, then they should belong to a new pair of worlds
(or universes), just as the horizontal proper Euclidean 3-space
Σ′ and −Σ′∗ and their underlying one-dimensional isotropic
proper intrinsic spaces φρ ′ and −φρ ′∗ exist naturally and be-
long to the positive (or our) universe and the negative universe
respectively, as found in [1] and [2]. The appropriate names
for the new pair of universes with flat four-dimensional proper
spacetimes (Σ0′, ct0′) and (−Σ0′∗,−ct0′∗) of classical mechan-
ics (CM) and their underlying flat two-dimensional proper
intrinsic spacetimes (φρ0′, φcφt0′) and (−φρ0′∗, −φcφt0′∗) of
intrinsic classical mechanics (φCM), where the time dimen-
sions and intrinsic time dimensions have not yet appeared in
Fig. 2, shall be derived later in this paper.

As the next step, an assumption shall be made, which
shall be justified with further development of this paper, that
the four universes encompassed by Fig. 2, with flat four- di-
mensional proper spacetimes (Σ′, ct′), (−Σ′∗,−ct ′∗), (Σ0′, ct0′)
and (−Σ0′∗,−ct0′∗) and their underlying flat proper intrinsic
spacetimes (φρ ′, φcφt′), (−φρ′∗,−φcφt′∗), (φρ0′, φcφt0′) and
(−φρ0′∗,−φcφt0′∗) respectively, where the proper time and
proper intrinsic time dimensions have not yet appeared in
Fig. 2, exist naturally and exhibit perfect symmetry of state
and perfect symmetry of natural laws. Implied by this as-
sumption are the following facts:

1. Corresponding to every given point P in our proper Eu-
clidean 3-space Σ′, there are unique symmetry- partner
point P0, P∗ and P0∗ in the proper Euclidean 3-spaces
Σ0′, −Σ′∗ and −Σ0′∗ respectively;

2. Corresponding to every particle or object of rest mass
m0 located at a point in our proper Euclidean 3-space
Σ′, there are identical symmetry-partner particles or ob-
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jects of rest masses to be denoted by m0
0,−m∗0 and −m0

0
∗

located at the symmetry-partner points in Σ0′, −Σ′∗ and
−Σ0′∗ respectively, as illustrated in Fig. 2 already and

3. Corresponding to motion at a speed v of the rest mass
m0 of a particle or object through a point along a di-
rection in our proper Euclidean space Σ′, relative to an
observer in Σ′, there are identical symmetry- partner
particles or objects of rest masses m0

0,−m∗0 and −m0
0
∗ in

simultaneous motions at equal speed v along identical
directions through the symmetry-partner points in the
proper Euclidean 3-spaces Σ0′, −Σ′∗ and −Σ0′∗ respec-
tively, relative to identical symmetry-partner observers
in the respective Euclidean 3-spaces.

4. A further requirement of the symmetry of state among
the four universes encompassed by Fig. 2 is that the
motion at a speed v of a particle along the X− axis,
say, of its frame in any one of the four proper Eu-
clidean 3-spaces, (in Σ0′, say), relative to an observer
(or frame of reference) in that proper Euclidean 3-space
(or universe), is equally valid relative to the symmetry-
partner observers in the three other proper Euclidean
3-spaces (or universes). Consequently the simultane-
ous rotations by equal intrinsic angle φψ of the intrinsic
affine space coordinates of the symmetry-partner par-
ticles’ frames φx̃′, φx̃0′, −φx̃′∗ and −φx̃0′∗ relative to
the intrinsic affine space coordinates of the symmetry-
partner observers’ frames φx̃, φx̃0, −φx̃∗ and −φx̃0∗ re-
spectively in the context of the intrinsic special theory
of relativity (φSR), as developed in [1], implied by item
3, are valid relative to every one of the four symmetry-
partner observers in the four proper Euclidean 3-spaces
(or universes). Thus every one of the four symmetry-
partner observers can validly draw the identical relative
rotations of affine intrinsic spacetime coordinates of
symmetry-partner frames of reference in the four uni-
verses encompassed by Fig. 2 with respect to himself
and construct φSR and consequently SR in his universe
with the diagram encompassing the four universes he
obtains.

Inherent in item 4 above is the fact that the four universes
with flat four-dimensional proper physical (or metric) space-
times (Σ′, ct′), (Σ0′, ct0′), (−Σ′∗, −ct′∗) and (−Σ0′∗,−ct0′∗) of
classical mechanics (CM) in the universes encompassed by
Fig. 2, (where the proper time dimensions have not yet ap-
peared), are stationary dynamically relative to one another at
all times. Otherwise the speed v of a particle in a universe
(or in a Euclidean 3-space in Fig. 2) relative to an observer
in that universe (or in that Euclidean 3-space), will be dif-
ferent relative to the symmetry-partner observer in another
universe (or in another Euclidean 3-space), who must obtain
the speed of the particle relative to himself as the resultant
of the particle’s speed v relative to the observer in the parti-
cle’s universe and the speed V0 of the particle’s universe (or

particle’s Euclidean 3-space) relative to his universe (or his
Euclidean 3-space). The simultaneous identical relative rota-
tions by equal intrinsic angle of intrinsic affine spacetime co-
ordinates of symmetry-partner frames of reference in the four
universes, which symmetry of state requires to be valid with
respect to every one of the four symmetry-partner observers
in the four universes, will therefore be impossible in the sit-
uation where some or all the four universes (or Euclidean 3-
spaces in Fig. 2) are naturally in motion relative to one an-
other.

Now the proper intrinsic metric space φρ0′ along the ver-
tical in the first quadrant is naturally rotated at an intrinsic
angle φψ0 = π

2 relative to the proper intrinsic metric space
φρ′ of the positive (or our) universe along the horizontal in
the first quadrant in Fig. 2. The proper intrinsic metric space
−φρ′∗ of the negative universe is naturally rotated at intrinsic
angle φψ0 = π relative to our proper intrinsic metric space
φρ′ and the proper intrinsic metric space −φρ0′∗ along the
vertical in the third quadrant is naturally rotated at intrinsic
angle φψ0 = 3π

2 relative to our proper intrinsic metric space
φρ′ in Fig. 2. The intrinsic angle of natural rotations of the
intrinsic metric spaces φρ0′,−φρ′∗ and −φρ0′∗ relative to φρ′

has been denoted by φψ0 in order differentiate it from the in-
trinsic angle of relative rotation of intrinsic affine spacetime
coordinates in the context of φSR denoted by φψ in [1].

The natural rotations of the one-dimensional proper in-
trinsic metric spaces φρ0′,−φρ′∗ and −φρ0′∗ relative to our
proper intrinsic metric space φρ′ at different intrinsic angles
φψ0 discussed in the foregoing paragraph, implies that the in-
trinsic metric spaces φρ0′, −φρ′∗ and −φρ0′∗ possess different
intrinsic speeds, to be denoted by φV0, relative to our intrin-
sic metric space φρ′. This is deduced in analogy to the fact
that the intrinsic speed φv of the intrinsic rest mass φm0 of
a particle relative to an observer causes the rotations of the
intrinsic affine spacetime coordinates φx̃′ and φcφt̃ ′ of the
particle’s intrinsic frame at equal intrinsic angle φψ relative
to the intrinsic affine spacetime coordinates φx̃ and φcφt̃ re-
spectively of the observe’s intrinsic frame in the context of
intrinsic special relativity (φSR), as developed in [1] and pre-
sented graphically in Fig. 8a of that paper.

Indeed the derived relation, sin φψ = φv/φc, between the
intrinsic angle φψ of inclination of the intrinsic affine space
coordinate φx̃′ of the particle’s intrinsic frame relative to the
intrinsic affine space coordinate φx̃ of the observer’s intrinsic
frame in the context of φSR, presented as Eq. (18) of [1], is
equally valid between the intrinsic angle φψ0 of natural ro-
tation of a proper intrinsic metric space φρ0′, say, relative to
our proper intrinsic metric space φρ′ in Fig. 2 and the implied
natural intrinsic speed φV0 of φρ0′ relative to φρ′. In other
words, the following relation obtains between φψ0 and φV0:

sin φψ0 = φV0/φc (1)

It follows from (1) that the intrinsic metric space φρ0′ nat-
urally possesses intrinsic speed φV0 = φc relative to our in-
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trinsic metric space φρ′, which is so since φρ0′ is naturally
inclined at intrinsic angle φψ0 = π

2 relative to φρ′; the proper
intrinsic metric space −φρ′∗ of the negative universe naturally
possesses zero intrinsic speed (φV0 = 0) relative to our proper
intrinsic metric space φρ′, since −φρ′∗ is naturally inclined at
intrinsic angle φψ0 = π relative to φρ′ and the intrinsic metric
space −φρ0′∗ naturally possesses intrinsic speed φV0 = −φc
relative to our intrinsic metric space φρ′, since −φρ0′∗ is nat-
urally inclined at φψ0 = 3π

2 relative to φρ′ in Fig. 2.
On the other hand, −φρ0′∗ possesses positive intrinsic

speed φV0 = φc relative to −φρ′∗, since −φρ0′∗ is naturally
inclined at intrinsic angle φψ0 = π

2 relative to −φρ′∗ and φρ0′

naturally possesses negative intrinsic speed φV0 = −φc rel-
ative to −φρ′∗, since φρ0′ is naturally inclined at φψ0 = 3π

2
relative to −φρ′∗ in Fig 2. These facts have been illustrated
in Figs. 10a and 10b of [1] for the concurrent open intervals
(− π2 , π2 ) and ( π2 ,

3π
2 ) within which the intrinsic angle φψ could

take on values with respect to 3-observers in the Euclidean
3-spaces Σ′ of the positive universe and −Σ′∗ of the negative
universe.

The natural intrinsic speed φV0 = φc of φρ0′ relative to
φρ′ will be made manifest in speed V0 = c of the Euclidean
3-space Σ0′ relative to our Euclidean 3-space Σ′; the natural
zero intrinsic speed (φV0 = 0) of the intrinsic space −φρ′∗ of
the negative universe relative to φρ′ will be made manifest in
natural zero speed (V0 = 0) of the Euclidean 3-space −Σ′∗

of the negative universe relative to our Euclidean 3-space Σ′

and the natural intrinsic speed φV0 = −φc of −φρ0′∗ relative
to φρ′ will be made manifest in natural speed V0 = −c of
the Euclidean 3-space −Σ0′∗ relative to our Euclidean 3-space
Σ′ in Fig. 2. By incorporating the additional information in
this and the foregoing two paragraphs into Fig. 2 we have
Fig. 3, which is valid with respect to 3-observers in our proper
Euclidean 3-spaces Σ′, as indicated.

There are important differences between the speeds V0 of
the Euclidean 3-spaces that appear in Fig. 3 and speed v of
relative motion of particles and objects that appear in the spe-
cial theory of relativity (SR). First of all, the speed v of rel-
ative motion is a property of the particle or object in relative
motion, which exists nowhere in the vast space outside the
particle at any given instant. This is so because there is noth-
ing (no action-at-a-distance) in relative motion to transmit the
velocity of a particle to positions outside the particle. On the
other hand, the natural speed V0 of a Euclidean 3-space is a
property of that Euclidean 3-space, which has the same mag-
nitude at every point of the Euclidean 3-space with or without
the presence of a particle or object of any rest mass.

The natural speed V0 of a Euclidean 3-space is isotropic.
This means that it has the same magnitude along every direc-
tion of the Euclidean 3-space. This is so because each dimen-
sion x0 j′; j = 1, 2, 3, of Σ0′ is rotated at equal angle ψ0 = π

2
relative to every dimension xi′; i = 1, 2, 3, of Σ′, (which im-
plies that each dimension x0 j′ of Σ0′ possesses speed V0 = c
naturally relative to every dimension xi′ of Σ′), thereby mak-

Fig. 3: Co-existing four mutually orthogonal proper Euclidean 3-
spaces and their underlying isotropic one-dimensional proper intrin-
sic spaces, where the speeds V0 of the Euclidean 3-spaces and the
intrinsic speeds φV0 of the intrinsic spaces, relative to 3-observers in
our proper Euclidean 3-space (considered as a hyper-surface along
the horizontal) in the first quadrant are shown.

ing Σ0′ an orthogonal Euclidean 3-space to Σ′. What should
be the natural velocity ~V0 of a Euclidean 3-space has com-
ponents of equal magnitude V0 along every direction and at
every point in that Euclidean 3-space. On the other hand,
the speed v of relative motion of a particle or object is not
isotropic because the velocity ~v of relative motion along a
direction in a Euclidean 3-space has components of differ-
ent magnitudes along different directions of that Euclidean 3-
space. Only the speed v = c of translation of light (or photon)
in space is known to be isotropic.

Now a material particle or object of any magnitude of rest
mass that is located at any point in a Euclidean 3-space ac-
quires the natural speed V0 of that Euclidean 3-space. Thus
the rest mass m0 of the particle or object located in our proper
Euclidean 3-space Σ′ possesses the spatially uniform natural
zero speed (V0 = 0) of Σ′ relative to every particle, object
or observer in Σ′ in Fig. 3. Likewise the rest mass m0

0 of a
particle or object located at any point in the proper Euclidean
3-space Σ0′ acquires the isotropic and spatially uniform nat-
ural speed V0 = c of Σ0′ relative to every particle, object or
observer in our Euclidean 3-space Σ′.

The rest mass −m∗0 located at any point in the proper Euc-
lidean 3-space −Σ′∗ of the negative universe acquires the spa-
tially uniform natural zero speed (V0 = 0) of −Σ′∗ relative to
all particles, objects and observers in our Euclidean 3-space
Σ′ and the rest mass −m0

0
∗ of a particle or object located at

any point in the proper Euclidean 3-space −Σ0′∗ acquires the
isotropic and spatially uniform natural speed V0 = −c of
−Σ0′∗ relative to all particles, objects and observers in our
Euclidean 3-space Σ′ in Fig. 3.

However, as deduced earlier, symmetry of state among
the four universes whose proper (or classical) Euclidean 3-
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spaces appear in Fig. 2 or 3 requires that the four universes
must be stationary relative to one another always. Then in
order to resolve the paradox ensuing from this and the fore-
going two paragraphs namely, all the four universes (or their
proper Euclidean 3-spaces in Fig. 2 or 3) are stationary rela-
tive to one another always (as required by symmetry of state
among the four universes), yet the two universes with flat
proper spacetimes (Σ0′, ct0′) and (−Σ0′∗,−ct0′∗) naturally pos-
sess constant speeds V0 = c and V0 = −c respectively relative
to the flat spacetime (Σ′, ct′) of our universe, we must con-
sider the constant speeds V0 = c and V0 = −c of the uni-
verses with the flat spacetimes (Σ0′, ct0′) and (−Σ0′∗,−ct0′∗)
respectively relative to our universe (or speeds V0 = c and
V0 = −c of the Euclidean 3-spaces Σ0′ and −Σ0′∗ respec-
tively relative to our Euclidean 3-space Σ′ in Fig. 3) as ab-
solute speeds of non-detectable absolute motion. This way,
although the two proper Euclidean 3-spaces Σ0′ and −Σ0′∗

naturally possess speeds V0 = c and V0 = −c respectively
relative to our proper Euclidean 3-space Σ′, the four proper
Euclidean 3-spaces encompassed by Fig. 2 or 3 are stationary
dynamically (or translation-wise) relative to one another, as
required by symmetry of state among the four universes with
the four proper Euclidean 3-spaces in Fig. 2 or Fig. 3.

The fact that the natural speed V0 = c of the proper Euc-
lidean 3-space Σ0′ relative to our proper Euclidean 3-space Σ′

or of the rest mass m0
0 in Σ0′ relative to the symmetry-partner

rest mass m0 in Σ′ is an absolute speed of non-detectable ab-
solute motion is certain. This is so since there is no relative
motion involving large speed V0 = c between the rest mass of
a particle in the particle’s frame and the rest mass of the par-
ticle in the observer’s frame, (where m0

0 is the rest mass of the
particle and Σ0′ in which m0

0 is in motion at speed V0 = c is
the particle’s frame, while m0 is the rest mass of the particle
located in the observer’s frame Σ′ in this analogy, knowing
that m0 and m0

0 are equal in magnitude).
The observer’s frame always contains special-relativistic

(or Lorentz transformed) coordinates and parameters in spe-
cial relativity. On the other hand, non-detectable absolute mo-
tion does not alter the proper (or classical) coordinates and
parameters, as in the case of the non-detectable natural abso-
lute motion at absolute speed V0 = c of m0

0 in Σ0′ relative to
m0 that possesses zero absolute speed (V0 = 0) in Σ′ in Fig. 3.

We have derived another important difference between the
natural speeds V0 of the Euclidean 3-spaces that appear in
Fig. 3 and the speeds v of relative motions of material par-
ticles and objects that appear in SR. This is the fact that the
isotropic and spatially uniform speed V0 of a Euclidean 3-
space is an absolute speed of non-detectable absolute motion,
while speed v of particles and objects is a speed of detectable
relative motion.

Thus the isotropic speed V0 = c acquired by the rest mass
m0

0 located in the proper Euclidean 3-space Σ0′ relative to its
symmetry-partner m0 and all other particles, objects and ob-
servers in our proper Euclidean 3-space Σ′ in Fig. 3 is a non-

detectable absolute speed. Consequently m0
0 in Σ0′ does not

propagate away at speed V0 = c in Σ0′ from m0 in Σ′ but
remains tied to m0 in Σ′ always, despite its isotropic abso-
lute speed c in Σ0′ relative to m0 in Σ′. The speed V0 = −c
acquired by the rest mass −m0

0
∗ in the proper Euclidean 3-

space −Σ0′∗ relative to its symmetry-partner rest mass m0 and
all other particles, objects and observers in our Euclidean
3-space Σ′ in Fig. 3 is likewise an absolute speed of non-
detectable absolute motion. Consequently −m0

0
∗ in −Σ0′∗ does

not propagate away at speed V0 = −c in −Σ0′∗ from m0 in Σ′

but remains tied to m0 in Σ′ always, despite the absolute speed
V0 = −c of −m0

0
∗ in −Σ0′∗ relative to m0 in Σ′.

On the other hand, the rest mass −m0
0
∗ in −Σ0′∗ possesses

positive absolute speed V0 = c and rest mass m0
0 in Σ0′ pos-

sesses negative absolute speed V0 = −c with respect to the
symmetry-partner rest mass −m∗0 and all other particles, ob-
jects and observers in −Σ′∗. This is so since the proper in-
trinsic space −φρ0′∗ underlying −Σ0′∗ is naturally rotated by
intrinsic angle φψ0 = π

2 relative to the proper intrinsic space
−φρ′∗ underlying −Σ′∗ and φρ0′ underlying Σ0′ is naturally
rotated by intrinsic angle φψ0 = 3π

2 relative to −φρ′∗, as men-
tioned earlier. Consequently −φρ0′∗ naturally possesses ab-
solute intrinsic speed φV0 = φc relative to −φρ′∗ and φρ0′

naturally possesses absolute intrinsic speed φV0 = −φc rel-
ative to −φρ′∗. These are then made manifest outwardly as
the absolute speed V0 = c of the Euclidean 3-space −Σ0′∗ and
absolute speed V0 = −c of the Euclidean 3-space Σ0′ respec-
tively relative to the Euclidean 3-space −Σ′∗ of the negative
universe.

Let the quartet of symmetry-partner particles or objects of
rest masses m0 in Σ′, m0

0 in Σ0′, −m∗0 in −Σ′∗ and −m0
0
∗ in −Σ0′∗

be located at initial symmetry-partner positions Pi, P0
i , P∗i

and P0
i
∗ respectively in their respective Euclidean 3-spaces.

Then let the particle or object of rest mass m0 in Σ′ be in mo-
tion at constant speed v along the x̃′−axis of its frame in our
proper Euclidean 3-space Σ′ relative to a 3-observer in Σ′.
The symmetry-partner particle or object of rest mass m0

0 in
Σ0′ will be in simultaneous motion at equal speed v along the
x̃0′−axis of its frame in Σ0′ relative to the symmetry-partner
observer in Σ0′; the symmetry-partner particle or object of
rest mass −m∗0 in −Σ′∗ will be in simultaneous motion at equal
speed v along the −x̃ ′∗−axis of its frame in −Σ′∗ relative to
the symmetry-partner 3-observer in −Σ′∗ and the symmetry-
partner particle or object of rest mass −m0

0
∗ in −Σ0′∗ will be in

simultaneous motion at equal speed v along the −x̃0′∗−axis of
its frame in −Σ0′∗ relative to the symmetry-partner 3-observer
in −Σ0′∗.

Thus after a period of time of commencement of mo-
tion, the quartet of symmetry-partner particles or objects have
covered equal distances along the identical directions of mo-
tion in their respective proper Euclidean 3-spaces to arrive at
new symmetry-partner positions P, P0, P∗ and P0∗ in their re-
spective proper Euclidean 3-spaces. This is possible because
the four Euclidean 3-spaces are stationary relative to one an-
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other always. The quartet of symmetry-partner particles or
objects are consequently located at symmetry-partner posi-
tions in their respective proper Euclidean 3-spaces always,
even when they are in motion relative to symmetry-partner
frames of reference in their respective proper Euclidean 3-
spaces.

The speed V0 = c of the proper Euclidean 3-space Σ0′

relative to our proper Euclidean 3-space Σ′ is the outward
manifestation of the intrinsic speed φV0 = φc of the intrin-
sic metric space φρ0′ underlying Σ0′ relative to our intrinsic
metric space φρ′ and relative to our Euclidean 3-space Σ′ in
Fig. 3. Then since V0 = c is absolute and is the same at
every point of the Euclidean 3-space Σ0′, the intrinsic speed
φV0 = φc of φρ0′ relative to φρ′ and Σ′ is absolute and is the
same at every point along the length of φρ0′. The intrinsic
speed φV0 = −φc of the intrinsic metric space −φρ0′∗ relative
to our intrinsic metric space φρ′ and relative to our Euclidean
3-space Σ′ is likewise an absolute intrinsic speed and is the
same at every point along the length of −φρ0′∗. The zero in-
trinsic speed (φV0 = 0) of the intrinsic metric space −φρ′∗ of
the negative universe relative to our intrinsic metric space φρ′

and relative to our Euclidean 3-space Σ′ is the same along the
length of −φρ′∗.

It follows from the foregoing paragraph that although the
proper intrinsic metric spaces φρ0′ and −φρ0′∗ along the verti-
cal possess intrinsic speeds φV0 = φc and φV0 = −φc respec-
tively, relative to our proper intrinsic metric space φρ′ and
relative to our Euclidean 3-space Σ′, the four intrinsic metric
spaces φρ′, φρ0′, −φρ′∗ and −φρ0′∗ in Fig. 3 are stationery
relative to one another always, since the intrinsic speeds φV0
= φc of φρ0′ and φV0 = −φc of −φρ′∗ relative to our intrinsic
metric space φρ′ and our Euclidean 3-space Σ′ are absolute
intrinsic speeds, which are not made manifest in actual intrin-
sic motion.

Likewise, although the intrinsic rest mass φm0
0 in φρ0′ ac-

quires the intrinsic speed φV0 = φc of φρ0′, it is not in in-
trinsic motion at the intrinsic speed φc along φρ0′, since the
intrinsic speed φc it acquires is an absolute intrinsic speed.
The absolute intrinsic speed φV0 = −φc acquired by the in-
trinsic rest mass −φm0

0
∗ in −φρ0′∗ is likewise not made mani-

fest in actual intrinsic motion of −φm0
0
∗ along −φρ0′∗. Conse-

quently the quartet of intrinsic rest masses φm0, φm0
0,−φm∗0

and −φm0
0
∗ of symmetry-partner particles or objects in the

quartet of intrinsic metric spaces φρ′, φρ0′, −φρ′∗ and −φρ0′∗,
are located at symmetry-partner points in their respective in-
trinsic spaces always, even when they are in intrinsic motions
relative to symmetry-partner frames of reference in their re-
spective Euclidean 3-spaces.

There is a complementary diagram to Fig. 3, which is
valid with respect to 3-observers in the proper Euclidean 3-
space Σ0′ along the vertical, which must also be drawn along
with Fig. 3. Now given the quartet of the proper physical (or
metric) Euclidean 3-spaces and their underlying one-dimen-
sional intrinsic metric spaces in Fig. 2, then Fig. 3 with the ab-

Fig. 4: Co-existing four mutually orthogonal proper Euclidean 3-
spaces and their underlying isotropic one-dimensional proper intrin-
sic metric spaces, where the speeds V0 of the Euclidean 3-spaces
and the intrinsic speeds φV0 of the intrinsic spaces, relative to 3-
observers in the proper Euclidean 3-space Σ0′ (considered as a
hyper-surface) along the vertical in the first quadrant are shown.

solute speeds V0 of the proper Euclidean 3-spaces and abso-
lute intrinsic speed φV0 of the proper intrinsic spaces assigned
with respect to 3-observers in the proper Euclidean 3-space Σ′

of the positive (or our) universe, ensues automatically.
On the other hand, the proper physical Euclidean 3-space

Σ0′ along the vertical in Fig. 2 possesses zero absolute speed
(V0 = 0) at every point of it and its underlying one- dimen-
sional intrinsic space φρ0′ possesses zero absolute intrinsic
speed (φV0 = 0) at every point along its length with respect
to 3-observers in Σ0′. This is so since φρ0′ must be considered
as rotated by zero intrinsic angle (φψ0 = 0) relative to itself
(or relative to the vertical) when the observers of interest are
the 3-observers in Σ0′. Then letting φψ0 = 0 in (1) gives zero
absolute intrinsic speed (φV0 = 0) at every point along φρ0′

with respect to 3-observers in Σ0′. The physical Euclidean
3-space Σ0′ then possesses zero absolute speed (V0 = 0) at
every point of it as the outward manifestation of φV0 = 0
at every point along φρ0′, with respect to 3-observers in Σ0′.
It then follows that Fig. 3 with respect to 3-observers in our
Euclidean 3-space Σ′ corresponds to Fig. 4 with respect to
3-observers in the Euclidean 3-space Σ0′.

It is mandatory to consider the intrinsic metric space φρ′

of the positive (or our) universe along the horizontal in the
first quadrant as naturally rotated clockwise by a positive in-
trinsic angle φψ0 = π

2 ; the intrinsic metric space −φρ0′∗ along
the vertical in the fourth quadrant as naturally rotated clock-
wise by a positive intrinsic angle φψ0 = π and the intrinsic
metric space −φρ′∗ of the negative universe along the hori-
zontal in the third quadrant as naturally rotated clockwise by
a positive intrinsic angle φψ0 = 3π

2 relative to φρ0′ along the
vertical in the first quadrant or with respect to 3-observers in
the Euclidean 3-space Σ0′, as indicated in Fig. 4. This way,
the positive signs of our proper intrinsic space φρ′ and of the
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dimensions x1′, x2′ and x3′ of our proper Euclidean 3-space
Σ′, as well as the positive signs of parameters in Σ′ in our
(or positive) universe in Fig. 3 are preserved in Fig. 4. The
negative signs of −φρ′∗,−Σ′∗ and of parameters in −Σ′∗ in the
negative universe in Fig. 3 are also preserved in Fig. 4, by
virtue of the clockwise sense of rotation by positive intrinsic
angle φψ0 of −φρ0′∗ and −φρ′∗ relative to φρ0′ or with respect
to 3-observers in Σ0′ in Fig. 4.

If the clockwise rotations of φρ′, −φρ0′∗ and −φρ′∗ rel-
ative to φρ0′ or with respect to 3-observers in Σ0′ in Fig. 4,
have been considered as rotation by negative intrinsic angles
φψ0 = − π2 , φψ0 = −π and φψ0 = − 3π

2 respectively, then the
positive sign of φρ′,Σ′ and of parameters in Σ′ of the posi-
tive (or our) universe in Fig. 3 would have become negative
sign in Fig. 4 and the negative sign of −φρ′∗ and −Σ′∗ and of
parameters in −Σ′∗ of the negative universe in Fig. 3 would
have become positive sign in Fig. 4. That is, the positions of
the positive and negative universes in Fig. 3 would have been
interchanged in Fig. 4, which must not be.

We have thus been led to an important conclusion that nat-
ural rotations of intrinsic metric spaces by positive absolute
intrinsic angle φψ0 (and consequently the relative rotations
of intrinsic affine space coordinates in the context of intrinsic
special relativity (φSR) by positive relative intrinsic angles,
φψ), are clockwise rotations with respect to 3-observers in
the proper Euclidean 3-spaces Σ0′ and −Σ0′∗ along the ver-
tical (in Fig. 4). Whereas rotation of intrinsic metric spaces
(and intrinsic affine space coordinates in the context of φSR)
by positive intrinsic angles are anti-clockwise rotations with
respect to 3-observers in the proper Euclidean 3-spaces Σ′ and
−Σ′∗ of the positive and negative universes along the horizon-
tal in Fig. 3.

The origin of the natural isotropic absolute speeds V0 of
every point of the proper Euclidean 3-spaces and of the nat-
ural absolute intrinsic speeds φV0 of every point along the
lengths of the one-dimensional proper intrinsic spaces with
respect to the indicated observers in Fig. 3 and Fig. 4, can-
not be exposed in this paper. It must be regarded as an out-
standing issue to be resolved elsewhere with further develop-
ment. Nevertheless, a preemptive statement about their origin
is appropriate at this point: They are the outward manifesta-
tions in the proper physical Euclidean 3-spaces and proper
intrinsic spaces of the absolute speeds with respect to the
indicated observers, of homogeneous and isotropic absolute
spaces (distinguished co-moving coordinate systems) that un-
derlie the proper physical Euclidean 3-spaces and their un-
derlying proper intrinsic spaces in nature, which have not yet
appeared in Figs. 3 and Fig. 4.

Leibnitz pointed out that Newtonian mechanics prescribes
a distinguished coordinate system (the Newtonian absolute
space) in which it is valid [3, see p. 2]. Albert Einstein said,
“Newton might no less well have called his absolute space
ether...” [4] and argued that the proper (or classical) physical
Euclidean 3-space (of Newtonian mechanics) will be impos-

sible without such ether. He also pointed out the existence of
ether of general relativity as a necessary requirement for the
possibility of that theory, just as the existence of luminiferous
ether was postulated to support the propagation of electro-
magnetic waves. Every dynamical or gravitational law (in-
cluding Newtonian mechanics) requires (or has) an ether. It
is the non-detectable absolute speeds of the ethers of classi-
cal mechanics (known to Newton as absolute spaces), which
underlie the proper physical Euclidean 3-spaces with respect
to the indicated observers in Fig. 3 and 4, that are made man-
ifest in the non-detectable absolute speeds V0 of the proper
Euclidean 3-spaces with respect to the indicated observers in
those figures. However this a matter to be formally derived
elsewhere, as mentioned above.

1.2 Geometrical contraction of the vertical Euclidean 3-
spaces to one-dimensional spaces relative to 3-obser-
vers in the horizontal Euclidean 3-spaces and con-
versely

Let us consider the x′y′−plane of our proper Euclidean 3-
space Σ′ in Fig. 3: Corresponding to the x′y′−plane of Σ′ is
the x0′y0′−plane of the Euclidean 3-space Σ0′. However since
Σ′ and Σ0′ are orthogonal Euclidean 3-spaces, following the
operational definition of orthogonal Euclidean 3-spaces at the
beginning of the preceding sub-section, the dimensions x0′

and y0′ of the x0′y0′−plane of Σ0′ are both perpendicular to
each of the dimensions x′ and y′ of Σ′. Hence x0′ and y0′ are
effectively parallel dimensions normal to the x′y′− plane of
Σ′ with respect to 3-observers in Σ′. Symbolically:

x0′⊥ x′ and y0′⊥ x′; x0′⊥y′ and y0′⊥y′ ⇒ x0′||y0′ (∗)

Likewise, corresponding to the x′z′−plane of Σ′ is the
x0′z0′−plane of Σ0′. Again the dimensions x0′ and z0′ of the
x0′z0′−plane of Σ0′ are both perpendicular to each of the di-
mensions x′ and z′ of the x′z′− plane of Σ′. Hence x0′ and y0′

are effectively parallel dimensions normal to the x′z′−plane
of Σ′ with respect to 3-observers in Σ′. Symbolically:

x0′⊥ x′ and z0′⊥ x′; x0′⊥z′ and z0′⊥z′ ⇒ x0′||z0′ (∗∗)

Finally, corresponding to the y′z′−plane of Σ′ is the y0′z0′-
plane of Σ0′. Again the dimensions y0′ and z0′ of the y0′z0′−
plane of Σ0′ are both perpendicular to each of the dimensions
y′ and z′ of the y′z′− plane of Σ′. Hence y0′ and z0′ are effec-
tively parallel dimensions normal to the y′z′−plane of Σ′ with
respect to 3-observers in Σ′. Symbolically:

y0′⊥y′ and z0′⊥y′; y0′⊥z′ and z0′⊥z′ ⇒ y0′||z0′ (∗ ∗ ∗)

Indeed x0′||y0′ and x0′||z0′ in (∗) and (∗∗) already implies
y0′||z0′ in (∗ ∗ ∗).

The combination of (∗), (∗∗) and (∗ ∗ ∗) give x0′||y0′||z0′

with respect to 3-observers in Σ′, which says that the mu-
tually perpendicular dimensions x0′, y0′ and z0′ of Σ0′ with

Adekugbe A.O.J. Re-Identification of the Many-World Background of Special Relativity as Four-World Background. Part I 9



Volume 1 PROGRESS IN PHYSICS January, 2011

Fig. 5: Given the two orthogonal proper Euclidean 3-spaces Σ0′ and
Σ′ of Fig. 1 then, (a) the mutually perpendicular dimensions of the
proper Euclidean 3-space Σ0′ with respect to 3-observers in it, are
naturally “bundle” into parallel dimensions relative to 3-observers
in our proper Euclidean 3-space Σ′ and (b) the mutually perpendic-
ular dimensions of our proper Euclidean 3-space Σ′ with respect to
3-observer in it are naturally “bundled” into parallel dimensions rel-
ative to 3-observers in the proper Euclidean 3-space Σ0′.

respect to 3-observers in Σ0′ are effectively parallel dimen-
sions with respect to 3-observers in our Euclidean 3-space Σ′.
In other words, the dimensions x0′, y0′ and z0′ of Σ0′ effec-
tively form a “bundle”, which is perpendicular to each of the
dimensions x′, y′ and z′ of Σ′ with respect to 3-observers in
Σ′ in Fig. 3. The “bundle” must lie along a fourth dimension
with respect to 3-observers in Σ′ consequently, as illustrated
in Fig. 5a, where the proper Euclidean 3-space Σ′ is consid-
ered as a hyper-surface represented by a horizontal plane sur-
face.

Conversely, the mutually perpendicular dimensions x′, y′

and z′ of our Euclidean 3-space Σ′ with respect to 3-observers
in Σ′ are effectively parallel dimensions with respect to 3-
observers in the Euclidean 3-space Σ0′ in Fig. 4. In other
words, the dimensions x′, y′ and z′ of Σ′ effectively form a
“bundle”, which is perpendicular to each of the dimensions
x0′, y0′ and z0′ of Σ0′ with respect to 3-observers in Σ0′ in
Fig. 4. The “bundle” of x′, y′ and z′ must lie along a fourth
dimension with respect to 3-observers in Σ0′ consequently,
as illustrated in Fig. 5b, where the proper Euclidean 3-space
Σ0′ is considered as a hyper-surface represented by a vertical
plane surface.

The three dimensions x0′, y0′ and z0′ that are shown as
separated parallel dimensions, thereby constituting a “bun-
dle” along the vertical with respect to 3-observers in Σ′ in
Fig. 5a, are not actually separated. Rather they lie along the
singular fourth dimension, thereby constituting a one-dimen-
sional space to be denoted by ρ0′ with respect to 3-observers
in Σ′ in Fig. 5a. Likewise the “bundle” of parallel dimensions
x′, y′ and z′ effectively constitutes a one-dimensional space to
be denoted by ρ′ with respect to 3-observers in Σ0′ in Fig. 5b.
Thus Fig. 5a shall be replaced with the fuller diagram of
Fig. 6a, which is valid with respect to 3-observers in the Euc-
lidean 3-space Σ′, while Fig. 5b shall be replaced with the

Fig. 6: (a) The proper Euclidean 3-spaces Σ0′ and −Σ0′∗ along the
vertical in Fig. 3, are naturally contracted to one-dimensional proper
spaces ρ0′ and −ρ0′∗ respectively relative to 3-observers in the proper
Euclidean 3-spaces Σ′ and −Σ′∗ along the horizontal.

fuller diagram of Fig. 6b, which is valid with respect to 3-
observers in the proper Euclidean 3-space Σ0′.

Representation of the Euclidean spaces Σ′, −Σ′∗, Σ0′ and
−Σ0′∗ by plane surfaces in the previous diagrams in this pa-
per has temporarily been changed to lines in Figs. 6a and 6b
for convenience. The three-dimensional rest masses m0 and
−m∗0 in the Euclidean 3-spaces Σ′ and −Σ′∗ and m0

0 and −m0
0
∗

in Σ0′and −Σ0′∗ have been represented by circles to remind
us of their three-dimensionality, while the one-dimensional
intrinsic rest masses in the one-dimensional intrinsic spaces
φρ0′, −φρ0′∗, φρ′ and −φρ′∗ and the one-dimensional rest
masses in the one-dimensional spaces ρ0′, −ρ0′∗, ρ′ and −ρ′∗
have been represented by short line segments in Figs. 6a
and 6b.

Fig. 6: (b) The proper Euclidean 3-spaces Σ′ and −Σ′∗ along the hor-
izontal in Fig. 4, are naturally contracted to one-dimensional proper
spaces ρ′ and −ρ′∗ respectively relative to 3-observers in the proper
Euclidean 3-spaces Σ0′ and −Σ0′∗ along the vertical.
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Fig. 3 naturally simplifies as Fig. 6a with respect to 3-
observers in the proper Euclidean 3-space Σ′ of the positive
(or our) universe, while Fig. 4 naturally simplifies as Fig. 6b
with respect to 3-observers in the proper Euclidean 3-space
Σ0′ along the vertical. The vertical Euclidean 3-spaces Σ0′

and −Σ0′∗ in Fig. 3 have been geometrically contracted to
one-dimensional proper spaces ρ0′ and −ρ0′∗ respectively
with respect to 3-observers in the proper Euclidean 3-spaces
Σ′ and −Σ′∗ of the positive and negative universes and the
proper Euclidean 3-spaces Σ′ and −Σ′∗ of the positive and
negative universes along the horizontal in Fig. 4, have been
geometrically contracted to one-dimensional proper spaces ρ′

and −ρ′∗ respectively with respect to 3-observers in the ver-
tical proper Euclidean 3-spaces Σ0′ and −Σ0′∗ in Fig. 6b, as
actualization of the topic of this sub-section.

The isotropic absolute speed V0 = c of every point of the
Euclidean 3-space Σ0′ with respect to 3-observers in the Eu-
clidean 3-space Σ′ in Fig. 3 is now absolute speed V0 = c
of every point along the one-dimensional space ρ0′ with re-
spect to 3-observers in Σ′ in Fig. 6a. The isotropic absolute
speed V0 = −c of every point of the Euclidean 3-space −Σ0′∗

with respect to 3-observers in Σ′ in Fig. 3 is likewise abso-
lute speed V0 = −c of every point along the one-dimensional
space −ρ0′∗ with respect to 3-observers in Σ′ in Fig. 6a.

Just as the absolute speed V0 = c of every point along ρ0′

and the absolute intrinsic speed φV0 = φc of every point along
the intrinsic space φρ0′ with respect to 3-observers in Σ′ in
Fig. 6a are isotropic, that is, without unique orientation in the
Euclidean 3-space Σ0′ that contracts to ρ0′, with respect to 3-
observers in Σ′ and −Σ′∗, so are the one-dimensional space ρ0′

and the one-dimensional intrinsic space φρ0′ isotropic dimen-
sion and isotropic intrinsic dimension respectively with no
unique orientation in the Euclidean 3-space Σ0′, with respect
to 3-observers in the Euclidean 3-spaces Σ′ and −Σ′∗. The
one-dimensional space −ρ0′∗ and one-dimensional intrinsic
space −φρ0′∗ are likewise isotropic dimension and isotropic
intrinsic dimension respectively with no unique orientation in
the Euclidean 3-space −Σ0′∗ with respect to 3-observers in the
Euclidean 3-spaces Σ′ and −Σ′∗ in Fig. 6a.

The isotropic absolute speed V0 = c of every point of
the Euclidean 3-space Σ′ and the isotropic absolute speed
V0 = −c of every point of the Euclidean 3-space −Σ′∗ with
respect to 3-observers in Σ0′ in Fig. 4 are now absolute speed
V0 = c of every point along the one-dimensional space ρ′

and absolute speed V0 = −c of every point along the one-
dimensional space −ρ′∗ with respect to 3-observers in Σ0′

Fig. 6b. Again the one-dimensional metric spaces ρ′ and
−ρ′∗ and the one-dimensional intrinsic metric spaces φρ′ and
−φρ′∗ are isotropic dimensions and isotropic intrinsic dimen-
sions respectively with no unique orientations in the Euclidean
3-spaces Σ′ and −Σ′∗ that contract to ρ′ and −ρ′∗ respectively,
with respect to 3-observers in the vertical Euclidean 3-spaces
Σ0′ and −Σ0′∗ in Fig. 6b.

1.3 The vertical proper Euclidean 3-spaces as proper
time dimensions relative to 3-observers in the hori-
zontal proper Euclidean 3-spaces and conversely

Figs. 6a and 6b are intermediate diagrams. It shall be shown
finally in this section that the one-dimensional proper spaces
ρ0′ and −ρ0′∗ in Fig. 6a naturally transform into the proper
time dimensions ct′ and −ct′∗ respectively and their underly-
ing one-dimensional proper intrinsic spaces φρ0′ and −φρ0′∗

naturally transform into the proper intrinsic time dimensions
φcφt′ and −φcφt′∗ respectively with respect to 3-observers in
the proper Euclidean 3-spaces Σ′ and −Σ′∗ in that figure. It
shall also be shown that the one-dimensional proper spaces ρ′

and −ρ′∗ in Fig. 6b naturally transform into the proper time
dimensions ct0′ and −ct0′∗ respectively and their underlying
proper intrinsic spaces φρ′ and −φρ′∗ naturally transform into
proper intrinsic time dimensions φcφt0′ and −φcφt0′∗ respec-
tively with respect to 3-observers in the proper Euclidean 3-
spaces Σ0′ and −Σ0′∗ in that figure.

Now let us re-present the generalized forms of the intrin-
sic Lorentz transformations and its inverse derived and pre-
sented as systems (44) and (45) of [1] respectively as follows

φcφt̃ ′ = sec φψ(φcφt̃ − φx̃ sin φψ);
(w.r.t. 1 − observer in ct̃ );

φx̃′ = sec φψ(φx̃ − φcφt̃ sin φψ);
(w.r.t. 3 − observer in Σ̃)


(2)

and

φcφt̃ = sec φψ(φcφt̃ ′ + φx̃′ sin φψ);
(w.r.t. 3 − observer in Σ̃′);

φx̃ = sec φψ(φx̃′ + φcφt̃ ′ sin φψ);
(w.r.t. 1 − observer in ct̃ ′)


. (3)

As explained in [1], systems (2) and (3) can be applied for all
values of the intrinsic angle φψ in the first cycle, 0 ≤ φψ ≤ 2π,
except that φψ = π

2 and φψ = 3π
2 must be avoided.

One observes from system (2) that the pure intrinsic affine
time coordinate φcφt̃ ′ of the primed (or particle’s) intrinsic
frame with respect to an observer at rest relative to the par-
ticle’s frame, transforms into an admixture of intrinsic affine
time and intrinsic affine space coordinates of the unprimed
(or observer’s) intrinsic frame. The pure intrinsic affine space
coordinate φx̃′ of the primed (or particle’s) frame likewise
transforms into an admixture of intrinsic affine space and in-
trinsic affine time coordinates of the unprimed (or particle’s)
intrinsic frame, when the particle’s frame is in motion relative
to the observer’s frame. The inverses of these observations
obtain from system (3), which is the inverse to system (2).

The observations made from system (2) and system (3)
described in the foregoing paragraph make the concept of in-
trinsic affine spacetime induction relevant in relative intrinsic
motion of two intrinsic spacetime frames of reference. In or-
der to make this more explicit, let us re-write systems (2) and
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(3) respectively as follows

φcφt̃ ′ = sec φψ(φcφt̃ + φcφt̃i);
(w.r.t. 1 − observer in ct̃ );

φx̃′ = sec φψ(φx̃ + φx̃i);
(w.r.t. 3 − observer in Σ̃)


(4)

and
φcφt̃ = sec φψ(φcφt̃ ′ + φcφt̃ ′i);

(w.r.t. 3 − observer in Σ̃′);

φx̃ = sec φψ(φx̃′ + φx̃′i);
(w.r.t. 1 − observer in ct̃ ′)


. (5)

A comparison of systems (4) and (2) gives the relations
for the induced unprimed intrinsic affine spacetime coordi-
nates φcφt̃i and φx̃i as follows

φcφt̃i = φx̃ sin(−φψ) = −φx̃ sin φψ = −φv
φc
φx̃; (6)

w.r.t. 1 − observer in ct̃ and

φx̃i = φcφt̃ sin(−φψ) = −φcφt̃ sin φψ =

−φv
φc
φcφt̃ = −φvφt̃; (7)

w.r.t 3 − observer in Σ̃.
Diagrammatically, the induced unprimed intrinsic affine

time coordinate, φcφt̃i = φx̃ sin(−φψ) in (6), appears in the
fourth quadrant in Fig. 9a of [1] as φx̃∗ sin(−φψ) and the in-
duced unprimed intrinsic affine space coordinate, φx̃i = φcφt̃
sin(−φψ) in (7), appears in the second quadrant in Fig. 9b
of [1] as φcφt̃ ∗ sin(−φψ).

And a comparison of systems (5) and (3) gives the rela-
tions for the induced primed intrinsic affine spacetime coor-
dinates φcφt̃ ′i and φx̃′i as follows

φcφt̃ ′i = φx̃′ sin φψ =
φv

φc
φx̃′; (8)

w.r.t. 3 − observer in Σ̃′ and

φx̃′i = φcφt̃ ′ sin φψ =
φv

φc
φcφt̃ ′ = φvφt̃ ′; (9)

w.r.t. 1 − observer in ct̃′.
Diagrammatically, the induced primed intrinsic affine ti-

me coordinate, φcφt̃ ′i = φx̃′ sin φψ in Eq. (8), appears in
the fourth quadrant in Fig. 8b of [1], where it is written as
φx̃ ′∗ sin φψ and the induced primed intrinsic affine space co-
ordinate, φx̃′i = φcφt̃ ′ sin φψ in (9), appears in the second
quadrant in Fig. 8a of [1], where it is written as φcφt̃ ′∗ sin φψ.

The intrinsic affine time induction relation (6) states that
an intrinsic affine space coordinate φx̃ of the unprimed in-
trinsic frame, which is inclined at negative intrinsic angle
−φψ relative to the intrinsic affine space coordinate φx̃′ of the

primed intrinsic frame, due to the negative intrinsic speed −φv
of the unprimed intrinsic frame relative to the primed intrin-
sic frame, projects (or induces) a negative unprimed intrinsic
affine time coordinate, φcφt̃i = φx̃ sin(−φψ) = −φx̃ sin φψ,
along the vertical relative to the 1-observer in ct̃.

The intrinsic affine space induction relation (7) states that
an intrinsic affine time coordinate φcφt̃ of the observer’s (or
unprimed) intrinsic frame, which is inclined at negative in-
trinsic angle −φψ relative to the intrinsic affine time coordi-
nate φcφt̃ ′ of the particle’s (or primed) intrinsic frame along
the vertical, due to the negative intrinsic speed −φv of the
intrinsic observer’s frame relative to the intrinsic particle’s
frame, induces a negative unprimed intrinsic affine space co-
ordinate, φx̃i = φcφt̃ sin(−φψ) = −φcφt̃ sin φψ, along the hor-
izontal relative to 3-observer in Σ̃.

The intrinsic affine time induction relation (8) states that
an intrinsic affine space coordinate φx̃′ of the particle’s (or
primed) intrinsic frame, which is inclined relative to the in-
trinsic affine space coordinate φx̃ of the observer’s (or un-
primed) intrinsic frame at a positive intrinsic angle φψ, due
to the intrinsic motion of the particle’s (or primed) intrinsic
frame at positive intrinsic speed φv relative to the observer’s
(or unprimed) intrinsic frame, induces positive primed intrin-
sic affine time coordinate, φcφt̃ ′i = φx̃′ sin φψ, along the ver-
tical relative to the 3-observer in Σ̃′.

Finally the intrinsic affine space induction relation (9) sta-
tes that an intrinsic affine time coordinate φcφt̃ ′ of the primed
intrinsic frame, which is inclined at positive intrinsic angle φψ
relative to the intrinsic affine time coordinate φcφt̃ along the
vertical of the primed intrinsic frame, due to the intrinsic mo-
tion of the primed intrinsic frame at positive intrinsic speed
φv relative to the unprimed intrinsic frame, induces positive
primed intrinsic affine space coordinate, φx̃′i = φcφt̃ ′ sin φψ,
along the horizontal relative to the 1-observer in ct̃ ′.

The outward manifestations on flat four-dimensional
affine spacetime of the intrinsic affine spacetime induction
relations (6)–(9) are given by simply removing the symbol
φ from those relations respectively as follows

ct̃i = x̃ sin(−ψ) = −x̃ sinψ = − v
c

x̃; (10)

w.r.t. 1 − observer in ct̃;

x̃i = ct̃ sin(−ψ) = −ct̃ sinψ = − v
c

ct̃ = −vt̃; (11)

w.r.t. 3 − observer in Σ̃;

ct̃ ′i = x̃′ sinψ =
v

c
x̃′; (12)

w.r.t. 3 − observer in Σ̃′ and

x̃′i = ct̃ ′ sinψ =
v

c
ct̃ ′ = vt̃ ′; (13)

w.r.t. 1 − observer in ct̃ ′.
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Fig. 7: Proper intrinsic metric time dimension and proper metric
time dimension are induced along the vertical with respect to 3-
observers in the proper Euclidean 3-space Σ′ (as a hyper-surface rep-
resented by a line) along the horizontal, by a proper intrinsic metric
space that is inclined to the horizontal.

However the derivation of the intrinsic affine spacetime
induction relations (6)–(9) in the context of φSR and their
outward manifestations namely, the affine spacetime induc-
tion relations (10)–(13) in the context of SR, are merely to
demonstrate explicitly the concept of intrinsic affine space-
time induction that is implicit in intrinsic Lorentz transfor-
mation (φLT) and its inverse in the context of φSR and affine
spacetime induction that is implicit in Lorentz transformation
(LT) and its inverse in the context of SR.

On the other hand, our interest in this sub-section is in
intrinsic metric time induction that arises by virtue of posses-
sion of absolute intrinsic speed φV0 naturally at every point
along the length of a proper intrinsic metric space, φρ0′, say,
relative to another proper intrinsic metric space, φρ′, say, in
Fig. 3. Let us assume, for the purpose of illustration, that
a proper intrinsic metric space φρ0′ possesses an absolute
intrinsic speed φV0 < φc naturally at every point along its
length relative to our proper intrinsic metric space φρ′ along
the horizontal, instead of the absolute intrinsic speed φV0 =

φc of every point along the length of φρ0′ relative to φρ′ in
Fig. 3. Then φρ0′ will be inclined at an absolute intrinsic an-
gle φψ0 <

π
2 relative to φρ′ along the horizontal, as illustrated

in Fig. 7, instead of inclination of φρ0′ to the horizontal by
absolute intrinsic angle φψ0 = π

2 in Fig. 3.
As shown in Fig. 7, the inclined proper intrinsic metric

space φρ0′ induces proper intrinsic metric time dimension
φcφt′i along the vertical with respect to 3-observers in our
proper Euclidean 3-space Σ′ along the horizontal. The intrin-
sic metric time induction relation with respect to 3-observers
in Σ′ in Fig. 7, takes the form of the primed intrinsic affine
time induction relation (8) with respect to 3-observer in Σ̃′ in
the context of φSR. We must simply replace the primed in-
trinsic affine spacetime coordinates φcφt̃′i and φx̃′ by proper
intrinsic metric spacetime dimensions φcφt′i and φρ0′ respec-
tively and the relative intrinsic angle φψ and relative intrinsic
speed φv by absolute intrinsic angle φψ0 and absolute intrinsic
speed φV0 in (8) to have as follows

φcφt′i = φρ0′ sin φψ0 =
φV0

φc
φρ0′; (14)

w.r.t. all 3 − observers in Σ′. And the outward manifestation
of (14) is

ct′i = ρ0′ sinψ0 =
V0

c
ρ0′; (15)

w.r.t. all 3 − observers in Σ′.
The induced proper intrinsic metric time dimension φcφt′i

along the vertical in (14) is made manifest in induced proper
metric time dimension ct′i in (15) along the vertical, as shown
in Fig. 7. As indicated, relations (14) and (15) are valid with
respect to all 3-observers in our proper Euclidean 3-space Σ′

overlying our proper intrinsic metric space φρ′ along the hor-
izontal in Fig. 7.

As abundantly stated in [1] and under systems (2) and (3)
earlier in this paper, the relative intrinsic angle φψ = π

2 cor-
responding to relative intrinsic speed φv = φc, is prohibited
by the intrinsic Lorentz transformation (2) and its inverse (3)
in φSR and consequently φψ = π

2 or φv = φc is prohibited
in the intrinsic affine time and intrinsic affine space induction
relations (6) and (7) and their inverses (8) and (9) in φSR.
Correspondingly, the angle ψ = π

2 or speed v = c is prohibited
in the affine time and affine space induction relations (10) and
(11) and their inverses (12) and (13) in SR.

On the other hand, the absolute intrinsic speed φV0 can
be set equal to φc and hence the absolute intrinsic angle φψ0
can be set equal to π

2 in (14). This is so since, as prescribed
earlier in this paper, the proper intrinsic metric space φρ0′ ex-
ists naturally along the vertical as in Fig. 3, corresponding
to φV0 = φc and φψ0 = π

2 naturally in (14) with respect to
3-observers in Σ′. More over, as mentioned at the end of sub-
section 1.1 and as shall be developed fully elsewhere, the ab-
solute intrinsic speed φV0 of every point of the inclined φρ0′

with respect to all 3-observers in Σ′ in Fig. 7, being the out-
ward manifestation in φρ0′ of the absolute speed of the New-
tonian absolute space (the ether of classical mechanics), it can
take on values in the range 0 ≤ φV0 ≤ ∞, since the maximum
speed of objects in classical mechanics is infinite speed. Thus
by letting φV0 = φc and φψ0 = π

2 in (14) we have

φcφt′i ≡ φcφt′ = φρ0′;

for φV0 = φc or φψ0 =
π

2
in Fig. 7; (16)

w.r.t. all 3 − observers in Σ′.
While relation (14) states that a proper intrinsic metric

space φρ0′, which is inclined to φρ′ along the horizontal at
absolute intrinsic angle φψ0 < π

2 , induces proper intrinsic
metric time dimension φcφt′i along the vertical, whose length
is a fraction φV0/φc or sin φψ0 times the length of φρ0′, with
respect to all 3-observers in our proper Euclidean 3-space Σ′

along the horizontal, relation (16) states that a proper intrin-
sic metric space φρ0′, which is naturally inclined at intrinsic
angle φψ0 = π

2 relative to φρ′ along the horizontal, thereby ly-
ing along the vertical, induces proper intrinsic metric time di-
mension φcφt′i ≡ φcφt′ along the vertical, whose length is the
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length of φρ0′, with respect to all 3-observers in our proper
Euclidean 3-space Σ′ along the horizontal.

The preceding paragraph implies that a proper intrinsic
metric space φρ0′ that is naturally rotated along the vertical is
wholly converted (or wholly transformed) into proper intrin-
sic metric time dimension φcφt′ relative to all observers in
our Euclidean 3-space Σ′ (along the horizontal). Eq. (16) can
therefore be re-written as the transformation of proper intrin-
sic metric space into proper intrinsic metric time dimension:

φρ0′ → φcφt′;
for φV0 = φc or φψ0 = π/2 in Fig. 7; (17)

w.r.t. all 3 − observers in Σ′ and the outward manifestation of
Eq. (17) is the transformation of the one-dimensional proper
metric space ρ0′ into proper metric time dimension ct′:

ρ0′ → ct′;
for V0 = c or ψ0 = π/2 in Eq.(15); (18)

w.r.t. all 3 − observers in Σ′.
The condition required for the transformations (17) and

(18) to obtain are naturally met by φρ0′ and ρ0′ in Fig. 6a.
This is the fact that they are naturally inclined at absolute in-
trinsic angle φψ0 = π

2 and absolute angle ψ0 = π
2 respectively

relative to our proper intrinsic space φρ′ along the horizon-
tal and consequently they naturally possess absolute intrinsic
speed φV0 = φc and absolute speed V0 = c respectively at
every point along their lengths with respect to all 3-observers
in our proper Euclidean 3-space Σ′ in that diagram.

The transformations (17) and (18) with respect to 3-obser-
vers in our proper Euclidean 3-space Σ′ correspond to the fol-
lowing with respect to 3-observers in the proper Euclidean
3-space −Σ′∗ of the negative universe in Fig. 6a:

−φρ0′∗ → −φcφt′∗;
for φV0 = φc or φψ0 = π/2; (19)

w.r.t. all 3 − observers in − Σ′∗ and

−ρ0′∗ → −ct′∗;
for V0 = c or ψ0 = π/2; (20)

w.r.t. all 3 − observers in − Σ′∗.
The counterparts of transformations (17) and (18), which

are valid with respect to 3-observers in the proper Euclidean
3-space Σ0′ in Fig. 6b are the following

φρ′ → φcφt0′;
for φV0 = φc or φψ0 = π/2; (21)

w.r.t. all 3 − observers in Σ0′ and

ρ′ → ct0′;
for V0 = c or ψ0 = π/2; (22)

Fig. 8: a) The one-dimensional proper spaces ρ0′ and −ρ0′∗ in Fig. 6a
transform into proper time dimensions ct′ and −ct′∗ respectively and
the proper intrinsic spaces φρ0′ and −φρ0′∗ in Fig. 6a transform into
proper intrinsic time dimensions φcφt′ and −φcφt′∗ respectively, rel-
ative to 3-observers in the proper Euclidean 3-spaces Σ′ and −Σ′∗

(represented by lines) along the horizontal.

w.r.t. all 3 − observers in Σ0′ and the counterparts of trans-
formations (19) and (20), which are valid with respect to 3-
observers in the proper Euclidean 3-space −Σ0′∗ in Fig. 6b are
the following

−φρ′∗ → −φcφt0′∗;
for V0 = c or ψ0 = π/2; (23)

w.r.t. all 3 − observers in − Σ0′∗ and

−ρ′∗ → −ct0′∗;
for V0 = c or ψ0 = π/2; (24)

w.r.t. all 3 − observers in − Σ0′∗.
Application of transformations (17)–(20) on Fig. 6a gives

Fig. 8a and application of transformation (21)–(24) on Fig.
6b gives Fig. 8b. Again representation of Euclidean 3-spaces
by plane surfaces in the previous diagrams in this paper has
temporarily been changed to lines in Figs. 8a and 8b, as done
in Figs. 6a and 6b, for convenience.

The three-dimensional rest masses of the symmetry-part-
ner particles or objects in the proper Euclidean 3-spaces and
the one-dimensional rest masses in the proper time dimen-
sions, as well as their underlying one-dimensional intrinsic
rest masses in the proper intrinsic spaces and proper intrinsic
time dimensions have been deliberately left out in Figs. 8a
and 8b, unlike in Figs. 6a and 6b where they are shown. This
is necessary because of further discussion required in locat-
ing the one-dimensional particles or objects in the time di-
mensions, which shall be done later in this paper. As in-
dicated in Figs. 8a and 8b, the proper time dimensions ct′

and ct0′ possess absolute speed V0 = c at every point along
their lengths, relative to 3-observers in the proper Euclidean
3-spaces Σ′ and Σ0′ respectively, like the one-dimensional
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Fig. 8: b) The one-dimensional proper spaces ρ′ and −ρ′∗ in Fig. 6b
transform into proper time dimensions ct0′ and −ct0′∗ respectively
and the proper intrinsic spaces φρ′ and −φρ′∗ in Fig. 6b transform
into proper intrinsic time dimensions φcφt0′ and −φcφt0′∗ respec-
tively relative to 3-observers in the proper Euclidean 3-spaces Σ0′

and −Σ0′∗ (represented by lines) along the vertical.

spaces ρ0′ and ρ′ in Figs. 6a and 6b that transform into ct′

and ct0′ respectively in Figs. 8a and 8b. As also indicated in
Figs. 8a and 8b, the proper intrinsic time dimensions φcφt′

and φcφt0′ possess absolute intrinsic speed φV0 = φc at every
point along their lengths relative to 3-observers in the proper
Euclidean 3-spaces Σ′ and Σ0′ respectively, like the intrinsic
spaces φρ0′ and φρ′ in Figs. 6a and 6b that transform into
φcφt′ and φcφt0′ respectively in Figs. 8a and 8b. The time di-
mensions ct′ and ct0′ and the intrinsic time dimensions φcφt′

and φcφt0′ are isotropic dimensions (with no unique orienta-
tions in the proper Euclidean 3-spaces Σ0′ and Σ′ that trans-
form into ct′ and ct0′ respectively). These follow from the
isotropy of the one-dimensional spaces ρ0′ and ρ′ in the Eu-
clidean 3-spaces Σ0′ and Σ′ respectively in Figs. 6a and 6b
that transform into ct′ and ct0′ respectively in Figs. 8a and 8b
and from the isotropy of the one-dimensional intrinsic spaces
φρ0′ and φρ′ in the Euclidean 3-spaces Σ0′ and Σ′ respec-
tively in Figs. 6a and 6b that transform into φcφt′ and φcφt0′

respectively in Figs. 8a and 8b.
Fig. 8a is the final form to which the quartet of mutually

orthogonal proper Euclidean 3-spaces and underlying one-
dimensional proper intrinsic spaces in Fig. 2 naturally sim-
plify with respect to 3-observers in the proper Euclidean 3-
spaces Σ′ and −Σ′∗ of the positive (or our) universe and the
negative universe and Fig. 8b is the final form to which the
quartet of proper Euclidean 3-spaces and underlying one-di-
mensional proper intrinsic spaces in Fig. 2 naturally simplify
with respect to 3-observers in the proper Euclidean 3-spaces
Σ0′ and −Σ0′∗ of the positive and negative time-universes.

It follows from the natural simplification of Fig. 2 to Figs.
8a and 8b that the concept of time is secondary to the concept
of space. Indeed the concept of time had evolved from the
concept of space and the concept of intrinsic time had evolved

from the concept of intrinsic space. This is so since given
the quartet of mutually orthogonal proper metric Euclidean
3-spaces/underlying one-dimensional proper intrinsic metric
spaces in Fig. 2, then the straight line one-dimensional proper
metric time manifolds (or proper metric time dimensions)
evolve automatically relative to 3-observers in the proper
Euclidean 3-spaces, as illustrated in Figs. 8a and 8b. Thus
one could ask for the origin of space without at the same time
asking for the origin of time in the present picture. The origin
of time and intrinsic time dimensions, which we seek in this
section, has been achieved.

2 Perfect symmetry of natural laws among the isolated
four universes

The four universes encompassed by Figs. 8a and 8b are the
positive (or our) universe with flat proper spacetime (Σ′, ct′)
of SR and its underlying flat two-dimensional proper intrin-
sic spacetime (φρ′, φcφt′) of φSR in Fig. 8a and the negative
universe with flat proper spacetime (−Σ′∗,−ct′∗) of SR and
its underlying two-dimensional flat proper intrinsic spacetime
(−φρ′∗,−φcφt′∗) of φSR in Fig. 8a.

The third universe is the one with flat proper spacetime
(Σ0′, ct0′) of SR and its underlying flat proper intrinsic space-
time (φρ0′, φcφt0′) of φSR in Fig. 8b. This third universe shall
be referred to as the positive time-universe, since its proper
Euclidean 3-space Σ0′ and its proper intrinsic space φρ0′ are
the proper time dimension ct′ and proper intrinsic time di-
mension φcφt′ respectively of the positive (or our) universe.

The fourth universe is the one with flat proper spacetime
(−Σ0′∗,−ct0′∗) of SR and its underlying flat proper intrinsic
spacetime (−φρ0′∗,−φcφt0′∗) of φSR in Fig. 8b. This fourth
universe shall be referred to as the negative time-universe,
since its proper Euclidean 3-space −Σ0′∗ and its proper in-
trinsic space −φρ0′∗ are the proper time dimension −ct′∗ and
proper intrinsic time dimension −φcφt′∗ respectively of the
negative universe.

As prescribed earlier in this paper, the four worlds (or
universes) encompassed by Figs. 8a and 8b, listed above, co-
exist in nature and exhibit perfect symmetry of natural laws
and perfect symmetry of state among themselves. Perfect
symmetry of laws among the four universes shall be demon-
strated hereunder, while perfect symmetry of state among the
universes shall be be demonstrated in the second part of this
paper.

Demonstration of perfect symmetry of natural laws be-
tween the positive (or our) universe and the negative universe
in [1] and [2] involves three steps. In the first step, the affine
spacetime/intrinsic affine spacetime diagrams of Figs. 8a and
8b and Figs. 9a and 9b of [1] are derived upon the metric
spacetimes/intrinsic metric spacetimes of the positive (or our)
universe and the negative universe of Fig. 8a above, (which
was prescribed to exist in nature and constitute a two-world
background of SR in [1]).
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Physical quantity Symbol Intrinsic Sign
or constant quantity positive negative

or constant time- time-

universe universe

Distance (or dimension)
of space dx0 or x0 dφx0 or φx0 + −
Interval (or dimension)
of time dt0 or t0 dφt0 or φt0 + −
Mass m0 φm0 + −
Electric charge q q + or − − or +

Absolute entropy S 0 φS 0 + −
Absolute temperature T T + +

Energy (total, kinetic) E0 φE0 + −
Potential energy U0 φU0 + or − − or +

Radiation energy hν0 hφν0 + −
Electrostatic potential Φ0

E φΦ0
E + or − + or −

Gravitational potential Φ0 φΦ0 − −
Electric field ~E0 φE0 + or − − or +

Magnetic field ~B0 φB0 + or − − or +

Planck constant h h + +

Boltzmann constant k φk + −
Thermal conductivity k φk + −
Specific heat capacity cp φcp + +

velocity ~v φv + or − + or −
speeds of particles v φv + +

Speed of light c φc + +

Electric permittivity εo
o φεo

o + +

Magnetic permeability µo
o φµo

o + +

Angular measure θ, ϕ φθ, φϕ + or − + or −
Parity Π φΠ + or − − or +

...
...

...
...

...

Table 1. Signs of spacetime/intrinsic spacetime dimensions, some physical parameters/intrinsic parameters
and some physical constants/intrinsic constants in the positive time-universe and negative time-universe.

The intrinsic Lorentz transformation/Lorentz transformation
(φLT/LT) was then derived from those diagrams in the posi-
tive and negative universes, thereby establishing intrinsic Lo-
rentz invariance (φLI) on flat two-dimensional intrinsic space-
times and Lorentz invariance (LI) on flat four-dimensional
spacetimes in the two universes in [1].

The first step in demonstrating perfect symmetry of laws
between the positive (or our) universe and the negative uni-
verse in Fig. 8a of this paper described above, applies di-
rectly between the positive time-universe and the negative
time-universe. The counterparts of Figs. 8a, 8b, 9a and 9b of
[1], drawn upon the metric spacetimes/intrinsic metric space-
times of the positive and negative universes of Fig. 8a of this
paper in that paper, can be drawn upon the metric space-
times/intrinsic spacetimes of the positive time-universe and
negative time-universe in Figs. 8b of this paper and intrin-
sic Lorentz transformations/Lorentz transformation (φLT/LT)
derived from them in the positive time-universe and the neg-
ative time-universe, as shall not be done here in order to con-

serve space. Intrinsic Lorentz invariance (φLI) on flat two-
dimensional intrinsic spacetimes and Lorentz invariance (LI)
on flat four-dimensional spacetimes in the positive and neg-
ative time-universes then follow with respect to observers in
those universes.

The second step in demonstrating the symmetry of laws
between the positive (or our) universe and the negative uni-
verse in [1] and [2], involves the derivation of the relative
signs of physical parameters and physical constants and of in-
trinsic parameters and intrinsic constants between the positive
and negative universes in [2], summarized in Table 1 of that
paper. Again this second step applies directly between the
positive time-universe and the negative time-universe. The
relative signs of physical parameters and physical constants
and of intrinsic parameters and intrinsic constants derivable
between the positive time-universe and the negative time-uni-
verse, summarized in Table 1 here, follow directly from the
derived signs of physical parameters and physical constants
and of intrinsic parameters and intrinsic constants in the pos-
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itive and negative universes, summarized in Table 1 of [2].
Table 1 here is the same as Table 1 in [2]. The super-

script “0” that appears on dimensions/intrinsic dimensions
and some parameters/intrinsic parameters and constants/in-
trinsic constants in Table 1 here is used to differentiate the di-
mensions/intrinsic dimensions, parameters/intrinsic parame-
ters and constants/intrinsic constants of the positive time-uni-
verse and negative time-universe from those of the positive
(or our) universe and the negative universe in Table 1 of [2].

The third and final step in demonstrating the symmetry
of natural laws between the positive (or our) universe and the
negative universe in [1] and [2], consists in replacing the pos-
itive spacetime dimensions and the physical parameters and
physical constants that appear in (the instantaneous differ-
ential) natural laws in the positive universe by the negative
spacetime dimensions and physical parameters and physical
constants of the negative universe (with the appropriate signs
in Table 1 of [2]), and showing that these operations leave all
natural laws unchanged in the negative universe, as done in
section 5 of [2].

The third step in the demonstration of the perfect sym-
metry of natural laws between the positive and negative uni-
verses described in the foregoing paragraph, applies directly
between the positive time-universe and the negative time-uni-
verse as well. Having established Lorentz invariance between
the positive time-universe and negative time-universe at the
first step, it is straight forward to use Table 1 above and fol-
low the procedure in section 5 of [2] to demonstrate the in-
variance of natural laws between the positive time-universe
and negative time-universe.

Symmetry of natural laws must be considered to have
been established between the positive time-universe and the
negative time-universe. A more detailed presentation than
done above will amount to a repetition of the demonstration
of symmetry of natural laws between the positive and nega-
tive universes in [1] and [2].

Finally the established validity of Lorentz invariance in
the four universes encompassed by Figs. 8a and 8b, coupled
with the identical signs of spacetime dimensions, physical pa-
rameters and physical constants in the positive (or our) uni-
verse and the positive time-universe and the identical signs
of spacetime dimensions, physical parameters, physical con-
stants in the negative universe and negative time-universe in
Table 1 of [2] and Table 1 above, guarantee the invariance
of natural laws between the positive (or our) universe and
the positive time-universe and between the negative universe
and the negative time-universe. This along with the estab-
lished invariance of natural laws between the positive (or our)
universe and the negative universe and between the positive
time-universe and the negative time-universe, guarantees in-
variance of natural laws among the four universes.

Symmetry of natural laws among the four universes en-
compassed by Figs. 8a and 8b of this paper namely, the pos-
itive (or our) universe and the negative universe (in Fig. 8a),

the positive time-universe and the negative time-universe (in
Fig. 8b), has thus been shown. Perfect symmetry of state
among the universes shall be demonstrated in the second part
of this paper, as mentioned earlier.

3 Origin of one-dimensional particles, objects and ob-
servers in the time dimension and (3+1)-dimension-
ality of particles, objects and observers in special rel-
ativity

An implication of the geometrical contraction of the three di-
mensions x01′, x02′ and x03′ of the proper Euclidean 3-space
Σ0′ of the positive time-universe in Fig. 2 or Fig. 3 into a one-
dimensional space ρ0′ relative to 3-observers in our proper
Euclidean 3-space Σ′ in Fig. 6a, which ultimately transforms
into the proper time dimension ct′ relative to 3-observers in
Σ′ in Fig. 8a, is that the dimensions of a particle or object,
such as a box of rest mass m0

0 and proper (or classical) dimen-
sions ∆x0′, ∆y0′ and ∆z0′ in Σ0′ with respect to 3-observers
in Σ0′, are geometrically “bundled” parallel to one another,
thereby effectively becoming a one-dimensional box of equal
rest mass m0

0 and proper (or classical) length ∆ρ0′ along ρ0′

in Fig. 6a, which transforms into an interval c∆t′ containing
rest mass m0

0 along the proper time dimension ct′ in Fig. 8a,
relative to 3-observers in our Euclidean 3-space Σ′, where
c∆t′ = ∆ρ0′ =

√
(∆x0′)2 + (∆y0′)2 + (∆z0′)2.

Likewise all radial directions of a spherical particle or ob-
ject of rest mass m0

0 and proper (or classical) radius r0′ in the
proper Euclidean 3-space Σ0′ of the positive time-universe,
with respect to 3-observers in Σ0′, are “bundled” parallel to
one another, thereby becoming a one-dimensional particle or
object of proper (or classical) length, ∆ρ0′ = r0′, along ρ0′ in
Fig. 6a, which ultimately transforms into interval c∆t′ (= r0′)
containing rest mass m0

0 along the proper time dimension ct′

in Fig. 8a, with respect to 3-observers in our proper Euclidean
3-space Σ′.

A particle or object of rest mass m0
0 with arbitrary shape

located in the proper Euclidean 3-space Σ0′ of the positive
time-universe with respect to 3-observers in Σ0′, will have
the lengths (or dimensions) from its centroid to its boundary
along all directions geometrically “bundled” parallel to one
another, thereby effectively becoming a one-dimensional par-
ticle or object of equal rest mass m0

0 along the proper time
dimension ct′ with respect to 3-observers in Σ′ in Fig. 8a.

The one-dimensional rest mass m0
0 of proper length c∆t′

of a particle, object or observer in our proper time dimen-
sion ct′ with respect to 3-observers in our Euclidean 3-space
Σ′ in Fig. 8a, will acquire the absolute speed V0 = c, which
the proper time dimension possesses at every point along its
length with respect to 3-observers in Σ′. Consequently it will
possess energy m0

0V2
0 = m0

0c2 = E′ in ct′ with respect to 3-
observers in Σ′. Indeed the one-dimensional rest mass m0

0 in
ct′ will be made manifest in the state of energy E′ = m0

0c2

by virtue of its absolute speed c in ct′ and not in the state
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of rest mass m0
0. In other words, instead of locating one-

dimensional rest mass m0
0 along the proper time dimension

ct′ in Fig. 8a, as done along the one-dimensional space ρ0′ in
Fig. 6a, we must locate one-dimensional equivalent rest mass
E′/c2 (= m0) along ct′ with respect to 3-observers in Σ′, as the
symmetry-partner in ct′ to the three-dimensional rest mass m0
in Σ′.

It follows from the foregoing that as the proper Euclidean
3-space Σ0′ of the positive time-universe in Fig. 2 or 3 is ge-
ometrically contracted to one-dimensional space ρ0′ with re-
spect to 3-observers in our proper Euclidean 3-space Σ′ in
Fig. 6a, the three-dimensional rest mass m0

0 in Σ0′ with re-
spect to 3-observers in Σ0′ in Fig. 2 or Fig. 3, contracts to
one-dimensional rest mass m0

0 located in the one-dimensional
space ρ0′ with respect to 3-observers in our proper Euclidean
3-space Σ′ in Fig. 6a. And as the one-dimensional proper
space ρ0′ in Fig. 6a ultimately transforms into the proper time
dimension ct′ with respect to 3-observers in our Euclidean
3-space Σ′, the one-dimensional rest mass m0

0 in ρ0′ trans-
forms into one-dimensional equivalent rest mass E′/c2, (i.e.
m0

0 → E′/c2), located in the proper time dimension ct′ in
Fig. 8a with respect to 3-observers in our Euclidean 3-space
Σ′, (although E′/c2 has not been shown in ct′ in Fig. 8a).

It must be noted however that since the speed V0 = c ac-
quired by the rest mass m0

0 in the proper time dimension ct′

is an absolute speed, which is not made manifest in actual
motion (or translation) of m0

0 along ct′, the energy m0
0c2 = E′

possessed by m0
0 in ct′ is a non-detectable energy in the proper

time dimension. Important to note also is the fact that the
equivalent rest mass E′/c2 of a particle or object in the proper
time dimension ct′ is not an immaterial equivalent rest mass.
Rather it is a quantity of matter that possesses inertia (like
the rest mass m0

0) along the proper time dimension. This
is so because the speed c in m0

0c2 = E′, being an absolute
speed, is not made manifest in motion of m0

0 along ct′, as
mentioned above. On the other hand, the equivalent mass,
m0γ = E′γ/c

2 = hν0/c2, of a photon is purely immaterial,
since the speed c in m0γc2 = hν0 is the speed of actual trans-
lation through space of photons and only a purely immaterial
particle can attain speed c of actual translation in space or
along the time dimension. While the material equivalent rest
mass E′/c2(≡ m0

0) in ct′ can appear as rest mass in SR, the
immaterial equivalent mass E′0γ/c

2 (≡ m0γ) of photon cannot
appear in SR.

Illustrated in Fig. 9a are the three-dimensional rest mass
m0 of a particle or object at a point of distance d′ from a point
of reference or origin in our proper Euclidean 3-space Σ′ and
the symmetry-partner one-dimensional equivalent rest mass
E′/c2 at the symmetry-partner point of distance d0′ along
the proper time dimension ct′ from the point of reference or
origin, where the distances d′ and d0′ are equal. The three-
dimensional rest mass m0 in Σ′ is underlied by its one-dimen-
sional intrinsic rest mass φm0 in the one-dimensional proper

intrinsic space φρ′ and the one-dimensional equivalent rest
mass E′/c2 in ct′ is underlied by its one-dimensional equiv-
alent intrinsic rest mass φE′/φc2 in the proper intrinsic time
dimension φcφt′ in Fig. 9a.

Fig. 9a pertains to a situation where the three-dimensional
rest mass m0 of the particle or object is at rest relative to the 3-
observer in the proper Euclidean 3-space Σ′ and consequently
its one-dimensional equivalent rest mass E′/c2 is at rest in the
proper time dimension ct′ relative to the 3-observer in Σ′. On
the other hand, Fig. 9b pertains to a situation where the three-
dimensional rest mass m0 of the particle or object is in motion
at a velocity~v relative to the 3-observer in Σ′, thereby becom-
ing the special-relativistic mass, m = γm0 in Σ′, relative to
the 3-observer in Σ′ and consequently the one-dimensional
equivalent rest mass E′/c2 of the particle or object is in mo-
tion at speed v = |~v | in the proper time dimension ct′ rel-
ative to the 3-observer in Σ′, thereby becoming the special-
relativistic equivalent mass E/c2 = γE′/c2 in ct′ relative to
the 3-observer in Σ′.

The one-dimensional equivalent rest mass E′/c2 of proper
(or classical) length c∆t′ = d0′ located at a point in the proper
time dimension ct′ with respect to 3-observers in the proper
Euclidean 3-space Σ′ in Fig. 9a, acquires the absolute speed
V0 = c of ct′. However, since the absolute speed V0 = c of
ct′ is not made manifest in the flow of ct′ with respect to 3-
observers in Σ′, it is not made manifest in translation of E′/c2

along ct′ with respect to the 3-observers in Σ′. Moreover the
equivalent rest mass E′/c2 possesses zero speed (v = 0) of
motion in ct′ relative to the 3-observer in Σ′, just as the rest
mass m0 possesses zero speed of motion in the Euclidean 3-
space Σ′ relative to the 3-observer in Σ′. Consequently m0 and
E′/c2 remain stationary at their symmetry-partner locations
in Σ′ and ct′ respectively relative to the 3-observer in Σ′ in
Fig. 9a.

Likewise the equivalent intrinsic rest mass φE′/φc2 of
proper intrinsic length φc∆φt′ = φd0′ located at a point in
the proper intrinsic time dimension φcφt′ with respect to 3-
observers in the proper Euclidean 3-space Σ′ in Fig. 9a, ac-
quires the absolute intrinsic speed φV0 = φc of φcφt′. How-
ever, since the absolute intrinsic speed φc of φcφt′ is not
made manifest in the intrinsic flow of φcφt′ with respect to
3-observers in Σ′, it is not made manifest in intrinsic transla-
tion of φE′/φc2 along φcφt′ with respect to the 3-observers in
Σ′. Moreover the equivalent intrinsic rest mass φE′/φc2 pos-
sesses zero intrinsic speed (φv = 0) of intrinsic translation in
φcφt′ relative to the 3-observer in Σ′, just as the intrinsic rest
mass φm0 possesses zero intrinsic speed of intrinsic transla-
tion in the proper intrinsic space φρ′ underlying Σ′ relative
to the 3-observer in Σ′. Consequently φm0 and φE′/φc2 re-
main stationary at their symmetry-partner locations in φρ′ and
φcφt′ respectively relative to the 3-observer in Σ′ in Fig. 9a.

In a situation where the rest mass m0 of the particle or
object is in motion at a velocity ~v in the proper Euclidean 3-
space Σ′ and the one-dimensional equivalent rest mass E′/c2
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Fig. 9: The three-dimensional mass of an object at a position in the Euclidean 3-space and its one-dimensional equivalent mass at the
symmetry-partner position in the time dimension, along with the underlying one-dimensional intrinsic mass of the object in intrinsic space
and its equivalent intrinsic mass in the intrinsic time dimension, in the situations where (a) the object is stationary relative to the observer
and (b) the object is in motion relative to the observer.

is in motion at speed v = |~v | in the proper time dimension ct′

relative to the 3-observer in Σ′ in Fig. 9b, on the other hand,
the special-relativistic equivalent mass E/c2 = γE′/c2, ac-
quires the absolute speed V0 = c of the proper time dimension
ct′, which is not made manifest in motion of γE′/c2 along ct′

and as well possesses speed v of translation along ct′ relative
to the 3-observer in Σ′.

During a given period of time, the relativistic equivalent
mass γE′/c2 has translated at constant speed v from an ini-
tial position P0

1 to another position P0
2 along the proper time

dimension ct′, while covering an interval P0
1P0

2 of ct′. Dur-
ing the same period of time, the special-relativistic mass m =

γm0, has translated at equal constant speed v = |~v | from an ini-
tial position P1 to another position P2 in the proper Euclidean
3-space Σ′, while covering a distance P1P2 in Σ′, where the
interval P0

1P0
2 covered along ct′ by γE′/c2 is equal to the dis-

tance P1P2 covered in Σ′ by γm0 and positions P1 and P2 in
Σ′ are symmetry-partner positions to positions P0

1 and P0
2 re-

spectively in ct′. Consequently γm0 and γE′/c2 are always
located at symmetry-partner positions in Σ′ and ct′ respec-
tively in the situation where they are in motion at any speed v
in their respective domains relative to the 3-observer in Σ′ in
Fig. 9b.

It shall be reiterated for emphasis that the equivalent mass
E′/c2 or γE′/c2 in our proper metric time dimension ct′ with
respect to 3-observers in our proper Euclidean 3-space Σ′, of a
particle, object or observer in Figs. 9a and 9b, is actually the
three-dimensional mass m0

0 or γm0
0 of the symmetry-partner

particle, object or observer in the proper Euclidean 3-space
Σ0′ of the positive time-universe with respect to 3-observers
in Σ0′. This is the origin of the the one-dimensional particle,
object or observer (or 1-particle, 1-object or 1-observer) in
the time dimension to every 3-dimensional particle, object or
observers (or 3-particle, 3-object or 3-observer) in 3-space in
our universe.

Just as the proper time dimension ct′(≡ x0′) is added to
the three dimensions x1′, x2′ and x3′ of the proper Euclidean

3-space Σ′ to have the four dimensions x0′, x1′, x2′ and x3′

of the flat four-dimensional proper metric spacetime, the one-
dimensional equivalent rest mass E′/c2 of a particle, object
or observer in the proper time dimension ct′ must be added to
the three-dimensional rest mass m0 of its symmetry-partner
particle, object or observer in the proper Euclidean 3-space
Σ′ to have a 4-dimensional particle, object or observer of rest
mass (m0, E′/c2) on the flat four-dimensional proper space-
time (Σ′, ct′) in our notation.

However it is more appropriate to refer to 4-dimensional
particles, objects and observers on flat 4-dimensional space-
time as (3+1)-dimensional particles, objects and observers,
because the one-dimensional particles, objects and observers
(or 1-particles, 1-objects and 1-observers) in the time dimen-
sion ct′ are themselves distinct particles, objects and obser-
vers, (which are geometrically contracted from three-dimen-
sional particles, objects and observers in the Euclidean 3-
space Σ0′ of the positive time-universe), which are separated
in the time dimension ct′ from their symmetry-partner three-
dimensional continuum particles, objects and observers (or
3-particles, 3-objects and 3-observers) in the continuum Eu-
clidean 3-space Σ′.

The 1-particle, 1-object or 1-observer in the time dimen-
sion can be thought of as weakly bonded to the 3-particle, 3-
object or 3-observer in the Euclidean 3-space to form a (3+1)-
dimensional particle, object or observer in spacetime and a
(3+1)-dimensional particle, object or observer can be decom-
posed into its component 1-particle, 1-object or 1-observer
in the time dimension and 3-particle, 3-object or 3-observer
in the Euclidean 3-space. On the other hand, what should
be referred to as a continuum 4-dimensional particle, object
or observer (or 4-particle, 4-object or 4-observer) on four-
dimensional spacetime continuum should be non-decompo-
sable into its component dimensions, just as a continuum 3-
dimensional particle, object or observer in the Euclidean 3-
space continuum cannot be decomposed into its component
dimensions.
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There are no continuum non-decomposable four-dimen-
sional particles, objects and observers on four-dimensional
spacetime in the context of the present theory. Rather there
are (3+1)-dimensional particles, objects and observers that
can be decomposed into one-dimensional particles, objects
and observers in the time dimension and three-dimensional
particles, objects and observers in the Euclidean 3-space. Rel-
ativistic physics must be formulated partially with respect to
1-observers in the time dimension as distinct from relativis-
tic physics formulated partially with respect to 3-observers in
the Euclidean 3-space. The partial physics formulated with
respect to 1-observer in the time dimension and 3-observer
in the Euclidean 3-space must then be composed into the full
relativistic physics on four-dimensional spacetime.

It is also important to note that it is the partial physics
formulated with respect to 1-observers in the time dimen-
sion, which, of course, contains component of physics pro-
jected from the Euclidean 3-space in relativistic physics, is
what the 1-observers in the time dimension could observe.
It is likewise the partial physics formulated with respect to 3-
observers in the Euclidean 3-space, which, of course, contains
component of physics projected from the time dimension in
relativistic physics, that the 3-observers in the Euclidean 3-
space could observe.

The foregoing paragraph has been well illustrated with
the derivation of the intrinsic Lorentz transformation of sys-
tem (13) of [1] as combination of partial intrinsic Lorentz
transformation (11) derived from Fig. 8a with respect to the
3-observer (Peter) in the Euclidean 3-space Σ̃ and partial in-
trinsic Lorentz transformation (12) derived from Fig. 8b with
respect to the 1-observer (P̃eter) in the time dimension ct̃ in
that paper. The Lorentz transformation of system (28) of [1],
as the outward manifestation on flat four-dimensional space-
time of the intrinsic Lorentz transformation (11) in that paper,
has likewise been composed from partial Lorentz transforma-
tion with respect to the 3-observer in Σ̃ and partial Lorentz
transformation with respect to the 1-observer in the time di-
mension ct̃.

Let us collect the partial Lorentz transformations derived
with respect to the 1-observer in ct̃ in the LT and its inverse
of systems (28) and (29) of [1] to have as follows

ct̃ ′ = ct̃ secψ − x̃ tanψ;
x̃ = x̃′ secψ + ct̃ tanψ; ỹ = ỹ′; z̃ = z̃ ′;

(w.r.t. 1 − observer in ct̃ )

 . (25)

These coordinate transformations simplify as follows from
the point of view of what can be measured with laboratory
rod and clock discussed in detail in sub-section 4.5 of [1]:

t̃ = t̃ ′ cosψ; x̃ = x̃′ secψ; ỹ = ỹ′; z̃ = z̃ ′ (26)

w.r.t. 1 − observer in ct̃.
System (26) derived with respect to the 1-observer in ct̃,

corresponds to system (42) of [1], derived with respect to 3-
observer in Σ̃ in that paper, which shall be re-presented here

as follows

t̃ = t̃ ′ secψ; x̃ = x̃′ cosψ; ỹ = ỹ′; z̃ = z̃ ′ (27)

w.r.t. 3 − observer in Σ̃.
We find from systems (26) and (27) that while 3-observers

in the Euclidean 3-space observe length contraction and time
dilation of relativistic events, their symmetry-partner 1-obser-
vers in the time dimension observe length dilation and time
contraction of relativistic events.

It is clear from all the foregoing that a 3-observer in the
Euclidean 3-space and his symmetry-partner 1-observer in
the time dimension are distinct observers who can be com-
posed (or “weakly bonded”) into a (3+1)-dimensional ob-
server that can be decomposed back into its component 3-
observer and 1-observer for the purpose of formulating rel-
ativistic physics, which is composed from partial relativistic
physics formulated separately with respect to 3-observers in
the Euclidean 3-space and 1-observers in the time dimension.

Every parameter in the Euclidean 3-space has its counter-
part (or symmetry-partner) in the time dimension. We have
seen the case of rest mass m0 in the proper Euclidean 3-space
Σ′ and its symmetry-partner one-dimensional equivalent rest
mass E′/c2 in the proper time dimension ct′, as illustrated in
Figs. 9a and 9b. A classical three-vector quantity ~q ′ in the
proper Euclidean 3-space Σ′ has its symmetry-partner clas-
sical scalar quantity q0′ in the proper time dimension ct′.
The composition of the two yields what is usually referred
to as four-vector quantity denoted by q′λ = (q0′, ~q ′) or q′λ =

(q0′, q1′, q2′, q3′). We now know that the scalar components
q0′ in the time dimension ct′ of four-vector quantities in the
positive (or our) universe are themselves three-vector quan-
tities ~q 0′ in the Euclidean 3-space Σ0′ of the positive time-
universe with respect to 3-observers in Σ0′. The three-vector
quantities ~q 0′ in Σ0′, (which are identical symmetry-partners
to the three-vector quantities ~q ′ in our Euclidean 3-space Σ′),
become contracted to one-dimensional scalar quantities q0′ =

|~q 0′| in the time dimension ct′ relative to 3-observers in Σ′,
even as the proper Euclidean 3-space Σ0′ containing ~q 0′ be-
comes contracted to the proper time dimension ct′ relative to
3-observers in Σ′.

4 Final justification for the new spacetime/intrinsic spa-
cetime diagrams for Lorentz transformation/intrinsic
Lorentz transformation in the four-world picture

New geometrical representations of Lorentz transformation
and intrinsic Lorentz transformation (LT/φLT) and their in-
verses were derived and presented as Figs. 8a and 8b and
Figs. 9a and 9b within the two-world picture isolated in [1].
However at least two outstanding issues about those diagrams
remain to be resolved in order to finally justify them. The first
issue is the unexplained origin of Fig. 8b that must necessarily
be drawn to complement Fig. 8a of [1] in deriving φLT/LT.
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The second issue is the unspecified reason why anticlock-
wise relative rotations of intrinsic affine spacetime coordi-
nates are positive rotations (involving positive intrinsic angles
φψ) with respect to 3-observers in the Euclidean 3-spaces Σ′

and −Σ′∗ in Fig. 8a of [1], while, at the same time, clockwise
relative rotations of intrinsic affine spacetime coordinates are
positive rotations (involving positive intrinsic angles φψ) with
respect to 1-observers in the time dimensions ct′ and −ct′∗ in
Fig. 8b of [1]. These two issues shall be resolved within the
four-world picture encompassed by Figs. 8a and 8b of this
paper in this section.

Let us as done in deriving Figs. 8a and 8b and their in-
verses Figs. 9a and 9b of [1] towards the derivation of intrin-
sic Lorentz transformation/Lorentz transformation (φLT/LT)
and their inverses in the positive and negative universes in [1],
prescribe particle’s (or primed) frame and observer’s (or un-
primed) frame in terms of extended affine spacetime coordi-
nates in the positive (or our) universe as (x̃′, ỹ′, z̃ ′, ct̃ ′) and
(x̃, ỹ, z̃, ct̃ ) respectively. They are underlied by intrinsic par-
ticle’s frame and intrinsic observer’s frame in terms of ex-
tended intrinsic affine coordinates (φx̃′, φcφt̃ ′) and (φx̃, φcφt̃ )
respectively.

The prescribed perfect symmetry of state between the
positive and negative universes in [1] implies that there are
identical symmetry-partner particle’s frame and observer’s
frame (−x̃ ′∗, −ỹ′∗, −z̃ ′∗, −ct̃ ′∗) and (−x̃∗, −ỹ∗, −z̃∗, −ct̃ ∗)
respectively, as well as their underlying identical symmetry-
partner intrinsic particle’s frame and symmetry-partner intrin-
sic observer’s frame (−φx̃ ′∗,−φcφt̃ ′∗) and (−φx̃∗,−φcφt̃ ∗) re-
spectively in the negative universe.

Let us consider the motion at a constant speed v of the rest
mass m0 of the particle along the x̃′−axis of its frame and the
underlying intrinsic motion at constant intrinsic speed φv of
the intrinsic rest mass φm0 of the particle along the intrinsic
space coordinate φx̃′ of its frame relative to a 3-observer in
the positive universe. Again the prescribed perfect symmetry
of state between the positive and negative universes implies
that the rest mass −m∗0 of the symmetry-partner particle is
in simultaneous motion at equal constant speed v along the
−x̃ ′∗−axis of its frame of reference and its intrinsic rest mass
−φm∗0 is in simultaneous intrinsic motion at equal intrinsic
speed φv along the intrinsic space coordinate −φx̃′∗−axis of
its frame relative to the symmetry-partner 3-observer in the
negative universe.

As developed in sub-section 4.4 of [1], the simultaneous
identical motions of the symmetry-partner particles’ frames
relative to the symmetry-partner observers’ frames in the pos-
itive and negative universes, described in the foregoing para-
graph, give rise to Fig. 8a of [1] with respect to 3-observers
in the Euclidean 3-spaces Σ′ and −Σ′∗, which shall be repro-
duced here as Fig. 10a.

The diagram of Fig. 10a involving relative rotations of ex-
tended intrinsic affine spacetime coordinates, has been drawn
upon the flat four-dimensional proper metric spacetime of

classical mechanics (CM) and its underlying flat two-dimen-
sional proper intrinsic metric spacetime of intrinsic classical
mechanics (φCM) of the positive (or our) universe and the
negative universe contained in Fig. 8a of this paper. The pre-
scribed symmetry of state among the four universes encom-
passed by Figs. 8a and 8b of this paper, implies that identical
symmetry-partner particles undergo identical motions simul-
taneously relative to identical symmetry-partner observers (or
frames of reference) in the four universes. It follows from
this that Fig. 10b drawn upon the flat four-dimensional proper
metric spacetime of CM and its underlying flat two-dimen-
sional proper intrinsic metric spacetime of φCM of the pos-
itive time-universe and the negative time-universe contained
in Fig. 8b of this paper, co-exists with Fig. 10a in nature.

Fig. 10b is valid with respect to 3-observers in the Eu-
clidean 3-spaces Σ0′ of the positive time-universe and −Σ0′∗

of the negative time-universe as indicated. It must be noted
that the anti-clockwise rotations of primed intrinsic coordi-
nates φx̃′ and φcφt̃ ′ relative to the unprimed intrinsic coor-
dinates φx̃ and φcφt̃ respectively by positive intrinsic angle
φψ with respect to 3-observers in the Euclidean 3-space Σ′

and −Σ′∗ in Fig. 10a, correspond to clockwise rotations of the
primed intrinsic coordinates φx̃0′ and φcφt̃ 0′ relative to the
unprimed intrinsic coordinates φx̃ 0 and φcφt̃ 0 respectively by
positive intrinsic angle φψ with respect to 3-observers in Σ0′

and −Σ0′∗ in Fig. 10b.
Fig. 10b co-exists with Fig. 10a in nature and must com-

plement Fig. 10a towards deriving intrinsic Lorentz transfor-
mation/Lorentz transformation (φLT/LT) graphically in the
positive (or our) universe and the negative universe by physi-
cists in our universe and the negative universe. However Fig.
10b in its present form cannot serve a complementary role
to Fig. 10a, because it contains the spacetime and intrinsic
spacetime coordinates of the positive time-universe and the
negative time-universe, which are elusive to observers in our
(or positive) universe and the negative universe, or which can-
not appear in physics in the positive and negative universes.

In order for Fig. 10b to be able to serve a complementary
role to Fig. 10a towards deriving the φLT/LT in the positive
and negative universes, it must be appropriately modified. As
found earlier in this paper, the proper Euclidean 3-spaces Σ0′

and −Σ0′∗ of the positive and negative time-universes with
respect to 3-observers in them, are proper time dimensions
ct′ and −ct′∗ respectively with respect to 3-observers in the
proper Euclidean 3-spaces Σ′ and −Σ′∗ of our universe and
the negative universe and the proper time dimensions ct0′ and
−ct0′∗ of the positive and negative time-universes with respect
to 3-observers in the proper Euclidean 3-spaces Σ0′ and −Σ0′∗

of the positive and negative time-universes, are the proper Eu-
clidean 3-spaces Σ′ and −Σ′∗ of our universe and the negative
universes respectively with respect to 3-observers in Σ′ and
−Σ′∗.

As follows from the foregoing paragraph, Fig. 10b will
contain the spacetime and intrinsic spacetime coordinates of
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Fig. 10: a) Relative rotations of intrinsic affine spacetime coordinates of a pair of frames in the positive (or our) universe and of the
symmetry-partner pair of frames in the negative universe, which are valid relative to symmetry-partner 3-observers in the Euclidean 3-
spaces in the positive and negative universes. b) Relative rotations of intrinsic affine spacetime coordinates of a pair of frames in the
positive time-universe and of the symmetry-partner pair of frames in the negative time-universe, which are valid relative to symmetry-
partner 3-observers in the Euclidean 3-spaces in the positive and negative time-universes.

our (or positive) universe and the negative universe solely by
performing the following transformations of spacetime and
intrinsic spacetime coordinates on it with respect to 3-obser-
vers in the Euclidean 3-spaces Σ′ and −Σ′∗ of our universe
and the negative universe:

Σ̃0 → ct̃; ct̃ 0 → Σ̃; −Σ̃0∗ → −ct̃ ∗;
−ct̃ 0∗ → −Σ̃∗.

φx̃0 → φcφt̃; φcφt̃ 0 → φx̃;
−φx̃0∗ → −φcφt̃ ∗;
−φcφt̃ 0∗ → −φx̃∗.

φx̃0′ → φcφt̃ ′; φcφt̃ 0′ → φx̃′;
−φx̃0′∗ → −φcφt̃ ′∗;
−φcφt̃ 0′∗ → −φx̃ ′∗.



(28)

By implementing the coordinate/intrinsic coordinate transfor-
mations of systems (28) on Fig. 10b we have Fig. 11a.

Fig. 11a is valid with respect to 1-observers in the proper
time dimensions ct′ and −ct′∗ of the positive and negative
universes as indicated, where these 1-observers are the 3-
observers in the Euclidean 3-spaces Σ0′ and −Σ0′∗ in Fig. 10b.
Since Fig. 11a contains the spacetime/intrinsic spacetime co-
ordinates of the positive (or our) universe and the negative
universe solely, it can serve as a complementary diagram to
Fig. 10a towards the deriving φLT/LT in the positive (or our)
universe and the negative universe. Indeed Fig. 10a and Fig.
11a are the same as Figs. 8a and 8b of [1], with which the
φLT/LT were derived in the positive (or our) universe and the
negative universe in that paper, except for intrinsic spacetime
projections in Figs. 8a and 8b of [1], which are not shown in
Figs. 10a and Fig. 11a here.

On the other hand, Fig. 10a will contain the spacetime/in-
trinsic spacetime coordinates of the positive time-universe

and the negative time-universe solely, as shown in Fig. 11b,
by performing the inverses of the transformations of space-
time and intrinsic spacetime coordinates of system (28), (that
is, by reversing the directions of the arrows in system (28)) on
Fig. 10a. Just as Fig. 11a must complement Fig. 10a for the
purpose of deriving the φLT/LT in the positive (or our) uni-
verse and the negative universe, as presented in sub-section
4.4 of [1], Fig. 11b must complement Fig. 10b for the pur-
pose of deriving the φLT/LT in the positive time-universe and
the negative time-universe.

The clockwise sense of relative rotations of intrinsic affine
spacetime coordinates by positive intrinsic angles φψ with
respect to 1-observers in the time dimension ct̃ and −ct̃ ∗ in
Fig. 11a follows from the validity of the clockwise sense of
relative rotations of intrinsic affine spacetime coordinates by
positive intrinsic angle φψ with respect to 3-observers in the
Euclidean 3-spaces Σ0′ and −Σ0′∗ in Fig. 10b. The 1-obser-
vers in ct̃ and −ct̃ ∗ in Fig. 11a are what the 3-observers in Σ̃0

and −Σ̃0∗ in Fig. 10b transform into, as noted above.
Thus the second outstanding issue about the diagrams of

Figs. 8a and 8b of [1], mentioned at the beginning of this sec-
tion namely, the unexplained reason why anti-clockwise rel-
ative rotations of intrinsic affine spacetime coordinates with
respect to 3-observers in the Euclidean 3-spaces Σ′ and −Σ′∗

are positive rotations involving positive intrinsic angles φψ in
Fig. 8a of [1], while, at the same time, clockwise relative ro-
tations of intrinsic affine spacetime coordinates with respect
to 1-observers in the time dimensions ct′ and −ct′∗ are posi-
tive rotations involving positive intrinsic angles φψ in Fig. 8b
of [1], has now been resolved.

Since Fig. 8b of [1] or Fig. 11a of this paper has been
shown to originate from Fig. 10b of this paper, which is valid
with respect to 3-observers in the Euclidean 3-spaces Σ0′ and
−Σ0′∗ of the positive and negative time-universes, the origin
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Fig. 11: a) Complementary diagram to Fig. 10a obtained by transforming the spacetime/intrinsic spacetime coordinates of the positive
time-universe and the negative time-universe in Fig. 10b into the spacetime/intrinsic spacetime coordinates of the positive (or our) universe
and the negative universe; is valid with respect to 1-observers in the time dimensions of our universe and the negative universe. b)
Complementary diagram to Fig. 10b obtained by transforming the spacetime/intrinsic spacetime coordinates of the positive (or our) universe
and the negative universe in Fig. 10a into the spacetime/intrinsic spacetime coordinates of the positive time-universe and the negative time-
universe; is valid with respect to 1-observers in the time dimensions of the positive time-universe and the negative time-universe.

from the positive time-universe and negative time-universe of
Fig. 8b of [1] (or Fig. 11a of this paper), which must neces-
sarily be drawn to complement Fig. 8a of [1] (or Fig. 10a of
this paper) in deriving the φLT/LT in our (or positive) uni-
verse and the negative universe, has been shown. Thus the
first outstanding issue about Figs. 8a and 8b of [1], which
was unresolved in [1], mentioned at the beginning of this sec-
tion, namely the unexplained origin of Fig. 8b that must al-
ways be drawn to complement Fig. 8a in [1] in deriving the
φLT/LT, has now been resolved. The four-world background
of Figs. 8a and its complementary diagram of Fig. 8b in [1]
(or Fig. 10a and Fig. 11a of this paper), has thus been demon-
strated.

The new geometrical representation of the intrinsic
Lorentz transformation/Lorentz transformation (φLT/LT) of
Figs. 8a and 8b in [1] (or Fig. 10a and Fig. 11a of this paper),
which was said to rest on a two-world background in [1] and
[2], because those diagrams contain the spacetime/intrinsic
spacetime coordinates of the positive (or our) universe and
the negative universe solely and the origin of Fig. 8b in [1]
(or Fig. 11a of this paper) from the diagram of Fig. 10b of
this paper in the positive time-universe and the negative time-
universe was unknown in [1]. The φLT/LT and consequently
the intrinsic special theory of relativity/special theory of rel-
ativity (φSR/SR) shall be said to rest on a four-world back-
ground henceforth.

5 Invariance of the flat four-dimensional proper (or cla-
ssical) metric spacetime in the context of special rela-
tivity

The flat four-dimensional proper physical (or metric) space-
time, which is composed of the proper Euclidean 3-space

Σ′ and the proper time dimension ct′ in the first quadrant
in Fig. 8a of this paper, is the flat four-dimensional proper
metric spacetime of classical mechanics (including classical
gravitation), of the positive (or our) universe, usually denoted
by (x0′, x1′, x2′, x3′), where the dimension x0′ is along the
one-dimensional proper space ρ0′ in Fig. 6a, which trans-
forms into the proper time dimension ct′ in Fig. 8a; hence
x0′ = ct′ and x1′, x2′ and x3′ are the dimensions of the proper
Euclidean 3-space Σ′. The notation (Σ′, ct′) for the flat four-
dimensional proper physical (or metric) spacetime adopted
in [1] and [2], (although the prime label on Σ′ and ct′ did not
appear in those papers), is being adhered to in this paper for
convenience.

When the special theory of relativity operates on the flat
four-dimensional proper metric spacetime (x0′, x1′, x2′, x3′);
x0′ = ct′ (or (Σ′, ct′) in our notation), it is the extended intrin-
sic affine spacetime coordinates φx̃′ and φcφt̃ ′ of the primed
(or particle’s) frame that are rotated relative to their projective
extended affine intrinsic spacetime coordinates φx̃ and φcφt̃
of the unprimed (or observer’s) frame. It is consequently the
primed intrinsic affine coordinates φx̃′ and φcφt̃ ′ that trans-
form into the unprimed intrinsic affine coordinates φx̃ and
φcφt̃ in intrinsic Lorentz transformation (φLT) in the context
of intrinsic special theory of relativity (φSR).

It is the extended affine spacetime coordinates ct̃ ′, x̃′, ỹ′

and z̃ ′ of the primed frame on the flat four-dimensional proper
physical (or metric) spacetime (x0′, x1′, x2′, x3′) (or (Σ′, ct′)
in our notation) that transform into the extended affine space-
time coordinates ct̃, x̃, ỹ and z̃ of the unprimed frame, also on
the flat four-dimensional proper physical (or metric) space-
time (x0′, x1′, x2′, x3′) (or (Σ′, ct′) in our notation) in Lorentz
transformation (LT) in the context of the special theory of
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relativity (SR).
The special theory of relativity, as an isolated phenomen-

on, cannot transform the extended flat proper metric space-
time (x0′, x1′, x2′, x3′) (or (Σ′, ct′) in our notation) on which
it operates, to an extended flat relativistic metric spacetime
(x0, x1, x2, x3) (or (Σ, ct) in our notation), because SR in-
volves the transformation of extended affine spacetime coor-
dinates with no physical (or metric) quality. Or because the
spacetime geometry associated with SR is affine spacetime
geometry. A re-visit to the discussion of affine and metric
spacetimes in sub-section 4.4 of [1] may be useful here. The
primed coordinates x̃′, ỹ′, z̃ ′ and ct̃ ′ of the particle’s frame
and the unprimed coordinates x̃, ỹ, z̃ and ct̃ of the observer’s
frame in the context of SR are affine coordinates with no met-
ric quality, both of which exist on the flat proper (or clas-
sical) metric spacetime (x0′, x1′, x2′, x3′) (or (Σ′, ct′) in our
notation).

It is gravity (a metric phenomenon) that can transform
extended flat four-dimensional proper (or classical) metric
spacetime (with prime label) (x0′, x1′, x2′, x3′) (or (Σ′, ct′)
in our notation) into extended four-dimensional “relativistic”
spacetime (x0, x1, x2, x3) (or (Σ, ct)), (without prime label),
where (x0, x1, x2, x3) (or (Σ, ct)) is known to be curved in all
finite neighborhood of a gravitation field source in the con-
text of the general theory of relativity (GR). The rest mass
m0 of a test particle on the flat proper (or classical) metric
spacetime (x0′, x1′, x2′, x3′) (or (Σ′, ct′)) is also known to
transform into the inertial mass m on the curved “relativis-
tic” physical (or metric) spacetime (x0, x1, x2, x3) (or (Σ, ct))
in the context of GR, where m is known to be trivially related
to m0 as m = m0, by virtue of the principle of equivalence of
Albert Einstein [5].

However our interest in [1] and [2] and in the two parts of
this paper is not in the metric phenomenon of gravity, but in
the special theory of relativity (with affine spacetime geome-
try), as an isolated subject from gravity. We have inherently
assumed the absence of gravity by restricting to the extended
flat four-dimensional proper (or classical) metric spacetime
(x0′, x1′, x2′, x3′) (or (Σ′, ct′) in our notation), as the met-
ric spacetime that supports SR in the absence of relativistic
gravity in [1] and [2] and up to this point in this paper. The
transformation of the flat proper (or classical) metric space-
time (x0′, x1′, x2′, x3′) (or (Σ′, ct′)) into “relativistic” met-
ric spacetime (x0, x1, x2, x3) (or (Σ, ct)) in the context of a
theory of gravity, shall be investigated with further develop-
ment within the present four-world picture, in which four-
dimensional spacetime is underlined by two-dimensional in-
trinsic spacetime in each of the four symmetrical worlds (or
universes).

This first part of this paper shall be ended at this point,
while justifications for the co-existence in nature of the four
symmetrical worlds (or universes) in Figs. 8a and 8b of this
paper, as the actual background of the special theory of rela-
tivity in each universe, shall be concluded in the second part.
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