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Five Fallacies Used to Link Black Holes to Einstein’s Relativistic Space-Time
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For a particle falling radially toward a compact mass, the Schwarzschild metric maps
local time to coordinate time based on radial locations reached by the particle. The
mapping shows the particle will not cross a critical radius regardless of the coordinate
used to measure time. Herein are discussed five fallacies that have been used to make it
appear the particle can cross the critical radius.

1 Introduction

Einstein [1] sets out field equations that describe a matter-
free field. A German military officer, Karl Schwarzschild [2],
shortly before he died, derived a solution of the field equa-
tions for a static gravitational field of spherical symmetry.
Schwarzschild’s solution is referred to as the Schwarzschild
metric.

Einstein [3] showed that matter cannot be compacted be-
low a critical radius defined by the Schwarzschild metric.
Weller [4] shows that compacting matter below the critical
radius to form a black hole results in a violation of the con-
servation of momentum and energy.

Why, then, do many believe that black holes exist in Ein-
stein’s relativistic space time? The belief appears to have
arisen based, at least partly, on an incorrect description of the
journey of a particle falling radially towards a hypothetical
mass compacted below the critical radius. The description is
incorrect in that the particle reaches and crosses the critical
radius.

Herein are discussed five fallacies used in the description
of the particle’s journey. Preliminary to addressing the falla-
cies, it is shown why the particle will never reach the critical
radius.

2 Mapping coordinate time t to local time τ

For a particle falling radially toward a hypothetical mass com-
pacted below a critical radius, a mapping of the coordinate
time t of a distant observer to a local time τ of the particle
based on a radial distance r is shown in Fig. 1. The data

Fig. 1: For a particle falling radially, the Schwarschild Metric maps
every value of the coordinate time t of a distant observer — where
0 ≤ t ≤ ∞— into a corresponding value of the local time τ of the
particle — where 0 ≤ τ ≤ τC .

shown in Fig. 1 can be obtained using the Schwarzschild
metric.

Particularly, for a compact mass M with a Schwarzschild
radius R, the Schwarzschild metric can be expressed using
reference space coordinates (r, θ, φ), a coordinate time t and a
local time τ (often referred to as proper time τ), i.e.,

c2dτ2 =c2
(
1− R

r

)
dt2− dr2

(1−R/r)
−r2dθ2− (r2sin2θ)dφ2. (1)

Reference coordinates (r, θ, φ, t) are the space and time coor-
dinates used by the distant observer to make measurements
while the particle detects passage of time using local time co-
ordinate τ. For a particle falling radially

dθ = dφ = 0, (2)

so the Schwarzschild metric in (1) reduces to

c2dτ2 = c2
(
1 − R

r

)
dt2 − dr2

(1 − R/r)
, (3)

which expresses a relationship between radial location r, local
time τ and coordinate time t.

According to the relationship expressed by (3), for every
radial location ri reached from a starting location rS , the co-
ordinate time ti to reach radial location ri can be calculated
using an integral

ti =

ri∫

rS

dt =

ri∫

rS

f1(r)dr, (4)

where f1(r)is a function of r derived from (3) [5, p. 667].
The local time τi required to reach the radial location ri

can be calculated using an integral

τi =

ri∫

rS

dτ =

ri∫

rS

f2(r)dr, (5)

where f2(r)is a function of r derived from (3) [5, p. 663].
When the radial location ri is set equal to a critical radius

rC , the integrand f1(r) for the integral in (4) and the integrand
f2(r) for the integral in (5) are undefined; however, the inte-
gral in (5) converges while the integral in (4) does not. This
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indicates that the critical radius rC is reached in a finite local
time τC but cannot be reached in finite Schwarzschild coordi-
nate time.

The results of calculations using the integral of (4) and the
integral of (5) are summarized in Fig. 1. As shown by Fig. 1,
based on the integrals in (4) and (5), any value of coordinate
time t, 0 ≤ t ≤ ∞, can be mapped into a corresponding value
for local time τ, 0 ≤ τ ≤ τC based on radial location r.

3 A pause to check correctness of Fig. 1

At this point the reader is encouraged to stop, look at Fig. 1,
and perform an obviousness check to confirm why the data in
Fig. 1 must be correct. The salient points are as follows:

• It takes infinite coordinate time (i.e., t = ∞) to reach
the critical radius rC;

• It takes finite local time τC to reach the critical radius
rC ;

• Both local time τ and coordinate time t monotonically
progress with decreasing r;

• To reach each radial location ri will take a coordinate
time ti to complete and a local time τi to complete;

• Based on radial location ri, a value of coordinate time
ti is mapped to a local time τi.

A reader who understands why Fig. 1 must be an accurate
description of data derived from the Schwarzschild metric has
already made a paradigm shift which if held to provides an
intuitive foundation from which to understand the remainder
of the paper. There is only one slight modification to Fig. 1
that is necessary to reveal why the critical radius can never be
crossed. That is the subject of the next section.

4 Fig. 1 modified to take into account the finite duration
of the compact mass

Fig. 1 depicts data from the Schwarzschild metric for a hy-
pothetical compact mass that is presumed to exist forever in
coordinate time. But what happens when the compact mass
is replaced by an entity that more closely approximates real-
ity in that it has a finite lifetime? For example, replace the
compact mass with a theoretical black hole that has a finite
lifetime. The result is shown in Fig. 2.

Because of Hawking radiation [6], it is estimated that a
black hole will evaporate well within 10100 years. Therefore,
added to Fig. 2 is finite coordinate time tE which is the co-
ordinate time required for a hypothetical black hole to com-
pletely evaporate [7]. Using the mapping shown in Fig. 1, it
is possible to identify a radial location rE — where rE > rC

— the particle will have reached simultaneous with the black
hole evaporating at coordinate time tE .

Fig. 2 shows a local time τE that represents the local time
required for the particle to reach rE . Local time τE corre-
sponds with coordinate time tE — the coordinate time re-
quired for a black hole to completely evaporate. Local time

Fig. 2: According to the mapping of coordinate time to local time
performed using the Schwarschild metric, the local time required to
reach the critical radius of a black hole (τC) is longer than the life of
the black hole (τE).

τC , as calculated by (5), represents the local time required for
the particle to reach critical radius rC . Because τE < τC , the
particle will experience in local time τ that the black hole will
evaporate before the critical radius can be reached.

5 The significance of Fig. 2

Fig. 2, based on the data from the Schwarzschild metric,
shows a radially falling particle will never cross the critical
radius of the compact mass regardless of what coordinate is
used to measure the passage of time. For every radial location
reached by the particle (i.e., rS ≥ r ≥ rE , there is a corre-
sponding coordinate time t to reach the radial location and a
corresponding local time τ to reach the radial location. The
final destination of the particle is not dependent upon which
measure of time is used to time the journey.

Fig. 2 presents a paradigm that is in conformance with the
fundamental requirement of general relativity — and indeed a
coherent universe — that there is a single reality with a logical
sequence of events. The logical sequence of events does not
vary based upon the reference frame from which observations
are made.

Fig. 2 is meant to be an anchor from which can be shown
how each of the five fallacies discussed below entices a de-
parture from a coherent reality, where the logical sequence of
events is consistent for every reference frame, into an inco-
herent reality where physical events differ based on reference
frames from which observations are made.

In the following discussion of fallacies, evaporation of
black holes is used as a convenient way to account for the
finite lifetime of a hypothetical mass compacted below the
critical radius. However, as should be clear from Fig. 2, a par-
ticle cannot cross the critical radius and therefore, as pointed
out by [3], a mass will never compact below its critical ra-
dius. For the implication of this for collapsing stars, see the
discussion of fallacy 4 below.
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Fig. 3: Fig. 3 arranges the data shown in Fig. 2 in a different format.
The trace extending to r = 0 incorrectly suggests that it is physically
possible to cross the critical radius.

6 Fallacy 1: Showing a particle crosses the critical ra-
dius after evaporation of a black hole

For the journey of a particle to a black hole, elapsed time
calculated using (4) and (5) is typically not represented as set
out in Fig. 2, but rather as set out in Fig. 3 [5, p. 667].

Fig. 3, like Fig. 1 and Fig. 2, is a graphic representation
of data obtained from (4) and (5). However, Fig. 3 qualifies
as a fallacy because Fig. 3 includes extra data, not shown in
Fig. 1 or Fig. 2., that incorrectly portrays the journey of the
particle. Particularly, in Fig. 3, the trace representing local
time τ extends beyond τC , the local time required to reach
critical radius rC .

Ordinary rules of mathematics cannot be used to generate
the extra data for local time τ that occur after critical radius rC

is reached. This is because the integrand in (5) is undefined
at rC . Nevertheless, a novel “cycloid principle” [5, See pp.
663–664] has been used to generate this extra data.

But merely showing how the extra data can be mathemat-
ically generated does not overcome the logical sequencing
problem introduced by adding the extra data to Fig. 3. The
extra data suggests rC can be reached and crossed in local
time τC . However, this is impossible because as shown in
Fig. 2, a black hole will evaporate in local time τE , so that
critical radius rC will cease to exist before it can be reached
by the particle.

A horizontal line has been included in Fig. 3 to indicate
where in Fig. 3 the evaporation of a black hole occurs. As
shown by Fig. 3, evaporation of a black hole at radial loca-
tion rE , local time τE and coordinate time tE logically occurs
before reaching radial location rC , local time τC and coordi-
nate time t = ∞.

Fig. 3 should be corrected to show that a physical journey
of a particle towards a black hole must end at radial location
rE — short of the critical radius rC — when the black hole
evaporates at local time τE and coordinate time tE . The end
of the journey occurs at rE whether time is measured using
coordinate time t or local time τ.

7 Fallacy 2: Declaring coordinates to be “pathological”

Fig. 3 suggests an impossible picture of physical reality. The
particle cannot finally arrive at different destinations (r = 0
and r = rC) merely based on the coordinate used to measure
time.

As discussed in the last section, the logical sequence of
events that occurs in all time frames, as out in Fig. 2, makes
clear what is wrong with Fig. 3 and how it can be corrected.
However, another competing explanation has been put forth.

The infinite coordinate time t required to reach the critical
radius has been explained as the result of a “pathology” in the
coordinates used to express the Schwarzschild metric. [5, See
pp. 820-823].

Declaring coordinates to be pathological is a fallacy be-
cause it is a violation of general relativity at its most fun-
damental level. According to general relativity, all coordi-
nates (reference frames) will observe the same reality. As
Einstein [1, p. 117] made clear when setting out the basis for
the theory of general relativity: “. . . all imaginable systems
of coordinates, on principle, [are] equally suitable for the de-
scription of nature”.

If general relativity is true, the events that occur during
the journey of the particle occur in the same logical sequence
irrespective of the coordinates used to observe the journey.
Fig. 2 shows that the logical sequence of events that happens
when time is measured using coordinate time t also happens
in the same logical order when time is measured using lo-
cal time τ. The next section shows that even when making
observation from specially selected coordinates, the logical
sequence of events does not differ from that shown in Fig. 2.

8 Fallacy 3: Use of specially selected coordinates

Fallacy 3 is an attempt to find coordinates that will show the
particle can reach and cross the critical radius. The specially
selected coordinates achieve this purpose based on a logical
fallacy called begging the question in which the thing to be
proved is assumed in a premise.

The thing to be proved is that a free falling particle can
reach and cross the critical radius. The premise is that the
specially selected coordinates can reach and cross the critical
radius. When the specially selected coordinates are used as
the reference coordinates in the Schwarzschild metric, and it
is assumed the specially selected coordinates can cross the
critical radius, it is possible to “show” the particle also can
cross the critical radius.

But the premise is false. In the Schwarzschild metric, no
reference frame can cross its critical radius because to do so
would be a violation of the conservation of momentum and
energy [4]. Below are considered two classes of specially
selected coordinates:

• Coordinates that use the same reference frame as the
free falling particle (e.g., the Novikov coordinates);
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• Coordinates that use the reference frame of a radially
traveling photon, (e.g., ingoing Eddington-Finkelstein
coordinates and the Kruskal-Szekeres coordinates).

For each class of specially selected coordinates it is shown
that their reference frame cannot cross a critical radius within
the time it takes a black hole to evaporate.

Coordinates that use the reference frame of the free
falling particle: Coordinates, such as the Novikov coordi-
nates, that share a reference frame with the particle, also share
the same time coordinate. Thus the local time coordinate τ
measures the passage of time for both the local coordinates
and the reference frame of the Novikov coordinates [5, p.
826].

The time required for a black hole to evaporate as mea-
sured by the time coordinate τ— which is the time coordinate
for the reference frame shared by the Novikov coordinates
shared and the local coordinates — has already been shown
to be τE . See Fig. 2. As discussed above, τE < τC , indicating
a black hole will evaporate at local time τE before the refer-
ence frame for the Novikov coordinates and the particle will
be able to reach the critical radius at local time τC .

Coordinates that use the reference frame of a photon:
The reference frame for ingoing Eddington-Finkelstein co-
ordinates and the Kruskal-Szekeres coordinates is a radially
traveling photon. [5, See pp. 826–832].

The coordinate time t for the photon to reach its critical
radius can be very simply calculated from the Schwarzschild
metric in (1). Because the photon is traveling radially, dθ =

dφ = 0. Because local time for a photon does not progress,
dτ = 0. Therefore, the form of the Schwarzschild metric used
to calculate values for coordinate time t is obtained by setting
dθ = dφ = dτ = 0 in (1) yielding

0 = c2
(
1 − R

r

)
dt2 − dr2

(1 − R/r)
. (6)

The integral in (4) can be used to calculate elapsed coordinate
time t for the photon based on radial distance. Integrand f1(r)
is obtained by rearranging the terms in (6), i.e.,

f1(r) =
dt
dr

=
1

c(1 − R/r)
. (7)

When the photon reaches r = R, the integrand in (7) is unde-
fined and the integral in (4) does not converge. Therefore the
radially traveling photon will not reach R in finite coordinate
time.

A black hole that evaporates in finite coordinate time tE ,
will evaporate when the photon reaches a radial location rL

that is outside R. When the photon reaches radial location
rL at coordinate time tE , the ingoing particle will be at radial
location rE , outside the critical radius rC , as shown by Fig. 2.

In the reference frame of a photon, the black hole will
evaporate when the photon reaches radial location rL, before
the photon reaches its critical radius R. As in all reference

frames of the Schwarzschild metric, the reference frame of
the photon is not able to reach the critical radius before the
black hole evaporates.

9 Fallacy 4: Claiming the existence of surfaces trapped
below a surface of last influence

Misner et al. [5, pp. 873–874] makes the argument that once
the surface of a collapsing star crosses a critical radius, light
reflecting from the surface remains trapped below the criti-
cal radius. This is a fallacy because the surface of a collaps-
ing star will never cross the critical radius [3]. The very last
particle on the surface to cross the critical radius can be ap-
proximately modeled by the radially falling particle of Fig. 2.
From the perspective of the distant observer (coordinate time
in Fig. 2), the collapsing star evaporates in finite time, before
the infinite coordinate time required for the last particle on
the surface to cross the critical radius.

From the perspective of a particle on the surface (local
time in Fig. 2), the collapsing star evaporates very suddenly
as the particle nears the critical radius. It is intriguing to
imagine the experience of the particle as the surface of the
collapsing star immediately disintegrates into radiation near
the critical radius. Such an inferno of unimaginable propor-
tions would tend to be masked from a distant observer by the
extreme gravity near the critical radius. But as the surface
burns away reducing the mass of the collapsing star — caus-
ing the critical radius to retreat farther below the surface of
the collapsing star — a less time dilated view of the inferno
might be released, perhaps providing an explanation for the
sudden appearance of quasars.

Since the surface of a collapsing star cannot cross its criti-
cal radius in finite coordinate time t, Misner et al. [5, pp. 873–
874] measures time from the reference frame for the ingoing
Eddington-Finkelstein coordinates. As discussed in the prior
section, use of ingoing Eddington-Finkelstein coordinates to
prove the critical radius can be crossed just begs the ques-
tion. The ingoing Eddington-Finkelstein coordinates will not
cross the Schwarzschild metric of the collapsing star before
the collapsing star evaporates. This should be especially clear
for the example of a collapsing star since the surface, located
outside its critical radius, will be an impenetrable barrier that
will prevent any photon, serving as a reference frame for the
ingoing Eddington-Finkelstein coordinates, from reaching its
critical radius at R.

10 Fallacy 5: Claiming the infinite coordinate time to
reach the critical radius is an optical illusion

It has been asserted that as measured by proper time, a free-
falling traveler quickly reaches the critical radius. To the dis-
tant observer it appears to take an infinite amount of coordi-
nate time to reach the critical radius as a result of an optical
illusion caused by light propagation introducing a delay in
communicating that the critical radius has been reached [5,
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pp. 874–875]. Fallacy 5 is a departure from general relativity
because in general relativity the difference between local time
and coordinate time is not merely the result of delay intro-
duced by light propagation. In the theory of general relativity,
time progresses at different rates depending on the strength of
the gravity field in which measurements are made.

Einstein [8, p. 106] explains: “we must use clocks of un-
like constitution, for measuring time at places with differing
gravitational potential.” This principle of relativity is embod-
ied in the Schwarzschild metric where gravity changes the
rate at which time progresses [2]. For a precise description
of how in the Schwarzschild metric gravity affects time based
on the conservation of momentum and energy, see [4, Eq. 8].

Because fallacy 5 does not properly account for the ef-
fect gravity has on time, and is therefore not in accord with
general relativity or the Schwarzschild metric, the results pre-
dicted by fallacy 5 do not agree with results calculated using
the Schwarzschild metric. This is illustrated by a hypothetical
in the following section.

11 A hypothetical illustrating the logical contradictions
introduced by fallacy 5

According to fallacy 5, as measured by proper time, a radially
falling traveler quickly reaches and crosses the critical radius
of a black hole. The reality that the traveler quickly reaches
the critical radius appears to the distant observer to take an
infinite amount of time because of the propagation of light.

Fallacy 5’s portrayal of reality is not consistent with cal-
culations made using the Schwarzschild metric.

For example, put a reflector on the back of the traveler and
have the distant observer periodically shine a light beam at the
traveler. Use the Schwarzschild metric to calculate the radial
location at which the faster moving light beam will overtake
the slower moving traveler and reflect back to indicate the
location of the traveler to the distant observer.

No matter how much of a head start the traveler has before
the light is turned on (even trillions of years or longer, as mea-
sured using coordinate time), according to the Schwarzschild
metric the light will always overtake the traveler before the
critical radius is reached. The radial location at which the
traveler is overtaken is the same whether local time or coordi-
nate time is used to make the calculations, provided start time
and overtake time for each light beam are measured with the
same time coordinate. This result is inevitable based on the
pattern of the data obtained from the Schwarzschild metric,
as shown in Fig. 1.

As shown by Fig. 2, the distant observer can continue
to shine light beams at the traveler until the distant observer
observes the black hole evaporates. The feedback from the re-
flected light beams will tell the distant observer that the trav-
eler remains outside the black hole as the black hole evap-
orates slowly in coordinate time, and quickly in local time.
This contradicts the assertion of fallacy 5 that the traveler eas-

ily reaches and crosses the critical radius.
The distant observer does not even need to shine a light

beam for this experiment as background radiation reflecting
from the traveler provides exactly the same information.

Hawking radiation also provides the same information.
While the distant observer sees the traveler outside the critical
radius, the distant observer will also observe Hawking radia-
tion from the evaporating black hole, which will first have to
pass through the radial location of the traveler before reach-
ing the distant observer. This indicates to the distant observer
that the traveler will have experienced, before the distant ob-
server, radiation emitted during the disintegration of the black
hole. Further, the radiation passing by the traveler will con-
tinuously bring information to the distant observer about the
location of the traveler confirming the information from the
light beams. Each photon of radiation from the evaporating
black hole that passes by the traveler is a progress report on
the traveler’s location that will confirm to the distant observer
that the traveler had not yet passed through the critical ra-
dius when that photon of radiation passed the traveler. Such
progress reports will continue until the black hole completely
evaporates.

Light beams from the distant observer, background ra-
diation and Hawking radiation will all intercept the traveler
outside the critical radius — according to the Schwarzschild
metric — regardless of the coordinates used to make mea-
surements. This result contradicts the assertion of fallacy 5
that the critical radius is quickly crossed and only appears
to the distant observer to take infinite time because of light
propagation.
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