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We analyze the experiment realized in 2003-2004 by S. Afshar et al. [1] in order to refute
the principle of complementarity. We discuss the general meaning of this principle and
show that contrarily to the claim of the authors Bohr’s complementarity is not in danger
in this experiment.

1 Introduction

In an interesting series of articles published few years ago
Afshar and coworkers [1,2] reported an optical experiment in
which they claimed to refute the well known N. Bohr prin-
ciple of complementarity [3, 4]. Obviously this result, if jus-
tified, would constitute a serious attack against the orthodox
interpretation of quantum mechanics (known as the Copen-
hagen interpretation). This work stirred much debate in dif-
ferent journals (see for examples references [5–12]).
We think however that there are still some important misun-
derstandings concerning the interpretation of this experiment.
In a preprint written originally in 2004 [5] (and following
some early discussions with Afshar) we claimed already that
the interpretation by Afshar et al. can be easily stated if we
stay as close as possible from the texts written by Bohr. The
aim of the present article (which was initially written in 2005
to precise a bit the thought developed in [5]) is to comment
the interpretation discussed in [1]. We will in the following
analyze the meaning of Bohr principle and show that far from
disproving its content the experiment [1] is actually a com-
plete confirmation of its general validity.
The difficulties associated with the understanding of this prin-
ciple are not new and actually complementarity created trou-
bles even in Einstein mind [3] so that we are here in good
company. To summarize a bit emphatically Bohr’s comple-
mentarity we here remind that this principle states that if one
of a pair of non commuting observables of a quantum object
is known for sure, then information about the second (com-
plementary) is lost [3, 4, 15, 16]. This can be equivalently
expressed as a kind of duality between different descriptions
of the quantum system associated with different experimen-
tal arrangements which mutually exclude each other (read in
particular [3,4]). Later in the discussion we will try to precise
this definition but for the moment it is enough to illustrate the
concepts by examples
Consider for instance the well known Young double-pinholes
interference experiment made with photons. The discrete na-
ture of light precludes the simultaneous observation of a same
photon in the aperture plane and in the interference pattern:
the photon cannot be absorbed twice. This is already a trivial
manifestation of the principle of Bohr. Here it implies that the
two statistical patterns associated with the wave in the aper-
ture plane and its Fourier (i. e., momentum) transform require

necessarily different photons for their recording. It is in that
sense that each experiment excludes and completes recipro-
cally the other. In the case considered before the photon is
absorbed during the first detection (this clearly precludes any
other detection). However even a non-destructive solution for
detection implying entanglement with other quantum systems
has a radical effect of the same nature: the complementarity
principle is still valid. For example, during their debate Bohr
and Einstein [3] discussed an ideal which-way experiment in
which the recoil of the slits is correlated to the motion of the
photon. Momentum conservation added to arguments based
on the uncertainty relations are sufficient to explain how such
entanglement photon-slits can erase fringes [15–19]. It is
also important for the present discussion to remind that the
principle of complementarity has a perfidious consequence
on the experimental meaning of trajectory and path followed
by a particle. Indeed the unavoidable interactions existing
between photons and detectors imply that a trajectory exist-
ing independently of any measurement process cannot be un-
ambiguously defined. This sounds even like a tragedy when
we consider once again the two-holes experiment. Indeed
for Bohr this kind of experiments shows definitely the es-
sential element of ambiguity which is involved in ascribing
conventional physical attributes to quantum systems. Intu-
itively (i. e., from the point of view of classical particle dy-
namic) one would expect that a photon detected in the focal
plane of the lens must have crossed only one of the hole 1
or 2 before to reach its final destination. However, if this is
true, one can not intuitively understand how the presence of
the second hole (through which the photon evidently did not
go) forces the photon to participate to an interference pat-
tern (which obviously needs an influence coming from both
holes). Explanations to solve this paradox have been pro-
posed by de Broglie, Bohm, and others using concepts such
as empty waves or quantum potentials [20, 21]. However
all these explanations are in agreement with Bohr principle
(since they fully reproduce quantum predictions) and can not
be experimentally distinguished. Bohr and Heisenberg pro-
posed for all needed purposes a much more pragmatic and
simpler answer: don’t bother, the complementarity principle
precludes the simultaneous observation of a photon trajectory
and of an interference pattern. For Bohr [3]: This point is of
great logical consequence, since it is only the circumstance
that we are presented with a choice of either tracing the path
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Fig. 1: The experiment described in [1]. Photons coming from pin-
holes 1 and 2 interfere in the back-focal plane of a lens (Fourier
plane) whereas they lead to two isolated narrow spots in the image
plane (the image plane is such that its distance p′ to the lens is re-
lated to the distance p between the lens and the apertures screen by
1/p + 1/p′ = 1/ f , where f is the focal length). The wire grid in the
back focal plane, distant of f from the lens, is passing through the
minima of the interference pattern. The subsequent propagation of
the wave is consequently not disturbed by the grid.

of a particle or observing interference effects, which allows
us to escape from the paradoxical necessity of concluding
that the behaviour of an electron or a photon should depend
on the presence of a slit in the diaphragm through which it
could be proved not to pass. From such an analysis it seems
definitively that Nature resists to deeper experimental inves-
tigation of its ontological level. As summarized elegantly by
Brian Greene [22]: Like a Spalding Gray soliloquy, an exper-
imenter’s bare-bones measurement are the whole show. There
isn’t anything else. According to Bohr, there is no backstage.
In spite of its interest it is however not the aim of the present
article to debate on the full implications of such strong philo-
sophical position.

2 Complementarity versus the experiments

2.1 A short description of the Afshar et al. experiment

The experiment reported in [1] (see Fig. 1) is actually based
on a modification of a gedanken experiment proposed origi-
nally by Wheeler [23]. In the first part of their work, Afshar et
al. used an optical lens to image the two pinholes considered
in the Young interference experiment above mentioned. De-
pending of the observation plane in this microscope we can
then obtain different complementary information.

If we detect the photons in the focal plane of the lens (or
equivalently just in front of the lens [24]) we will observe, i.e,
after a statistical accumulation of photon detection events, the
interference fringes. However, if we record the particles in the
image plane of the lens we will observe (with a sufficiently
high numerical aperture) two sharp spots 1’ and 2’ images of

the pinholes 1 and 2. Like the initial Young two-holes exper-
iment this example illustrates again very well the principle of
Bohr. One has indeed complete freedom for measuring the
photon distribution in the image plane instead of detecting
the fringes in the back focal plane. However, the two kinds
of measurements are mutually exclusive: a single photon can
participate only to one of these statistical patterns.

In the second and final part of the experiment, Afshar et
al. included a grid of thin absorbing wires located in the in-
terference fringes plane. Importantly, in the experiment the
wires must be located at the minimum of the interference pat-
tern in order to reduce the interaction with light. In the fol-
lowing we will consider a perfect interference profile (with
ideal unit visibility V = (Imax − Imin)/(Imax + Imin) = 1) to
simplify the discussion. If additionally the geometrical cross
section of each wire tends ideally to zero then the interfer-
ence behavior will, at the limit, not be disturbed and the sub-
sequent wave propagation will be kept unchanged. This im-
plies that the photon distributions 1’ and 2’, located in the
image plane optically conjugated with the aperture plane, are
not modified by the presence, or the absence, of the infinitely
thin wire grid. Naturally, from practical considerations an in-
finitely thin dielectric wire is not interacting with light and
consequently produces the same (null) effect whatever its lo-
cation in the light path (minimum or maximum of the inter-
ference for example). In order to provide a sensible probe for
the interference pattern, necessary for the aim of the experi-
ment considered, we will suppose in the following idealized
wires which conserve a finite absorbtion efficiency and this
despite the absence of any geometrical transversal extension.
We will briefly discuss later what happens with spatially ex-
tended scattering wires with finite cross section, but this point
is not essential to understand the essential of the argumenta-
tion. With such wires, and if we close one aperture (which
implies that there is no interference fringes and thus that a fi-
nite field impinges on the wires) the scattering and absorbtion
strongly affect the detection behavior in the image plane. As
it is seen experimentally [1, 2] the scattering by the wire grid
in general produces a complicated diffraction pattern and not
only an isolated narrow peak in 1’ or 2’ as it would be without
the grid.

In such conditions, the absence of absorbtion by the wires
when the two apertures are open is a clear indication of the
existence of the interference fringes zeros, i.e., of a wave-like
character, and this even if the photon is absorbed in the im-
age plane in 1’ or 2’. Following Afshar et al., this should be
considered as a violation of complementarity since the same
photons have been used for recording both the ‘path’ and the
wave-like information. The essential questions are however
what we mean precisely here by path and wave-like informa-
tion and what are the connections of this with the definition
of complementarity. As we will see hereafter it is by finding a
clear answer to these questions that the paradox and the con-
tradictions with Bohr’s complementarity are going to vanish.
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2.2 The wave-particle duality mathematical relation

At that stage, it is important to point out that the principle of
complementarity is actually a direct consequence of the math-
ematical formalism of quantum mechanics and of its statisti-
cal interpretation [4]. It is in particular the reason why the
different attempts done by Einstein to refute complementar-
ity and the Heisenberg uncertainty relations always failed: the
misinterpretations resulted indeed from a non-cautious intro-
duction of classical physics in the fully consistent quantum
mechanic formalism [3]. For similar reasons here we show
that a problem since Afshar et al. actually mixed together,
i.e imprudently, argumentations coming from classical and
quantum physics. We will show that this mixing results into
an apparent refutation of the complementarity principle.

After this remark we now remind that a simple mathemat-
ical formulation of complementarity exists in the context of
two path interferometry [25–28]. For example in the Young
double-apertures experiment considered previously the field
amplitudes C1 and C2 associated with the two narrow aper-
tures, separated by the distance d, allow us to define the wave
function in the two-apertures plane by:

ψ(x) ∼ C1δ(x − d/2) + C2δ(x + d/2). (1)

From this formula one can easily introduce the “distinguisha-
bility”

K =
||C1|2 − |C2|2|
|C1|2 + |C2|2 . (2)

This quantity can be physically defined by recording the pho-
tons distribution in the aperture plane and constitutes an ob-
servable measure of the “path” distinguishability (see how-
ever section 3.3 ). The interpretation of K is actually clear,
and in particular if K = 0 each apertures play a symmetrical
role, whereas if K = 1 one of the two apertures is necessarily
closed. Naturally, like in the Afshar experiment, K can also
be measured by recording photons in the image plane of the
lens in 1’ and 2’. Equations (1) and (2) are still valid, with
the only differences that: i) we have now a diffraction spot
(like an Airy disk) instead of a Dirac distribution in equation
(1), and ii) that the spatial variables are now magnified by the
lens.

Instead of the spatial representation one can also consider
the Fourier transform corresponding to the far field interfer-
ence pattern recorded at large distance of the two-slits screen:

ψ(k) ∼ C1 · eikd/2 + C2 · e−ikd/2. (3)

Such a wave is associated with an oscillating intensity in the
k-space given by

I(k) ∼ 1 + V cos (kd + χ) (4)

where χ = arg (C1) − arg (C2) and V is the fringe visibility

V =
2|C1| · |C2|
|C1|2 + |C2|2 . (5)

This quantity is also a physical observable which can defined
by recording the photons in the far-field, or, like in the Afshar
et al. first experiment, by recording the photons fringes in
the back focal plane of the lens (the back focal plane is the
plane where the momentum distribution ~k is experimentally
and rigorously defined [16]). Like it is for K, the meaning
of V is also very clear: if V = 1 both apertures must play a
symmetrical role, whereas if V = 0 only one aperture is open.

A direct mathematical consequence of equations (2) and
(5) is the relation

V2 + K2 = 1, (6)

which expresses the duality [25, 26] between the two math-
ematical measures K and V associated with the two mutu-
ally exclusive (i.e., complementary) experiments in the di-
rect and Fourier space respectively. A particularly impor-
tant application of equation (6) concerns which-path exper-
iments. In such experiments, we wish to observe the inter-
ference pattern, and to find through each hole each photon
is going through. As we explained before, a photon can not
be observed twice, and this represents in general a fatal end
for such expectations. There is however an important excep-
tion in the particular case with only one aperture open (i.e.,
K = 1). Indeed, in such case it is not necessary to record
the photon in the aperture plane to know its path since if it is
detected (in the back focal plane) it necessarily means that it
went through the opened aperture. Of course, from equation
(6) we have in counterpart V = 0, which means that fringes
are not possible.
This dilemma, can not be solved by considering less invasive
methods, like those using entanglement between the photon
and an other quantum system or an internal degree of free-
dom (such as polarization or spins). To see that we consider
a wave function |Ψ〉 describing the entanglement between the
photon and these others quantum variables defining a which-
path detector. We write

|Ψ〉 =

∫
[C1δ(x − d/2)|x〉|γ1〉 + C2δ(x + d/2)|x〉|γ2〉]dx

=

∫
[C1 · eikd/2|k〉|γ1〉 + C2 · e−ikd/2|k〉|γ2〉]dp (7)

where |γ1〉 and |γ2〉 are the quantum state of the which-path
detector if the photon is going through the aperture 1 or 2.
Consider now the kind of information one can extract from
|Ψ〉. First, by averaging (tracing) over the detector degrees of
freedom we can define the total probability P(x) = Tr[ρ̂|x〉〈x|]
of detecting a photon in the aperture plane in x by

P(x) ∝ |C1|2〈γ1|γ1〉(δ(x − d/2))2

+|C2|2〈γ2|γ2〉(δ(x + d/2))2. (8)

with ρ̂ = |Ψ〉〈Ψ| is the total density matrix. By analogy with
equation (2) the total distinguishability is then defined by

K =
||C1|2〈γ1|γ1〉 − |C2|2〈γ2|γ2〉|
|C1|2〈γ1|γ1〉 + |C2|2〈γ2|γ2〉 . (9)
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Same as for equations (3-5) we can define the total probability
to detect a photon of (transverse) wave vector k by

P(k) = Tr[ρ̂|k〉〈k|] ∝ 1 + V cos (kx + φ), (10)

where the visibility V is written

V =
2|C1| · |C2| · |〈γ1|γ2〉|

|C1|2〈γ1|γ1〉 + |C2|2〈γ2|γ2〉 . (11)

By combining V and K we deduce immediately K2 + V2 =

η2 ≤ 1 with

η2 = 1 − 4|C1|2 · |C2|2 · (〈γ1|γ1〉〈γ2|γ2〉 − |〈γ1|γ2〉|2)
(|C1|2〈γ1|γ1〉 + |C2|2〈γ2|γ2〉)2 (12)

and where the inequality results from the Cauchy-Schwartz
relation 〈γ1|γ1〉〈γ2|γ2〉 − |〈γ1|γ2〉|2 ≥ 0.
However, we can remark that by tracing over the degrees of
freedom associated with the detector we did not consider a
which-path experiment but simply decoherence due to entan-
glement. In order to actually realize such a which-path ex-
periment we need to calculate the joint probability associated
with a recording of the photon in the state |x〉 (or |k〉) in co-
incidence with a measurement of the detector in the eigen-
state |λ〉 corresponding to one of its observable. These joint
probabilities read P(x, λ) = Tr[ρ̂|x〉〈x||λ〉〈λ|] and P(k, λ) =

Tr[ρ̂|k〉〈k||λ〉〈λ| with

P(x, λ) ∝ |C1|2|〈λ|γ1〉|2(δ(x − d/2))2

+|C2|2|〈λ|γ2〉|2(δ(x + d/2))2

P(k, λ) =∝ 1 + Vλ cos (kx + φλ). (13)

Indeed, the aim of such entanglement with a degree of free-
dom |λ〉 (produced for example by inserting polarization con-
verters like quarter or half wave-plates just after the aper-
tures [32]) is to generate a wave function

ψλ(x) ∼ C1,λδ(x − d/2) + C2,λδ(x + d/2) (14)

with either C1,λ or C2,λ (but not both) equal to zero. A subse-
quent projection on |λ〉will reveal the path information. How-
ever, from the duality relation given by equation (5) applied
to ψλ(x) it is now obvious that we did not escape from the pre-
vious conclusion. Indeed, while the photon was not destroyed
by the entanglement with the which-path detector, we unfor-
tunately only obtained path distinguishability (Kλ = 1) at the
expense of losing the interference behavior (Vλ = 0).
From all these experiments, it is clear that the discreteness of
photon, and more generally of every quantum object, is the
key element to understand complementarity. This was evi-
dent without entanglement, since the only way to observe a
particle is to destroy it. However, even the introduction of a
‘which-path’ quantum state |λ〉 does not change the rule of
the game, since at the end of journey we necessarily need to

project, that is to kill macroscopically, the quantum system.
This fundamental fact, was already pointed out many times
by Bohr in his writings when he considered the importance
of separating the macroscopic world of the observer from the
microscopic quantum system observed, and also when he in-
sisted on the irreversible act induced by the observer on the
quantum system during any measurement process [4].

Let now return to the interpretation of Afshar et al. ex-
periments. In the configuration with the lens and without the
grid, we have apparently a new aspect of the problem since
the fringes occur in a plane located before the imaging plane.
Contrarily to the which-path experiments above mentioned,
where the destructive measurements occurred in the interfer-
ence plane, we have a priori here the freedom to realize a
‘fringes-interaction free-experiment’ which aim is to observe
the fringes without detecting the particle in the back focal
plane whereas the destructive measurement will occur in the
image plane (i.e., in 1’ or 2’). The role of the grid is expected
to provide such information necessary for the interference re-
construction. Due to the absence of disturbance by the grid,
Afshar et al. logically deduce that the field equals zero at the
wires locations. If we infer the existence of an interference
pattern with visibility V we must have

V =
(Imax − Imin)
(Imax + Imin)

=
(Imax − 0)
(Imax + 0)

= 1, (15)

since Imin = 0. This means that we can obtain the value of the
visibility only from the two assumptions that (i) the form of
the profile should be a ‘cos’ function given by equation (4),
and that (ii) no photon have been absorbed by the wires. Fi-
nally in this experiment, we record the photons in the area 1’
(or 2’) and consequently we have at the same time the path in-
formation. Importantly, following Afshar et al. we here only
consider one image spot 1’ or 2’ (since each photon impinges
one only one of these two regions) and we deduce therefore
K = 1. Together with the interference visibility V = 1 this
implies

K2 + V2 = 2, (16)

in complete contradiction with the bound given by equation
(6).

In the previous analysis we only considered the infinitely
thin wires to simplify the discussion. Actually, this is how-
ever the only experimental configuration in which the Afshar
experiment is easily analyzable since it is only in such case
that the duality relation can be defined. Indeed, scattering
by the wire always results into complicated diffraction pat-
tern in the image plane and the simple mathematical deriva-
tion [25–28] leading to equations 2, 5, and 6 is not possible.
We will then continue to consider the idealized case of the in-
finitely thin wires in the rest of the paper since it is this ideal
limit that the authors of [1]wanted obviously to reach.
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3 The rebuttal: Inference and Complementarity

3.1 Duality again

There are several reasons why the analysis by Afshar et al.
actually fails. First, from a mathematical point of view it
is not consistent to write K2 + V2 = 2. Indeed, in all the
experiments previously discussed (excluding the Afshar ex-
periments) it was necessary to consider statistics on all the
recorded photons in order to observe either the interference or
the path information (in the case were entanglement was in-
volved only the photons tagged by |λ〉 have to be considered).
Same here, if one consider all the detected photons one will
deduce K = 0 and equation (6) will be respected. Actually,
this results directly from the experimental method considered
by the authors of [1]. Indeed, if somebody is accepting the ex-
istence of an interference pattern he or she needs to know the
complete distribution 1’ and 2’ recorded in the image plane.
This is necessary in order to deduce that the wire grid didn’t
caused any disturbances on the propagation. Indeed, the dis-
turbance could have no consequence in 1’ but yet have some
effects in 2’. Consequently, ignoring 2’ does not allow us to
deduce that the experiment with the grid is interaction-free.
For this reason, it is unjustified to write K = 1, that is to con-
sider only one half of the detected photon population, while
we actually need both pinhole images to deduce the value of
V (this is also in agreement with the obvious fact that an in-
terference pattern requires the two apertures 1 and 2 opened
for its existence).

There is an other equivalent way to see why the choice
K = 0 is the only one possible. Indeed, having measured in
the image plane the two distributions 1’ and 2’ with intensity
|C1|2 and |C2|2 we can, by applying the laws of optics, prop-
agate backward in time the two converging beams until the
interference plane (this was done by Afshar et al.). In this
plane equation (4) and (5), which are a direct consequence
of these above mentioned optical laws, are of course valid.
Since we have |C1|2 = |C2|2, we deduce (from equations (2)
and (5)) that K = 0 and V = 1 in full agreement with the
duality relation (6). It is important to remark that since the
phase of C1 and C2 are not know from the destructive mea-
surements in the image plane, we cannot extrapolate the value
of χ = arg (C1) − arg (C2). However, the presence of the grid
give us access to this missing information since it provides
the points where I(k) = 0 (for example if I(π/d) = 0 then
χ = 2π · N with N =0, 1, ...). We can thus define com-
pletely the variable V and χ without recording any photon in
the Fourier plane. It is clear, that this would be impossible
if the duality condition K2 + V2 = 1 was not true since this
relation is actually a direct consequence of the law of optics
used in our derivations as well as in the one by Afshar et al..

To summarize the present discussion, we showed that Af-
shar et al. reasoning is obscured by a misleading interpreta-
tion of the duality relation given by equation (6). We however
think that this problem is not so fundamental for the discus-

sion of the experiment. Actually, we can restate the complete
reasoning without making any reference to this illusory vio-
lation of equation (6). After doing this we think that the error
in the deductions by Afshar et al. should become very clear.
Let then restate the story:
A) First, we record individuals photons in the regions 1’ and
2’. We can then keep a track or a list of each detection event,
so that, for each photon, we can define its ‘path’ information.
However, this individual property of each photon is not en-
tering in conflict with the statistical behavior, which in the
limit of large number, give us the two narrow distribution in
1’ and 2’. That is, the value K = 0 is not in conflict with the
existence of a which-path information associated with each
photon. This situation differs strongly from usual which-path
experiments in which the path detection, or tagging, is done
before the interference plane. As we explained before in these
experiments the value K = 1 was a necessary consequence
of the preselection procedure done on the photon population.
This point also means that we have to be very prudent when
we use the duality relation in experimental situations differ-
ent from the ones for which a consensus has already been
obtained.
B) Second, we apply the laws of optics backward in time to
deduce the value of the visibility V . Inferring the validity of
such optical laws we can even reconstruct completely the in-
terference profile thanks to the presence of wire grid.
C) Finally, we can check that indeed K2+V2 = 1 in agreement
with the duality relation.

Having elucidated the role of the duality relation, the
question that we have still to answer is what are the impli-
cations of this experiment for complementarity. What has in-
deed been shown by Afshar et al. is that each photon detected
in the image plane is associated with a wave behavior since
none of them crossed the wires. Using the laws of optics
backward in time allow us to deduce the precise shape of in-
tensity profile in the back focal plane but this is a theoretical
inference and actually not a measurement. We will now show
that this is the weak point.

3.2 Classical versus quantum inferences

In classical physics, such an inference (i.e., concerning inter-
ference) is of no consequence since we can always, at least
in principle, imagine a test particle or detector to check the
validity of our assumptions concerning the system. However,
in quantum mechanics we are dealing with highly sensitive
systems and this modify the rules of the game.

In quantum mechanics it is common to say that the wave
function represents the catalog of all the potentiality accessi-
ble to the system. Due to the very nature of this theory there
are however some (complementary) pages which can not be
read at the same time without contradictions. In the Afshar
experiment, we do not have indeed the slightest experimental
proof that the observed photons did participate to the “cos”
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Fig. 2: Different possible intensity profiles in the Fourier plane.
Each profile f (k) obeys to the condition f (k) = 0 on the wires. (a) A
continuous periodic function. (b) The diffractive interference profile
predicted by quantum mechanics. (c) A discontinuous profile inten-
sity. Each profile is ‘apriori’ equiprobable for an observer which has
no knowledge in optics and quantum mechanics.

interference pattern given by equations (3) and (4). Further-
more, by detecting the photons in the image plane, we only
know from the experiment that the photons never crossed the
wires but this is not sufficient to rebuild objectively the com-
plete interference pattern.

We can go further in this direction by using information
theory. Indeed, from the point of view of the information
theory of Gibbs [33], Shannon [34], and Jaynes [35], every
interference patterns, such that I(k) = 0 on the wires, are
equiprobable (see Fig. 2). However, there are an infinity of
such profiles, so that our information is rather poor. More
precisely, let write ρ[ f (k)] the functional giving the density
of probability associated with the apriori likelihood of hav-
ing the interference profile f (k) located in an infinitely small
(functional) volume D[ f (k)]. We write Σ[ f (x)] the space of
all this interference profiles obeying to the condition f (k) = 0
on the wires. We have thus ρ[ f (k)] = 1/Σ (equiprobabil-
ity) for the function f contained in Σ, and ρ[ f (k)] = 0 for
the function outside Σ (that are functions which do not sat-
isfy the requirements f (k) = 0 on the wires). The Shannon
entropy [33–35] S [ f (x)] associated with this distribution is
given by

S [ f (x)] = −
∫

(Σ)
D[ f (k)]ρ[ f (k)] ln (ρ[ f (k)])

= ln (Σ[ f (k)])→ +∞, (17)

which expresses our absence of objective knowledge con-
cerning f (k). In this reasoning, we used the concept of prob-
ability taken in the Bayesian sense, that is in the sense of
decision-maker theory used for example by poker players.
For an observer which do not have any idea concerning quan-
tum mechanics and the laws of optics, this equiprobability is
the most reasonable guess if he wants only to consider the

photons he actually detected. Of course, by considering a dif-
ferent experiment, in which the photons are recorded in the
Fourier plane, the observer might realize what is actually the
interference pattern. However (and this is essential for under-
standing the apparent paradox discussed in reference 1) it will
be only possible by considering different recorded photons in
full agreement with the principle of complementarity.
Let now summarize a bit our analysis. We deduced that in
the experiment discussed in [1] the photons used to measure
objectively the interference pattern i.e. to calculate the vis-
ibility V = 1 are not the same than those used to measure
the distribution in the image plane and calculate the distin-
guishability K = 0. This is strictly the same situation than
in the original two-holes experiment already mentioned. It
is in that sense that the relationship (6) represents indeed a
particular formulation of complementarity [25–28]. Actually
(as we already commented before) the value V = 1 obtained
in [1] does not result from a measurement but from an extrap-
olation. Indeed, from their negative measurement Afshar et
al. recorded objectively Imin = 0. If we suppose that there
is a hidden sinusoidal interference pattern in the plane of the
wires we can indeed write

V = (Imax − Imin) / (Imax + Imin) = Imax/Imax = 1. (18)

However to prove experimentally that such sinusoidal inter-
ference pattern actually exists we must definitively record
photons in the rest of the wires plane. This is why the ex-
periment described in [1] does not constitutes a violation of
complementarity.
It is finally interesting to remark that similar analysis could be
easily done already in the Young two-holes experiment. In-
deed, suppose that we record the photon interference fringes
after the holes. We can thus measure V = 1. However,
if we suppose that the sinusoidal oscillation of the intensity
results from the linear superposition of waves coming from
holes 1 and 2 then from equation 5 we deduce |C1|2 + |C2|2 −
2|C1||C2| = 0 i. e., |C1| = |C2|. From equation 2 this implies
K = 0. Reasoning like Afshar et al. we could be tempted
to see once again a violation of complementarity since we
deduced the distinguishability without disturbing the fringes!
However, we think that our previous analysis sufficiently clar-
ified the problem so that paradoxes of that kind are now nat-
urally solved without supplementary comments.

3.3 The objectivity of trajectory in quantum mechanics

At the end of section 2.1 we shortly pointed that the concept
of trajectory is a key issue in the analysis of the experiment
reported in reference 1. This was also at the core of most
commentaries (e.g. references [6–14]) concerning the work
by Afshar et al.. As a corollary to the previous analysis we
will now make a brief comment concerning the concept of
path and trajectory in quantum mechanics since we think that
a lot of confusion surrounds this problem. This is also im-
portant because Afshar et al. claimed not only that they can
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Fig. 3: Illustration of the counterintuitive paths followed by photons
if we accept the ontological interpretation given by de Broglie and
Bohm. The photons coming from aperture 1 or 2 reach the ‘wrong’
detector 2’ or 1’.

circumvent complementarity but that additionally they deter-
mine the path chosen by the particle. Following here an in-
tuitive assumption they accepted that with the two pinholes
open a photon trajectory (if trajectory there is) connects nec-
essarily a pinhole to its optical image like it is in geometrical
optics. They called that intuition (probably in analogy with
what occurs in classical physics) a ‘consequence of momen-
tum conservation’. However, the meaning of momentum and
trajectory is not the same in quantum and classical mechanics.
Actually, as it was realized by several physicists the connec-
tion 1 to 1’ and 2 to 2’ is a strong hypothesis which depends
of our model of (hidden) reality and which can not in general
be experimentally tested (read for example [29, 36]).

Actually nothing in this experiment with two holes for-
bids a photon coming from one pinhole to go in the wrong de-
tector associated with the second pinhole. This is the case for
example in the hidden variable theory of de Broglie-Bohm
in which every photons coming from the aperture 1 (respec-
tively 2) is reaching the wrong image spot 2’(respectively
1’) [29, 36] as shown in figure 3. This is counter intuitive
but not in contradiction with experiments since we can not
objectively test such hidden variable model [36]. In partic-
ular closing one pinhole will define unambiguously the path
followed by the particle. However this is a different experi-
ment and the model shows that the trajectories are modified
(in general non locally) by the experimental context. The very
existence of a model like the one of de Broglie and Bohm
demonstrates clearly that in the (hidden) quantum reality a
trajectory could depend of the complete context of the exper-
iment. For this reason we must be very prudent and conser-
vative when we interpret an experiment: Looking the image
of a pinhole recorded in a statistical way by a cascade of pho-
ton will not tell us from which pinhole an individual photon
come from but only how many photons crossed this pinhole.
In counterpart of course we can not see the fringes and the
complementarity principle of Bohr will be, as in every quan-
tum experiment, naturally respected. It is thus in general dan-
gerous to speak unambiguously of a which-path experiment

and this should preferably be avoided from every discussions
limited to empirical facts. As claimed by Bohr the best em-
pirical choice is in such conditions to accept that it is wrong
to think that the task of physics is to find out how Nature is.
Physics concerns what we can say about Nature [4].

4 Conclusion

To conclude, in spite of some claims we still need at least two
complementary experiments in order to exploit the totality of
the phenomenon in Young-like interferometers. Actually, as
pointed out originally by Bohr, we can not use information
associated with a same photon event to reconstruct in a sta-
tistical way (i.e. by a accumulation of such events) the two
complementary distributions of photons in the image plane
of the lens and in the interference plane. The presence of
the wires inserted in reference 1 does not change anything to
this fact since the information obtained by adding the wires
is too weak and not sufficient to rebuild objectively (i. e. , un-
ambiguously from experimental data) the whole interference
pattern. The reasoning of Afshar et al. is therefore circular
and the experiment is finally in complete agreement with the
principle of complementarity.
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Aurélien Drezet. Wave Particle Duality and the Afshar Experiment 63



Volume 1 PROGRESS IN PHYSICS January, 2011

14. Unruh W. G. Comment on “single photon experiments and quantum
complementarity” by D. Georgiev. Progress in Physics, 2007, v. 3, 27–
27. See also: http://axion.physics.ubc.ca/rebel.html

15. Feynman R. P., Leighton R., Sand M. The Feynman Lectures on
Physics. Vol. 3, Adisson Wesley, Reading, 1965.

16. Zeilinger A. Experiment and the foundations of quantum physics. Re-
view of Modern Physics, 1999, v. 71, S288-–S297.

17. Scully M. O., Englert B. G., Walther H. Quantum optical tests of com-
plementarity. Nature, 1991, v. 351, 111–116.

18. Drezet A., Hohenau H., Krenn J. R. Heisenberg optical near-field mi-
croscope. Physical Review A, 2006, v. 73, 013402.

19. Drezet A., Hohenau H., Krenn J. R. Momentum transfer for momentum
transfer-free which-path experiments. Physical Review A, 2006, v. 73,
062112.

20. de Broglie L. Ondes et Mouvements. Gauthier-Villars, Paris, 1926.

21. Bohm D. A Suggested Interpretation of the Quantum Theory in Terms
of “Hidden” Variables. Part 1 and 2. Physical Review 1952, v. 85, 166–
179 and 180–193.

22. Greene B. The fabric of the cosmos. Alfred A. Knopf, New York 2004.

23. Wheeler J. A. Mathematical Foundations of Quantum Physics.
A. R. Marlow (Editor), Academic, NewYork, 1978.

24. In the actual experimental setup considered in [1] the lens is located far
away from the two pinholes so that it is in practice equivalent to observe
the fringes in front of the lens or in its back focal plane.

25. Englert B. G. Fringe Visibility and Which-Way Information: An In-
equality. Physical Review Letters, 1996, v. 77, 2154–2157.

26. Greenberger D. M., Yasin A. Simultaneous wave and particle knowl-
edge in a neutron interferometer. Physics Letters A, 1988, v. 128, 391–
394.

27. Wooters W. K., Zurek W. H. Complementarity in the double-slit exper-
iment: Quantum nonseparability and a quantitative statement of Bohr’s
principle. Physical Review D, 1979, v. 19, 473–484.

28. Jaeger G., Shimony A., Vaidman L. Two interferometric complemen-
tarities. Physical Review A, 1995, v. 51, 54–67.

29. Englert B.-G., Scully M. O., Süssmann G., Walther H. Surrealistic
Bohm trajectories. Zeitschrift für Naturforschung A, 1992, v. 47, 1175–
1186.

30. Vaidman L. The reality in bohmian quantum mechanics or can you kill
with an empty wave bullet? Foundations of Physics, 2005, v. 35, 299–
312.

31. Bohm D. J., Dewdney C., Hiley B. H. A quantum potential approach
to the Wheeler delayed-choice experiment. Nature, 1985, v. 315, 294–
297.

32. Bartell L. S. Complementarity in the double-slit experiment: On simple
realizable systems for observing intermediate particle-wave behavior.
Physical Review D, 1980, v. 21, 1698–1699.

33. Gibbs J. W. Elementary Principles in Statiscal Mechanics. Longmans
Green and Company, NewYork, 1928.

34. Shannon C. E., Weaver W. The mathematical theory of communica-
tions. University of Illinois Press, Urbana,1949.

35. Jaynes E. T. Information theory and statistical mechanics. Physical Re-
view, 1957 v. 106, 620–630.

36. Hiley B. J. and Callaghan R. E. What is Erased in the Quantum Erasure?
Foundations of Physics, 2007, v.36, 1869-1883.
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